Search results for: task based learning.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12759

Search results for: task based learning.

10989 Inquiry on the Improvement Teaching Quality in the Classroom with Meta-Teaching Skills

Authors: Shahlan Surat, Saemah Rahman, Saadiah Kummin

Abstract:

When teachers reflect and evaluate whether their teaching methods actually have an impact on students’ learning, they will adjust their practices accordingly. This inevitably improves their students’ learning and performance. The approach in meta-teaching can invigorate and create a passion for teaching. It thus helps to increase the commitment and love for the teaching profession. This study was conducted to determine the level of metacognitive thinking of teachers in the process of teaching and learning in the classroom. Metacognitive thinking teachers include the use of metacognitive knowledge which consists of different types of knowledge: declarative, procedural and conditional. The ability of the teachers to plan, monitor and evaluate the teaching process can also be determined. This study was conducted on 377 graduate teachers in Klang Valley, Malaysia. The stratified sampling method was selected for the purpose of this study. The metacognitive teaching inventory consisting of 24 items is called InKePMG (Teacher Indicators of Effectiveness Meta-Teaching). The results showed the level of mean is high for two components of metacognitive knowledge; declarative knowledge (mean = 4.16) and conditional (mean = 4.11) whereas, the mean of procedural knowledge is 4.00 (moderately high). Similarly, the level of knowledge in monitoring (mean = 4.11), evaluating (mean = 4.00) which indicate high score and planning (mean = 4.00) are moderately high score among teachers. In conclusion, this study shows that the planning and procedural knowledge is an important element in improving the quality of teachers teaching in the classroom. Thus, the researcher recommended that further studies should focus on training programs for teachers on metacognitive skills and also on developing creative thinking among teachers.

Keywords: Metacognitive thinking skills, procedural knowledge, conditional knowledge, declarative knowledge, meta-teaching and regulation of cognitive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
10988 Meta Model Based EA for Complex Optimization

Authors: Maumita Bhattacharya

Abstract:

Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, many real life optimization problems often require finding optimal solution to complex high dimensional, multimodal problems involving computationally very expensive fitness function evaluations. Use of evolutionary algorithms in such problem domains is thus practically prohibitive. An attractive alternative is to build meta models or use an approximation of the actual fitness functions to be evaluated. These meta models are order of magnitude cheaper to evaluate compared to the actual function evaluation. Many regression and interpolation tools are available to build such meta models. This paper briefly discusses the architectures and use of such meta-modeling tools in an evolutionary optimization context. We further present two evolutionary algorithm frameworks which involve use of meta models for fitness function evaluation. The first framework, namely the Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model [14] reduces computation time by controlled use of meta-models (in this case approximate model generated by Support Vector Machine regression) to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the metamodel are generated from a single uniform model. This does not take into account uncertain scenarios involving noisy fitness functions. The second model, DAFHEA-II, an enhanced version of the original DAFHEA framework, incorporates a multiple-model based learning approach for the support vector machine approximator to handle noisy functions [15]. Empirical results obtained by evaluating the frameworks using several benchmark functions demonstrate their efficiency

Keywords: Meta model, Evolutionary algorithm, Stochastictechnique, Fitness function, Optimization, Support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066
10987 An Innovation of Travel Information Gathering Framework

Authors: Pairaya J., Buddhagarn R., Sukree S., Punthumadee K.

Abstract:

Application of Information Technology (IT) has revolutionized the functioning of business all over the world. Its impact has been felt mostly among the information of dependent industries. Tourism is one of such industry. The conceptual framework in this study represents an innovation of travel information searching system on mobile devices which is used as tools to deliver travel information (such as hotels, restaurants, tourist attractions and souvenir shops) for each user by travelers segmentation based on data mining technique to segment the tourists- behavior patterns then match them with tourism products and services. This system innovation is designed to be a knowledge incremental learning. It is a marketing strategy to support business to respond traveler-s demand effectively.

