Search results for: fuzzy logic and neural networks.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3423

Search results for: fuzzy logic and neural networks.

1653 Control Improvement of a C Sugar Cane Crystallization Using an Auto-Tuning PID Controller Based on Linearization of a Neural Network

Authors: S. Beyou, B. Grondin-Perez, M. Benne, C. Damour, J.-P. Chabriat

Abstract:

The industrial process of the sugar cane crystallization produces a residual that still contains a lot of soluble sucrose and the objective of the factory is to improve its extraction. Therefore, there are substantial losses justifying the search for the optimization of the process. Crystallization process studied on the industrial site is based on the “three massecuites process". The third step of this process constitutes the final stage of exhaustion of the sucrose dissolved in the mother liquor. During the process of the third step of crystallization (Ccrystallization), the phase that is studied and whose control is to be improved, is the growing phase (crystal growth phase). The study of this process on the industrial site is a problem in its own. A control scheme is proposed to improve the standard PID control law used in the factory. An auto-tuning PID controller based on instantaneous linearization of a neural network is then proposed.

Keywords: Auto-tuning, PID, Instantaneous linearization, Neural network, Non linear process, C-crystallisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
1652 An Energy-Latency-Efficient MAC Protocol for Wireless Sensor Networks

Authors: Tahar Ezzedine, Mohamed Miladi, Ridha Bouallegue

Abstract:

Because nodes are usually battery-powered, the energy presents a very scarce resource in wireless sensor networks. For this reason, the design of medium access control had to take energy efficiency as one of its hottest concerns. Accordingly, in order to improve the energy performance of MAC schemes in wireless sensor networks, several ways can be followed. In fact, some researchers try to limit idle listening while others focus on mitigating overhearing (i.e. a node can hear a packet which is destined to another node) or reducing the number of the used control packets. We, in this paper, propose a new hybrid MAC protocol termed ELE-MAC (i.e. Energy Latency Efficient MAC). The ELE-MAC major design goals are energy and latency efficiencies. It adopts less control packets than SMAC in order to preserve energy. We carried out ns- 2 simulations to evaluate the performance of the proposed protocol. Thus, our simulation-s results prove the ELE-MAC energy efficiency. Additionally, our solution performs statistically the same or better latency characteristic compared to adaptive SMAC.

Keywords: Control packet, energy efficiency, medium access control, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
1651 A Theory in Optimization of Ad-hoc Routing Algorithms

Authors: M. Kargar, F.Fartash, T. Saderi, M. Ebrahimi Dishabi

Abstract:

In this paper optimization of routing in ad-hoc networks is surveyed and a new method for reducing the complexity of routing algorithms is suggested. Using binary matrices for each node in the network and updating it once the routing is done, helps nodes to stop repeating the routing protocols in each data transfer. The algorithm suggested can reduce the complexity of routing to the least amount possible.

Keywords: Ad-hoc Networks, Algorithm, Protocol, RoutingTrain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
1650 Reachable Set Bounding Estimation for Distributed Delay Systems with Disturbances

Authors: Li Xu, Shouming Zhong

Abstract:

The reachable set bounding estimation for distributed delay systems with disturbances is a new problem. In this paper,we consider this problem subject to not only time varying delay and polytopic uncertainties but also distributed delay systems which is not studied fully untill now. we can obtain improved non-ellipsoidal reachable set estimation for neural networks with time-varying delay by the maximal Lyapunov-Krasovskii fuctional which is constructed as the pointwise maximum of a family of Lyapunov-Krasovskii fuctionals corresponds to vertexes of uncertain polytope.On the other hand,matrix inequalities containing only one scalar and Matlabs LMI Toolbox is utilized to give a non-ellipsoidal description of the reachable set.finally,numerical examples are given to illustrate the existing results.