Keywords: Tourism, Innovation, Information Searching, Data Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
10986 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies

Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk

Abstract:

Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, these projects propose AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project present the best-in-school techniques used to preserve data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptography techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures, and identifies potential correction/mitigation measures.

Keywords: Data privacy, artificial intelligence, healthcare AI, data sharing, healthcare organizations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113
10985 Learning Example of a Biomedical Project from a Real Problem of Muscle Fatigue

Authors: M. Rezki, A. Belaidi

Abstract:

This paper deals with a method of learning to solve a real problem in biomedical engineering from a technical study of muscle fatigue. Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by skeletal muscles (viewpoint: anatomical and physiological). EMG is used as a diagnostics tool for identifying neuromuscular diseases, assessing low-back pain and muscle fatigue in general. In order to study the EMG signal for detecting fatigue in a muscle, we have taken a real problem which touches the tramway conductor the handle bar. For the study, we have used a typical autonomous platform in order to get signals at real time. In our case study, we were confronted with complex problem to do our experiments in a tram. This type of problem is recurring among students. To teach our students the method to solve this kind of problem, we built a similar system. Through this study, we realized a lot of objectives such as making the equipment for simulation, the study of detection of muscle fatigue and especially how to manage a study of biomedical looking.

Keywords: EMG, health platform, conductor’s tram, muscle fatigue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
10984 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing

Authors: Aleksandra Zysk, Pawel Badura

Abstract:

Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.

Keywords: Classification, singing, spectral analysis, vocal emission, vocal register.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312
10983 Preliminary Overview of Data Mining Technology for Knowledge Management System in Institutions of Higher Learning

Authors: Muslihah Wook, Zawiyah M. Yusof, Mohd Zakree Ahmad Nazri

Abstract:

Data mining has been integrated into application systems to enhance the quality of the decision-making process. This study aims to focus on the integration of data mining technology and Knowledge Management System (KMS), due to the ability of data mining technology to create useful knowledge from large volumes of data. Meanwhile, KMS vitally support the creation and use of knowledge. The integration of data mining technology and KMS are popularly used in business for enhancing and sustaining organizational performance. However, there is a lack of studies that applied data mining technology and KMS in the education sector; particularly students- academic performance since this could reflect the IHL performance. Realizing its importance, this study seeks to integrate data mining technology and KMS to promote an effective management of knowledge within IHLs. Several concepts from literature are adapted, for proposing the new integrative data mining technology and KMS framework to an IHL.

Keywords: Data mining, Institutions of Higher Learning, Knowledge Management System, Students' academic performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141
10982 Stepsize Control of the Finite Difference Method for Solving Ordinary Differential Equations

Authors: Davod Khojasteh Salkuyeh

Abstract:

An important task in solving second order linear ordinary differential equations by the finite difference is to choose a suitable stepsize h. In this paper, by using the stochastic arithmetic, the CESTAC method and the CADNA library we present a procedure to estimate the optimal stepsize hopt, the stepsize which minimizes the global error consisting of truncation and round-off error.

Keywords: Ordinary differential equations, optimal stepsize, error, stochastic arithmetic, CESTAC, CADNA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
10981 Analysis of Suitability of Online Assessment by Maintaining Critical Thinking

Authors: Mohamed Chabi, Mohammad Shahid Jamil, Mahmoud I Syam

Abstract:

The purpose of this study is to determine whether paper assessment especially in the subject mathematics will ever be completely replaced by online assessment using Learning Management System and Content Management System such as blackboard. Testing students has moved from the traditional scribbling and sketching on paper towards working online on a screen and keyboard. It is found that online assessment by using selective types of questions like multiple choices, true or false and final answer questions don’t reflect the actual understanding of students in solving the problems and teachers can’t determine the weakness points of students. In addition, it is showed that OBMCQs are a very good tool for self-assessment and when teachers are testing for knowledge and facts. But when it comes to the skills, OBMCQs are poor tools for measuring the ability to apply knowledge to complex math problem. 

Keywords: Paper assessment, online assessment, learning management system, content management system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036
10980 Knowing Where the Learning Is a Shift from Summative to Formative Assessment

Authors: Eric Ho

Abstract:

Pedagogical approaches in Asia nowadays are imported from the West. In Confucian Heritage Culture (CHC), however, there is a dichotomy between the perceived benefits of Western pedagogies and the real classroom practices in Chinese societies. The success of Hong Kong students in large-scale international assessments has proved that both the strengths of both Western pedagogies and CHC educational approaches should be integrated for the sake of the students. University students aim to equip themselves with employability skills upon graduation. Formative assessments allow students to receive detailed, positive, and timely feedback and they can identify their strengths and weaknesses before they start working. However, there remains a question of whether university year 1 students who come from an examination-driven secondary education background are ready to respond to more formative assessments. The findings show that year 1 students are less concerned about competition in the university and more open to new teaching approaches that will allow them to improve as professionals in their major study areas.

Keywords: Formative assessment, higher education, learning styles, Confucian heritage culture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472
10979 Objects Extraction by Cooperating Optical Flow, Edge Detection and Region Growing Procedures

Authors: C. Lodato, S. Lopes

Abstract:

The image segmentation method described in this paper has been developed as a pre-processing stage to be used in methodologies and tools for video/image indexing and retrieval by content. This method solves the problem of whole objects extraction from background and it produces images of single complete objects from videos or photos. The extracted images are used for calculating the object visual features necessary for both indexing and retrieval processes. The segmentation algorithm is based on the cooperation among an optical flow evaluation method, edge detection and region growing procedures. The optical flow estimator belongs to the class of differential methods. It permits to detect motions ranging from a fraction of a pixel to a few pixels per frame, achieving good results in presence of noise without the need of a filtering pre-processing stage and includes a specialised model for moving object detection. The first task of the presented method exploits the cues from motion analysis for moving areas detection. Objects and background are then refined using respectively edge detection and seeded region growing procedures. All the tasks are iteratively performed until objects and background are completely resolved. The method has been applied to a variety of indoor and outdoor scenes where objects of different type and shape are represented on variously textured background.

Keywords: Image Segmentation, Motion Detection, Object Extraction, Optical Flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
10978 Chose the Right Mutation Rate for Better Evolve Combinational Logic Circuits

Authors: Emanuele Stomeo, Tatiana Kalganova, Cyrille Lambert

Abstract:

Evolvable hardware (EHW) is a developing field that applies evolutionary algorithm (EA) to automatically design circuits, antennas, robot controllers etc. A lot of research has been done in this area and several different EAs have been introduced to tackle numerous problems, as scalability, evolvability etc. However every time a specific EA is chosen for solving a particular task, all its components, such as population size, initialization, selection mechanism, mutation rate, and genetic operators, should be selected in order to achieve the best results. In the last three decade the selection of the right parameters for the EA-s components for solving different “test-problems" has been investigated. In this paper the behaviour of mutation rate for designing logic circuits, which has not been done before, has been deeply analyzed. The mutation rate for an EHW system modifies the number of inputs of each logic gates, the functionality (for example from AND to NOR) and the connectivity between logic gates. The behaviour of the mutation has been analyzed based on the number of generations, genotype redundancy and number of logic gates for the evolved circuits. The experimental results found provide the behaviour of the mutation rate during evolution for the design and optimization of simple logic circuits. The experimental results propose the best mutation rate to be used for designing combinational logic circuits. The research presented is particular important for those who would like to implement a dynamic mutation rate inside the evolutionary algorithm for evolving digital circuits. The researches on the mutation rate during the last 40 years are also summarized.