Keywords: Reachable set, Distributed delay, Lyapunov-Krasovskii function, Polytopic uncertainties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
1649 Bee Optimized Fuzzy Geographical Routing Protocol for VANET

Authors: P. Saravanan, T. Arunkumar

Abstract:

Vehicular Adhoc Network (VANET) is a new technology which aims to ensure intelligent inter-vehicle communications, seamless internet connectivity leading to improved road safety, essential alerts, and access to comfort and entertainment. VANET operations are hindered by mobile node’s (vehicles) uncertain mobility. Routing algorithms use metrics to evaluate which path is best for packets to travel. Metrics like path length (hop count), delay, reliability, bandwidth, and load determine optimal route. The proposed scheme exploits link quality, traffic density, and intersections as routing metrics to determine next hop. This study enhances Geographical Routing Protocol (GRP) using fuzzy controllers while rules are optimized with Bee Swarm Optimization (BSO). Simulations results are compared to conventional GRP.

Keywords: Bee Swarm Optimization (BSO), Geographical Routing Protocol (GRP), Vehicular Adhoc Network (VANET).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468
1648 Energy Efficiency of Adaptive-Rate Medium Access Control Protocols for Sensor Networks

Authors: Rooholah Hasanizadeh, Saadan Zokaei

Abstract:

Energy efficient protocol design is the aim of current researches in the area of sensor networks where limited power resources impose energy conservation considerations. In this paper we care for Medium Access Control (MAC) protocols and after an extensive literature review, two adaptive schemes are discussed. Of them, adaptive-rate MACs which were introduced for throughput enhancement show the potency to save energy, even more than adaptive-power schemes. Then we propose an allocation algorithm for getting accurate and reliable results. Through a simulation study we validated our claim and showed the power saving of adaptive-rate protocols.

Keywords: Adaptive-rate, adaptive-power, MAC protocol, energy efficiency, sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
1647 Comparative Dynamic Performance of Load Frequency Control of Nonlinear Interconnected Hydro-Thermal System Using Intelligent Techniques

Authors: Banaja Mohanty, Prakash Kumar Hota

Abstract:

This paper demonstrates dynamic performance evaluation of load frequency control (LFC) with different intelligent techniques. All non-linearities and physical constraints have been considered in simulation studies such as governor dead band (GDB), generation rate constraint (GRC) and boiler dynamics. The conventional integral time absolute error has been considered as objective function. The design problem is formulated as an optimisation problem and particle swarm optimisation (PSO), bacterial foraging optimisation algorithm (BFOA) and differential evolution (DE) are employed to search optimal controller parameters. The superiority of the proposed approach has been shown by comparing the results with published fuzzy logic control (FLC) for the same interconnected power system. The comparison is done using various performance measures like overshoot, undershoot, settling time and standard error criteria of frequency and tie-line power deviation following a step load perturbation (SLP). It is noticed that, the dynamic performance of proposed controller is better than FLC. Further, robustness analysis is carried out by varying the time constants of speed governor, turbine, tie-line power in the range of +40% to -40% to demonstrate the robustness of the proposed DE optimized PID controller.

Keywords: Automatic generation control, governor dead band, generation rate constraint, differential evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1070
1646 Application of Neural Network in Portfolio Product Companies: Integration of Boston Consulting Group Matrix and Ansoff Matrix

Authors: M. Khajezadeh, M. Saied Fallah Niasar, S. Ali Asli, D. Davani Davari, M. Godarzi, Y. Asgari

Abstract:

This study aims to explore the joint application of both Boston and Ansoff matrices in the operational development of the product. We conduct deep analysis, by utilizing the Artificial Neural Network, to predict the position of the product in the market while the company is interested in increasing its share. The data are gathered from two industries, called hygiene and detergent. In doing so, the effort is being made by investigating the behavior of top player companies and, recommend strategic orientations. In conclusion, this combination analysis is appropriate for operational development; as well, it plays an important role in providing the position of the product in the market for both hygiene and detergent industries. More importantly, it will elaborate on the company’s strategies to increase its market share related to a combination of the Boston Consulting Group (BCG) Matrix and Ansoff Matrix.

Keywords: Artificial neural network, portfolio analysis, BCG matrix, Ansoff matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
1645 Quality of Service in Multioperator GPON Access Networks with Triple-Play Services

Authors: Germán Santos-Boada, Jordi Domingo-Pascual

Abstract:

Recently, in some places, optical-fibre access networks have been used with GPON technology belonging to organizations (in most cases public bodies) that act as neutral operators. These operators simultaneously provide network services to various telecommunications operators that offer integrated voice, data and television services. This situation creates new problems related to quality of service, since the interests of the users are intermingled with the interests of the operators. In this paper, we analyse this problem and consider solutions that make it possible to provide guaranteed quality of service for voice over IP, data services and interactive digital television.

Keywords: GPON networks, multioperator, quality of service, triple-play services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3437
1644 A Scenario Oriented Supplier Selection by Considering a Multi Tier Supplier Network

Authors: Mohammad Najafi Nobar, Bahareh Pourmehr, Mehdi Hajimirarab

Abstract:

One of the main processes of supply chain management is supplier selection process which its accurate implementation can dramatically increase company competitiveness. In presented article model developed based on the features of second tiers suppliers and four scenarios are predicted in order to help the decision maker (DM) in making up his/her mind. In addition two tiers of suppliers have been considered as a chain of suppliers. Then the proposed approach is solved by a method combined of concepts of fuzzy set theory (FST) and linear programming (LP) which has been nourished by real data extracted from an engineering design and supplying parts company. At the end results reveal the high importance of considering second tier suppliers features as criteria for selecting the best supplier.

Keywords: Supply Chain Management (SCM), SupplierSelection, Second Tier Supplier, Scenario Planning, Green Factor, Linear Programming, Fuzzy Set Theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
1643 Multilevel Classifiers in Recognition of Handwritten Kannada Numerals

Authors: Dinesh Acharya U., N. V. Subba Reddy, Krishnamoorthi Makkithaya

Abstract:

The recognition of handwritten numeral is an important area of research for its applications in post office, banks and other organizations. This paper presents automatic recognition of handwritten Kannada numerals based on structural features. Five different types of features, namely, profile based 10-segment string, water reservoir; vertical and horizontal strokes, end points and average boundary length from the minimal bounding box are used in the recognition of numeral. The effect of each feature and their combination in the numeral classification is analyzed using nearest neighbor classifiers. It is common to combine multiple categories of features into a single feature vector for the classification. Instead, separate classifiers can be used to classify based on each visual feature individually and the final classification can be obtained based on the combination of separate base classification results. One popular approach is to combine the classifier results into a feature vector and leaving the decision to next level classifier. This method is extended to extract a better information, possibility distribution, from the base classifiers in resolving the conflicts among the classification results. Here, we use fuzzy k Nearest Neighbor (fuzzy k-NN) as base classifier for individual feature sets, the results of which together forms the feature vector for the final k Nearest Neighbor (k-NN) classifier. Testing is done, using different features, individually and in combination, on a database containing 1600 samples of different numerals and the results are compared with the results of different existing methods.

Keywords: Fuzzy k Nearest Neighbor, Multiple Classifiers, Numeral Recognition, Structural features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
1642 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer Aljohani

Abstract:

The COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred as corona virus which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as Omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. Numerous COVID-19 cases have produced a huge burden on hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease based on the symptoms and medical history of the patient. As machine learning is a widely accepted area and gives promising results for healthcare, this research presents an architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard University of California Irvine (UCI) dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques on the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and Principal Component Analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, Receiver Operating Characteristic (ROC) and Area under Curve (AUC). The results depict that Decision tree, Random Forest and neural networks outperform all other state-of-the-art ML techniques. This result can be used to effectively identify COVID-19 infection cases.

Keywords: Supervised machine learning, COVID-19 prediction, healthcare analytics, Random Forest, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 396
1641 Service Architecture for 3rd Party Operator's Participation

Authors: F. Sarabchi, A. H. Darvishan, H. Yeganeh, H. Ahmadian

Abstract:

Next generation networks with the idea of convergence of service and control layer in existing networks (fixed, mobile and data) and with the intention of providing services in an integrated network, has opened new horizon for telecom operators. On the other hand, economic problems have caused operators to look for new source of income including consider new services, subscription of more users and their promotion in using morenetwork resources and easy participation of service providers or 3rd party operators in utilizing networks. With this requirement, an architecture based on next generation objectives for service layer is necessary. In this paper, a new architecture based on IMS model explains participation of 3rd party operators in creation and implementation of services on an integrated telecom network.