Keywords: Design of logic circuit, evolutionary computation, evolvable hardware, mutation rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
10977 Path Planning of a Robot Manipulator using Retrieval RRT Strategy

Authors: K. Oh, J. P. Hwang, E. Kim, H. Lee

Abstract:

This paper presents an algorithm which extends the rapidly-exploring random tree (RRT) framework to deal with change of the task environments. This algorithm called the Retrieval RRT Strategy (RRS) combines a support vector machine (SVM) and RRT and plans the robot motion in the presence of the change of the surrounding environment. This algorithm consists of two levels. At the first level, the SVM is built and selects a proper path from the bank of RRTs for a given environment. At the second level, a real path is planned by the RRT planners for the given environment. The suggested method is applied to the control of KUKA™,, a commercial 6 DOF robot manipulator, and its feasibility and efficiency are demonstrated via the cosimulatation of MatLab™, and RecurDyn™,.

Keywords: Path planning, RRT, 6 DOF manipulator, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2529
10976 Attitude Change after Taking a Virtual Global Understanding Course

Authors: Rosina C. Chia, Elmer Poe, Karl L. Wuensch

Abstract:

A virtual collaborative classroom was created at East Carolina University, using videoconference technology via regular internet to bring students from 18 different countries, 2 at a time, to the ECU classroom in real time to learn about each other-s culture. Students from two countries are partnered one on one, they meet for 4-5 weeks, and submit a joint paper. Then the same process is repeated for two other countries. Lectures and student discussions are managed with pre-determined topics and questions. Classes are conducted in English and reading assignments are placed on the website. Administratively all partners are independent, students pay fees and get credits at their home institution. Familiarity with technology, knowledge in cultural understanding and attitude change were assessed, only attitude changes are reported in this paper. After taking this course, all students stated their comfort level in working with, and their desire to interact with, culturally different others grew stronger and their xenophobia and isolationist attitudes decreased.

Keywords: Attitude change, interactive cultural learning, multicultural education, real time virtual learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
10975 A Sensorless Robust Tracking Control of an Implantable Rotary Blood Pump for Heart Failure Patients

Authors: Mohsen A. Bakouri, Andrey V. Savkin, Abdul-Hakeem H. Alomari, Robert F. Salamonsen, Einly Lim, Nigel H. Lovell

Abstract:

Physiological control of a left ventricle assist device (LVAD) is generally a complicated task due to diverse operating environments and patient variability. In this work, a tracking control algorithm based on sliding mode and feed forward control for a class of discrete-time single input single output (SISO) nonlinear uncertain systems is presented. The controller was developed to track the reference trajectory to a set operating point without inducing suction in the ventricle. The controller regulates the estimated mean pulsatile flow Qp and mean pulsatility index of pump rotational speed PIω that was generated from a model of the assist device. We recall the principle of the sliding mode control theory then we combine the feed-forward control design with the sliding mode control technique to follow the reference trajectory. The uncertainty is replaced by its upper and lower boundary. The controller was tested in a computer simulation covering two scenarios (preload and ventricular contractility). The simulation results prove the effectiveness and the robustness of the proposed controller

Keywords: robust control system, discrete-sliding mode, left ventricularle assist devicse, pulsatility index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
10974 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: lexical semantics, feature representation, semantic decision, convolutional neural network, electronic medical record

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593
10973 Development of Fuzzy Logic Control Ontology for E-Learning

Authors: Muhammad Sollehhuddin A. Jalil, Mohd Ibrahim Shapiai, Rubiyah Yusof

Abstract:

Nowadays, ontology is common in many areas like artificial intelligence, bioinformatics, e-commerce, education and many more. Ontology is one of the focus areas in the field of Information Retrieval. The purpose of an ontology is to describe a conceptual representation of concepts and their relationships within a particular domain. In other words, ontology provides a common vocabulary for anyone who needs to share information in the domain. There are several ontology domains in various fields including engineering and non-engineering knowledge. However, there are only a few available ontology for engineering knowledge. Fuzzy logic as engineering knowledge is still not available as ontology domain. In general, fuzzy logic requires step-by-step guidelines and instructions of lab experiments. In this study, we presented domain ontology for Fuzzy Logic Control (FLC) knowledge. We give Table of Content (ToC) with middle strategy based on the Uschold and King method to develop FLC ontology. The proposed framework is developed using Protégé as the ontology tool. The Protégé’s ontology reasoner, known as the Pellet reasoner is then used to validate the presented framework. The presented framework offers better performance based on consistency and classification parameter index. In general, this ontology can provide a platform to anyone who needs to understand FLC knowledge.