Keywords: Service model, IMS, API, Scripting language, JAIN, Parlay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
1640 Hybrid Prefix Adder Architecture for Minimizing the Power Delay Product

Authors: P.Ramanathan, P.T.Vanathi

Abstract:

Parallel Prefix addition is a technique for improving the speed of binary addition. Due to continuing integrating intensity and the growing needs of portable devices, low-power and highperformance designs are of prime importance. The classical parallel prefix adder structures presented in the literature over the years optimize for logic depth, area, fan-out and interconnect count of logic circuits. In this paper, a new architecture for performing 8-bit, 16-bit and 32-bit Parallel Prefix addition is proposed. The proposed prefix adder structures is compared with several classical adders of same bit width in terms of power, delay and number of computational nodes. The results reveal that the proposed structures have the least power delay product when compared with its peer existing Prefix adder structures. Tanner EDA tool was used for simulating the adder designs in the TSMC 180 nm and TSMC 130 nm technologies.

Keywords: Parallel Prefix Adder (PPA), Dot operator, Semi-Dotoperator, Complementary Metal Oxide Semiconductor (CMOS), Odd-dot operator, Even-dot operator, Odd-semi-dot operator andEven-semi-dot operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
1639 Dual-Network Memory Model for Temporal Sequences

Authors: Motonobu Hattori, Rina Suzuki

Abstract:

In neural networks, when new patters are learned by a network, they radically interfere with previously stored patterns. This drawback is called catastrophic forgetting. We have already proposed a biologically inspired dual-network memory model which can much reduce this forgetting for static patterns. In this model, information is first stored in the hippocampal network, and thereafter, it is transferred to the neocortical network using pseudopatterns. Because temporal sequence learning is more important than static pattern learning in the real world, in this study, we improve our conventional  dual-network memory model so that it can deal with temporal sequences without catastrophic forgetting. The computer simulation results show the effectiveness of the proposed dual-network memory model.  

Keywords: Catastrophic forgetting, dual-network, temporal sequences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
1638 Classification Control for Discrimination between Interictal Epileptic and Non – Epileptic Pathological EEG Events

Authors: Sozon H. Papavlasopoulos, Marios S. Poulos, George D. Bokos, Angelos M. Evangelou

Abstract:

In this study, the problem of discriminating between interictal epileptic and non- epileptic pathological EEG cases, which present episodic loss of consciousness, investigated. We verify the accuracy of the feature extraction method of autocross-correlated coefficients which extracted and studied in previous study. For this purpose we used in one hand a suitable constructed artificial supervised LVQ1 neural network and in other a cross-correlation technique. To enforce the above verification we used a statistical procedure which based on a chi- square control. The classification and the statistical results showed that the proposed feature extraction is a significant accurate method for diagnostic discrimination cases between interictal and non-interictal EEG events and specifically the classification procedure showed that the LVQ neural method is superior than the cross-correlation one.

Keywords: Cross-Correlation Methods, Diagnostic Test, Interictal Epileptic, LVQ1 neural network, Auto-Cross-Correlation Methods, chi-square test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
1637 Neurogenic Potential of Clitoria ternatea Aqueous Root Extract–A Basis for Enhancing Learning and Memory

Authors: Kiranmai S.Rai

Abstract:

The neurogenic potential of many herbal extracts used in Indian medicine is hitherto unknown. Extracts derived from Clitoria ternatea Linn have been used in Indian Ayurvedic system of medicine as an ingredient of “Medhya rasayana", consumed for improving memory and longevity in humans and also in treatment of various neurological disorders. Our earlier experimental studies with oral intubation of Clitoria ternatea aqueous root extract (CTR) had shown significant enhancement of learning and memory in postnatal and young adult Wistar rats. The present study was designed to elucidate the in vitro effects of 200ng/ml of CTR on proliferation, differentiation and growth of anterior subventricular zone neural stem cells (aSVZ NSC-s) derived from prenatal and postnatal rat pups. Results show significant increase in proliferation and growth of neurospheres and increase in the yield of differentiated neurons of aSVZ neural precursor cells (aSVZNPC-s) at 7 days in vitro when treated with 200ng/ml of CTR as compared to age matched control. Results indicate that CTR has growth promoting neurogenic effect on aSVZ neural stem cells and their survival similar to neurotrophic factors like Survivin, Neuregulin 1, FGF-2, BDNF possibly the basis for enhanced learning and memory.

Keywords: Anterior subventricular zone (aSVZ) neural stemcell, Clitoria ternatea, Learning and memory, Neurogenesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3031
1636 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: Convolutional neural network, discrete wavelet transform, deep learning, heart sound classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
1635 Gene Expression Signature for Classification of Metastasis Positive and Negative Oral Cancer in Homosapiens

Authors: A. Shukla, A. Tarsauliya, R. Tiwari, S. Sharma

Abstract:

Cancer classification to their corresponding cohorts has been key area of research in bioinformatics aiming better prognosis of the disease. High dimensionality of gene data has been makes it a complex task and requires significance data identification technique in order to reducing the dimensionality and identification of significant information. In this paper, we have proposed a novel approach for classification of oral cancer into metastasis positive and negative patients. We have used significance analysis of microarrays (SAM) for identifying significant genes which constitutes gene signature. 3 different gene signatures were identified using SAM from 3 different combination of training datasets and their classification accuracy was calculated on corresponding testing datasets using k-Nearest Neighbour (kNN), Fuzzy C-Means Clustering (FCM), Support Vector Machine (SVM) and Backpropagation Neural Network (BPNN). A final gene signature of only 9 genes was obtained from above 3 individual gene signatures. 9 gene signature-s classification capability was compared using same classifiers on same testing datasets. Results obtained from experimentation shows that 9 gene signature classified all samples in testing dataset accurately while individual genes could not classify all accurately.

Keywords: Cancer, Gene Signature, SAM, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
1634 Fault Tolerance in Wireless Sensor Networks – A Survey

Authors: B. R. Tapas Bapu, K. Thanigaivelu, A. Rajkumar

Abstract:

Wireless Sensor Networks (WSNs) have wide variety of applications and provide limitless future potentials. Nodes in WSNs are prone to failure due to energy depletion, hardware failure, communication link errors, malicious attacks, and so on. Therefore, fault tolerance is one of the critical issues in WSNs. We study how fault tolerance is addressed in different applications of WSNs. Fault tolerant routing is a critical task for sensor networks operating in dynamic environments. Many routing, power management, and data dissemination protocols have been specifically designed for WSNs where energy awareness is an essential design issue. The focus, however, has been given to the routing protocols which might differ depending on the application and network architecture.

Keywords: Resiliency, Self-diagnosis, Smart Grid, TinyOS, WSANs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2736
1633 Power System Voltage Control using LP and Artificial Neural Network

Authors: A. Sina, A. Aeenmehr, H. Mohamadian

Abstract:

Optimization and control of reactive power distribution in the power systems leads to the better operation of the reactive power resources. Reactive power control reduces considerably the power losses and effective loads and improves the power factor of the power systems. Another important reason of the reactive power control is improving the voltage profile of the power system. In this paper, voltage and reactive power control using Neural Network techniques have been applied to the 33 shines- Tehran Electric Company. In this suggested ANN, the voltages of PQ shines have been considered as the input of the ANN. Also, the generators voltages, tap transformers and shunt compensators have been considered as the output of ANN. Results of this techniques have been compared with the Linear Programming. Minimization of the transmission line power losses has been considered as the objective function of the linear programming technique. The comparison of the results of the ANN technique with the LP shows that the ANN technique improves the precision and reduces the computation time. ANN technique also has a simple structure and this causes to use the operator experience.

Keywords: voltage control, linear programming, artificial neural network, power systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
1632 Positive Almost Periodic Solutions for Neural Multi-Delay Logarithmic Population Model

Authors: Zhouhong Li

Abstract:

In this paper, by applying Mawhin-s continuation theorem of coincidence degree theory, we study the existence of almost periodic solutions for neural multi-delay logarithmic population model and obtain one sufficient condition for the existence of positive almost periodic solution for the above equation. An example is employed to illustrate our result.