Keywords: Engineering knowledge, fuzzy logic control ontology, ontology development, table of contents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1173
10972 Demand and Price Evolution Forecasting as Tools for Facilitating the RoadMapping Process of the Photonic Component Industry

Authors: T. Kamalakis, I. Neokosmidis, D. Varoutas, T. Sphicopoulos

Abstract:

The photonic component industry is a highly innovative industry with a large value chain. In order to ensure the growth of the industry much effort must be devoted to road mapping activities. In such activities demand and price evolution forecasting tools can prove quite useful in order to help in the roadmap refinement and update process. This paper attempts to provide useful guidelines in roadmapping of optical components and considers two models based on diffusion theory and the extended learning curve for demand and price evolution forecasting.

Keywords: Roadmapping, Photonic Components, Forecasting, Diffusion Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
10971 How to Improve Teaching and Learning Strategies through Educational Research: An Experience of Peer Observation in Legal Education

Authors: L. Mortari, A. Bevilacqua, R. Silva

Abstract:

The experience presented in this paper aims to understand how educational research can support the introduction and optimization of teaching innovations in legal education. In this increasingly complex context, a strong need to introduce paths aimed at acquiring not only professional knowledge and skills but also reflective, critical and problem-solving skills emerges. Through a peer observation intertwined with an analysis of discursive practices, researchers and the teacher worked together through a process of participatory and transformative accompaniment whose objective was to promote the active participation and engagement of students in learning processes, an element indispensable to work in the more specific direction of strengthening key competences. This reflective faculty development path led the teacher to activate metacognitive processes, becoming thus aware of the strengths and areas of improvement of his teaching innovation.

Keywords: Discursive analysis, faculty development, legal education, peer observation, teaching innovation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 355
10970 Identification of an Unstable Nonlinear System: Quadrotor

Authors: Mauricio Pe˜na, Adriana Luna, Carol Rodr´ıguez

Abstract:

In the following article we begin from a multi-parameter unstable nonlinear model of a Quadrotor. We design a control to stabilize and assure the attitude of the device, starting off a linearized system at the equilibrium point of the null angles of Euler (hover), which provides us a control with limited capacities at small angles of rotation of the vehicle in three dimensions. In order to clear this obstacle, we propose the identification of models in different angles by means of simulations and the design of a controller specifically implemented for the identification task, that in future works will allow the development of controllers according to fast and agile angles of Euler for Quadrotor.

Keywords: Quadrotor, model, control, identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2736
10969 Detection of Cyberattacks on the Metaverse Based on First-Order Logic

Authors: Sulaiman Al Amro

Abstract:

There are currently considerable challenges concerning data security and privacy, particularly in relation to modern technologies. This includes the virtual world known as the Metaverse, which consists of a virtual space that integrates various technologies, and therefore susceptible to cyber threats such as malware, phishing, and identity theft. This has led recent studies to propose the development of Metaverse forensic frameworks and the integration of advanced technologies, including machine learning for intrusion detection and security. In this context, the application of first-order logic offers a formal and systematic approach to defining the conditions of cyberattacks, thereby contributing to the development of effective detection mechanisms. In addition, formalizing the rules and patterns of cyber threats has the potential to enhance the overall security posture of the Metaverse and thus the integrity and safety of this virtual environment. The current paper focuses on the primary actions employed by avatars for potential attacks, including Interval Temporal Logic (ITL) and behavior-based detection to detect an avatar’s abnormal activities within the Metaverse. The research established that the proposed framework attained an accuracy of 92.307%, resulting in the experimental results demonstrating the efficacy of ITL, including its superior performance in addressing the threats posed by avatars within the Metaverse domain.

Keywords: Cyberattacks, detection, first-order logic, Metaverse, privacy, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66
10968 Identification of Coauthors in Scientific Database

Authors: Thiago M. R Dias, Gray F. Moita

Abstract:

The analysis of scientific collaboration networks has contributed significantly to improving the understanding of how does the process of collaboration between researchers and also to understand how the evolution of scientific production of researchers or research groups occurs. However, the identification of collaborations in large scientific databases is not a trivial task given the high computational cost of the methods commonly used. This paper proposes a method for identifying collaboration in large data base of curriculum researchers. The proposed method has low computational cost with satisfactory results, proving to be an interesting alternative for the modeling and characterization of large scientific collaboration networks.

Keywords: Extraction and data integration, Information Retrieval, Scientific Collaboration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
10967 Upgrading Performance of DSR Routing Protocol in Mobile Ad Hoc Networks

Authors: Mehdi Alilou, Mehdi Dehghan

Abstract:

Routing in mobile ad hoc networks is a challenging task because nodes are free to move randomly. In DSR like all On- Demand routing algorithms, route discovery mechanism is associated with great delay. More Clearly in DSR routing protocol to send route reply packet, when current route breaks, destination seeks a new route. In this paper we try to change route selection mechanism proactively. We also define a link stability parameter in which a stability value is assigned to each link. Given this feature, destination node can estimate stability of routes and can select the best and more stable route. Therefore we can reduce the delay and jitter of sending data packets.

Keywords: DSR, MANET, proactive, routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
10966 Matching-Based Cercospora Leaf Spot Detection in Sugar Beet

Authors: Rong Zhou, Shun’ich Kaneko, Fumio Tanaka, Miyuki Kayamori, Motoshige Shimizu

Abstract:

In this paper, we propose a robust disease detection method, called adaptive orientation code matching (Adaptive OCM), which is developed from a robust image registration algorithm: orientation code matching (OCM), to achieve continuous and site-specific detection of changes in plant disease. We use two-stage framework for realizing our research purpose; in the first stage, adaptive OCM was employed which could not only realize the continuous and site-specific observation of disease development, but also shows its excellent robustness for non-rigid plant object searching in scene illumination, translation, small rotation and occlusion changes and then in the second stage, a machine learning method of support vector machine (SVM) based on a feature of two dimensional (2D) xy-color histogram is further utilized for pixel-wise disease classification and quantification. The indoor experiment results demonstrate the feasibility and potential of our proposed algorithm, which could be implemented in real field situation for better observation of plant disease development.

Keywords: Cercospora Leaf Spot (CLS), Disease detection, Image processing, Orientation Code Matching (OCM), Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196
10965 Map UI Design of IoT Application Based on Passenger Evacuation Behaviors in Underground Station

Authors: Meng-Cong Zheng

Abstract:

When the public space is in an emergency, how to quickly establish spatial cognition and emergency shelter in the closed underground space is the urgent task. This study takes Taipei Station as the research base and aims to apply the use of Internet of things (IoT) application for underground evacuation mobility design. The first experiment identified passengers' evacuation behaviors and spatial cognition in underground spaces by wayfinding tasks and thinking aloud, then defined the design conditions of User Interface (UI) and proposed the UI design.  The second experiment evaluated the UI design based on passengers' evacuation behaviors by wayfinding tasks and think aloud again as same as the first experiment. The first experiment found that the design conditions that the subjects were most concerned about were "map" and hoping to learn the relative position of themselves with other landmarks by the map and watch the overall route. "Position" needs to be accurately labeled to determine the location in underground space. Each step of the escape instructions should be presented clearly in "navigation bar." The "message bar" should be informed of the next or final target exit. In the second experiment with the UI design, we found that the "spatial map" distinguishing between walking and non-walking areas with shades of color is useful. The addition of 2.5D maps of the UI design increased the user's perception of space. Amending the color of the corner diagram in the "escape route" also reduces the confusion between the symbol and other diagrams. The larger volume of toilets and elevators can be a judgment of users' relative location in "Hardware facilities." Fire extinguisher icon should be highlighted. "Fire point tips" of the UI design indicated fire with a graphical fireball can convey precise information to the escaped person. "Fire point tips" of the UI design indicated fire with a graphical fireball can convey precise information to the escaped person. However, "Compass and return to present location" are less used in underground space.