Keywords: Almost periodic solution, Multi-delay, Logarithmic population model, Coincidence degree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
1631 A Dynamic Decision Model for Vertical Handoffs across Heterogeneous Wireless Networks

Authors: Pramod Goyal, S. K. Saxena

Abstract:

The convergence of heterogeneous wireless access technologies characterizes the 4G wireless networks. In such converged systems, the seamless and efficient handoff between different access technologies (vertical handoff) is essential and remains a challenging problem. The heterogeneous co-existence of access technologies with largely different characteristics creates a decision problem of determining the “best" available network at “best" time to reduce the unnecessary handoffs. This paper proposes a dynamic decision model to decide the “best" network at “best" time moment to handoffs. The proposed dynamic decision model make the right vertical handoff decisions by determining the “best" network at “best" time among available networks based on, dynamic factors such as “Received Signal Strength(RSS)" of network and “velocity" of mobile station simultaneously with static factors like Usage Expense, Link capacity(offered bandwidth) and power consumption. This model not only meets the individual user needs but also improve the whole system performance by reducing the unnecessary handoffs.

Keywords: Dynamic decision model, Seamless handoff, Vertical handoff, Wireless networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
1630 Seamless Handover in Urban 5G-UAV Systems Using Entropy Weighted Method

Authors: Anirudh Sunil Warrier, Saba Al-Rubaye, Dimitrios Panagiotakopoulos, Gokhan Inalhan, Antonios Tsourdos

Abstract:

The demand for increased data transfer rate and network traffic capacity has given rise to the concept of heterogeneous networks. Heterogeneous networks are wireless networks, consisting of devices using different underlying radio access technologies (RAT). For Unmanned Aerial Vehicles (UAVs) this enhanced data rate and network capacity are even more critical especially in their applications of medicine, delivery missions and military. In an urban heterogeneous network environment, the UAVs must be able switch seamlessly from one base station (BS) to another for maintaining a reliable link. Therefore, seamless handover in such urban environments has become a major challenge. In this paper, a scheme to achieve seamless handover is developed, an algorithm based on Received Signal Strength (RSS) criterion for network selection is used and Entropy Weighted Method (EWM) is implemented for decision making. Seamless handover using EWM decision-making is demonstrated successfully for a UAV moving across fifth generation (5G) and long-term evolution (LTE) networks via a simulation level analysis. Thus, a solution for UAV-5G communication, specifically the mobility challenge in heterogeneous networks is solved and this work could act as step forward in making UAV-5G architecture integration a possibility.

Keywords: Air to ground, A2G, fifth generation, 5G, handover, mobility, unmanned aerial vehicle, UAV, urban environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 451
1629 A Black-Box Approach in Modeling Valve Stiction

Authors: H. Zabiri, N. Mazuki

Abstract:

Several valve stiction models have been proposed in the literature to help understand and study the behavior of sticky valves. In this paper, an alternative black-box modeling approach based on Neural Network (NN) is presented. It is shown that with proper network type and optimum model structures, the performance of the developed NN stiction model is comparable to other established method. The resulting NN model is also tested for its robustness against the uncertainty in the stiction parameter values. Predictive mode operation also shows excellent performance of the proposed model for multi-steps ahead prediction.

Keywords: Control valve stiction, neural network, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
1628 An Enhanced AODV Routing Protocol for Wireless Sensor and Actuator Networks

Authors: Apidet Booranawong, Wiklom Teerapabkajorndet

Abstract:

An enhanced ad-hoc on-demand distance vector routing (E-AODV) protocol for control system applications in wireless sensor and actuator networks (WSANs) is proposed. Our routing algorithm is designed by considering both wireless network communication and the control system aspects. Control system error and network delay are the main selection criteria in our routing protocol. The control and communication performance is evaluated on multi-hop IEEE 802.15.4 networks for building-temperature control systems. The Gilbert-Elliott error model is employed to simulate packet loss in wireless networks. The simulation results demonstrate that the E-AODV routing approach can significantly improve the communication performance better than an original AODV routing under various packet loss rates. However, the control performance result by our approach is not much improved compared with the AODV routing solution.