Keywords: Evacuation behaviors, IoT application, map UI design, underground station.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 740
10964 Detecting the Edge of Multiple Images in Parallel

Authors: Prakash K. Aithal, U. Dinesh Acharya, Rajesh Gopakumar

Abstract:

Edge is variation of brightness in an image. Edge detection is useful in many application areas such as finding forests, rivers from a satellite image, detecting broken bone in a medical image etc. The paper discusses about finding edge of multiple aerial images in parallel. The proposed work tested on 38 images 37 colored and one monochrome image. The time taken to process N images in parallel is equivalent to time taken to process 1 image in sequential. Message Passing Interface (MPI) and Open Computing Language (OpenCL) is used to achieve task and pixel level parallelism respectively.

Keywords: Edge detection, multicore, GPU, openCL, MPI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338
10963 From Individual Memory to Organizational Memory (Intelligence of Organizations)

Authors: A. Bencsik, 1V. Lıre, 2, I. Marosi

Abstract:

Intensive changes of environment and strong market competition have raised management of information and knowledge to the strategic level of companies. In a knowledge based economy only those organizations are capable of living which have up-to-date, special knowledge and they are able to exploit and develop it. Companies have to know what knowledge they have by taking a survey of organizational knowledge and they have to fix actual and additional knowledge in organizational memory. The question is how to identify, acquire, fix and use knowledge effectively. The paper will show that over and above the tools of information technology supporting acquisition, storage and use of information and organizational learning as well as knowledge coming into being as a result of it, fixing and storage of knowledge in the memory of a company play an important role in the intelligence of organizations and competitiveness of a company.

Keywords: Individual memory, organizational memory, knowledge management, organizational intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
10962 Inclusive Housing in Australia – A Voluntary Response

Authors: M. Ward, J. Franz, B. Adkins

Abstract:

The lack of inclusive housing in Australia contributes to the marginalization and exclusion of people with disability and older people from family and community life. The Australian government has handed over the responsibility of increasing the supply of inclusive housing to the housing industry through an agreed national access standard and a voluntary strategy. Voluntary strategies have not been successful in other constituencies and little is known about what would work in Australia today. Findings from a research project into the voluntariness of the housing industry indicate that a reliable and consistent supply is unlikely without an equivalent increase in demand. The strategy has, however, an important role to play in the task of changing housing industry practices towards building more inclusive communities.

Keywords: Australia, housing, inclusion, voluntary, industry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
10961 Representing Data without Lost Compression Properties in Time Series: A Review

Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.

Keywords: Compression properties, uncertainty, uncertain time series, mining technique, weather prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
10960 BIBD-s for (13, 5, 5), (16, 6, 5) and (21, 6, 4) Possessing Possibly an Automorphism of Order 3

Authors: Ivica Martinjak, Mario-Osvin Pavcevic

Abstract:

When trying to enumerate all BIBD-s for given parameters, their natural solution space appears to be huge and grows extremely with the number of points of the design. Therefore, constructive enumerations are often carried out by assuming additional constraints on design-s structure, automorphisms being mostly used ones. It remains a hard task to construct designs with trivial automorphism group – those with no additional symmetry – although it is believed that most of the BIBD-s belong to that case. In this paper, very many new designs with parameters 2-(13, 5, 5), 2-(16, 6, 5) and 2-(21, 6, 4) are constructed, assuming an action of an automorphism of order 3. Even more, it was possible to construct millions of such designs with no non-trivial automorphisms.

Keywords: BIBD, incidence matrix, automorphism group, tactical decomposition, deterministic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318