Keywords: WSANs, building temperature control, AODV routing protocol, control system error, settling time, delay, delivery ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
1627 The Knowledge Representation of the Genetic Regulatory Networks Based on Ontology

Authors: Ines Hamdi, Mohamed Ben Ahmed

Abstract:

The understanding of the system level of biological behavior and phenomenon variously needs some elements such as gene sequence, protein structure, gene functions and metabolic pathways. Challenging problems are representing, learning and reasoning about these biochemical reactions, gene and protein structure, genotype and relation between the phenotype, and expression system on those interactions. The goal of our work is to understand the behaviors of the interactions networks and to model their evolution in time and in space. We propose in this study an ontological meta-model for the knowledge representation of the genetic regulatory networks. Ontology in artificial intelligence means the fundamental categories and relations that provide a framework for knowledge models. Domain ontology's are now commonly used to enable heterogeneous information resources, such as knowledge-based systems, to communicate with each other. The interest of our model is to represent the spatial, temporal and spatio-temporal knowledge. We validated our propositions in the genetic regulatory network of the Aarbidosis thaliana flower

Keywords: Ontological model, spatio-temporal modeling, Genetic Regulatory Networks (GRNs), knowledge representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
1626 A Framework for the Evaluation of Infrastructures’ Serviceability

Authors: Kyonghoon Kim, Wonyoung Park, Taeil Park

Abstract:

Aging infrastructures became a serious social problem. This brought out the increased need for the legislation of a new strict guideline for infrastructure management. Although existing guidelines provided basics of how to evaluate and manage the condition of infrastructures, they needed improvements for their evaluation procedures. Most guidelines mainly focused on the structural condition of infrastructures and did not properly reflect service aspects of infrastructures such as performance, public demand, capacity, etc., which were significantly valuable to public. Regardless of the importance, these factors were often neglected in infrastructure evaluations, because they were quite subjective and difficult to quantify in rational manner. Thus, this study proposed a framework to properly identify and evaluate the service indicators. This study showed that service indicators could be grouped into two categories and properly evaluated using AHP and Fuzzy. Overall, proposed framework is expected to assist governmental agency in establishing effective investment strategies for infrastructure improvements.

Keywords: Infrastructure, evaluation, serviceability, fuzzy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
1625 System Survivability in Networks in the Context of Defense/Attack Strategies: The Large Scale

Authors: A. Ben Yaghlane, M. N. Azaiez, M. Mrad

Abstract:

We investigate the large scale of networks in the context of network survivability under attack. We use appropriate techniques to evaluate and the attacker-based- and the defenderbased- network survivability. The attacker is unaware of the operated links by the defender. Each attacked link has some pre-specified probability to be disconnected. The defender choice is so that to maximize the chance of successfully sending the flow to the destination node. The attacker however will select the cut-set with the highest chance to be disabled in order to partition the network. Moreover, we extend the problem to the case of selecting the best p paths to operate by the defender and the best k cut-sets to target by the attacker, for arbitrary integers p,k>1. We investigate some variations of the problem and suggest polynomial-time solutions.

Keywords: Defense/attack strategies, large scale, networks, partitioning a network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
1624 Simulations of Routing Protocols of Wireless Sensor Networks

Authors: Kristoffer Clyde Magsino, H. Srikanth Kamath

Abstract:

Wireless Sensor Network is widely used in electronics. Wireless sensor networks are now used in many applications including military, environmental, healthcare applications, home automation and traffic control. We will study one area of wireless sensor networks, which is the routing protocol. Routing protocols are needed to send data between sensor nodes and the base station. In this paper, we will discuss two routing protocols, such as datacentric and hierarchical routing protocol. We will show the output of the protocols using the NS-2 simulator. This paper will compare the simulation output of the two routing protocol using Nam. We will simulate using Xgraph to find the throughput and delay of the protocol.

Keywords: data-centric routing protocol, hierarchical routingprotocol, Nam, NS-2, Routing Protocol, sensor nodes, SPIN, throughput, Xgraph

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128