Search results for: Infrastructure and Computer Network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4290

Search results for: Infrastructure and Computer Network

2520 Application of Feed Forward Neural Networks in Modeling and Control of a Fed-Batch Crystallization Process

Authors: Petia Georgieva, Sebastião Feyo de Azevedo

Abstract:

This paper is focused on issues of nonlinear dynamic process modeling and model-based predictive control of a fed-batch sugar crystallization process applying the concept of artificial neural networks as computational tools. The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. A feed forward neural network (FFNN) model of the process is first built as part of the controller structure to predict the process response over a specified (prediction) horizon. The predictions are supplied to an optimization procedure to determine the values of the control action over a specified (control) horizon that minimizes a predefined performance index. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. However, the simulation results demonstrated smooth behavior of the control actions and satisfactory reference tracking.

Keywords: Feed forward neural network, process modelling, model predictive control, crystallization process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
2519 Bayesian Networks for Earthquake Magnitude Classification in a Early Warning System

Authors: G. Zazzaro, F.M. Pisano, G. Romano

Abstract:

During last decades, worldwide researchers dedicated efforts to develop machine-based seismic Early Warning systems, aiming at reducing the huge human losses and economic damages. The elaboration time of seismic waveforms is to be reduced in order to increase the time interval available for the activation of safety measures. This paper suggests a Data Mining model able to correctly and quickly estimate dangerousness of the running seismic event. Several thousand seismic recordings of Japanese and Italian earthquakes were analyzed and a model was obtained by means of a Bayesian Network (BN), which was tested just over the first recordings of seismic events in order to reduce the decision time and the test results were very satisfactory. The model was integrated within an Early Warning System prototype able to collect and elaborate data from a seismic sensor network, estimate the dangerousness of the running earthquake and take the decision of activating the warning promptly.

Keywords: Bayesian Networks, Decision Support System, Magnitude Classification, Seismic Early Warning System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3598
2518 Privacy-Preserving Location Sharing System with Client/Server Architecture in Mobile Online Social Network

Authors: Xi Xiao, Chunhui Chen, Xinyu Liu, Guangwu Hu, Yong Jiang

Abstract:

Location sharing is a fundamental service in mobile Online Social Networks (mOSNs), which raises significant privacy concerns in recent years. Now, most location-based service applications adopt client/server architecture. In this paper, a location sharing system, named CSLocShare, is presented to provide flexible privacy-preserving location sharing with client/server architecture in mOSNs. CSLocShare enables location sharing between both trusted social friends and untrusted strangers without the third-party server. In CSLocShare, Location-Storing Social Network Server (LSSNS) provides location-based services but do not know the users’ real locations. The thorough analysis indicates that the users’ location privacy is protected. Meanwhile, the storage and the communication cost are saved. CSLocShare is more suitable and effective in reality.

Keywords: Client/server architecture, location sharing, mobile online social networks, privacy-preserving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
2517 A Geospatial Consumer Marketing Campaign Optimization Strategy: Case of Fuzzy Approach in Nigeria Mobile Market

Authors: Adeolu O. Dairo

Abstract:

Getting the consumer marketing strategy right is a crucial and complex task for firms with a large customer base such as mobile operators in a competitive mobile market. While empirical studies have made efforts to identify key constructs, no geospatial model has been developed to comprehensively assess the viability and interdependency of ground realities regarding the customer, competition, channel and the network quality of mobile operators. With this research, a geo-analytic framework is proposed for strategy formulation and allocation for mobile operators. Firstly, a fuzzy analytic network using a self-organizing feature map clustering technique based on inputs from managers and literature, which depicts the interrelationships amongst ground realities is developed. The model is tested with a mobile operator in the Nigeria mobile market. As a result, a customer-centric geospatial and visualization solution is developed. This provides a consolidated and integrated insight that serves as a transparent, logical and practical guide for strategic, tactical and operational decision making.

Keywords: Geospatial, geo-analytics, self-organizing map, customer-centric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815
2516 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring

Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti

Abstract:

Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., entropy, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one-class classification (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, principal component analysis (PCA), kernel principal component analysis (KPCA), and autoassociative neural network (ANN) are presented and their performance are compared. It is also shown that, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 95%.

Keywords: Anomaly detection, dimensionality reduction, frequencies selection, modal analysis, neural network, structural health monitoring, vibration measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 709
2515 Roller Guide Design and Manufacturing for Spatial Cylindrical Cams

Authors: Yuan L. Lai, Jui P. Hung, Jian H. Chen

Abstract:

This paper was aimed at developing a computer aided design and manufacturing system for spatial cylindrical cams. In the proposed system, a milling tool with a diameter smaller than that of the roller, instead of the standard cutter for traditional machining process, was used to generate the tool path for spatial cams. To verify the feasibility of the proposed method, a multi-axis machining simulation software was further used to simulate the practical milling operation of spatial cams. It was observed from computer simulation that the tool path of small-sized cutter were within the motion range of a standard cutter, no occurrence of overcutting. Examination of a finished cam component clearly verifies the accuracy of the tool path generated for small-sized milling tool. It is believed that the use of small-sized cutter for the machining of the spatial cylindrical cams can generate a better surface morphology with higher accuracy. The improvement in efficiency and cost for the manufacturing of the spatial cylindrical cam can be expected through the proposed method.

Keywords: Cylindrical cams, Computer-aided manufacturing, Tool path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3451
2514 Classification Control for Discrimination between Interictal Epileptic and Non – Epileptic Pathological EEG Events

Authors: Sozon H. Papavlasopoulos, Marios S. Poulos, George D. Bokos, Angelos M. Evangelou

Abstract:

In this study, the problem of discriminating between interictal epileptic and non- epileptic pathological EEG cases, which present episodic loss of consciousness, investigated. We verify the accuracy of the feature extraction method of autocross-correlated coefficients which extracted and studied in previous study. For this purpose we used in one hand a suitable constructed artificial supervised LVQ1 neural network and in other a cross-correlation technique. To enforce the above verification we used a statistical procedure which based on a chi- square control. The classification and the statistical results showed that the proposed feature extraction is a significant accurate method for diagnostic discrimination cases between interictal and non-interictal EEG events and specifically the classification procedure showed that the LVQ neural method is superior than the cross-correlation one.

Keywords: Cross-Correlation Methods, Diagnostic Test, Interictal Epileptic, LVQ1 neural network, Auto-Cross-Correlation Methods, chi-square test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
2513 CAPWAP Status and Design Considerations for Seamless Roaming Support

Authors: M. Balfaqih, S. Haseeb, M. H. Mazlan, S. N. Hasnan, O. Mahmoud, A. Hashim

Abstract:

Wireless LAN technologies have picked up momentum in the recent years due to their ease of deployment, cost and availability. The era of wireless LAN has also given rise to unique applications like VOIP, IPTV and unified messaging. However, these real-time applications are very sensitive to network and handoff latencies. To successfully support these applications, seamless roaming during the movement of mobile station has become crucial. Nowadays, centralized architecture models support roaming in WLANs. They have the ability to manage, control and troubleshoot large scale WLAN deployments. This model is managed by Control and Provision of Wireless Access Point protocol (CAPWAP). This paper covers the CAPWAP architectural solution along with its proposals that have emerged. Based on the literature survey conducted in this paper, we found that the proposed algorithms to reduce roaming latency in CAPWAP architecture do not support seamless roaming. Additionally, they are not sufficient during the initial period of the network. This paper also suggests important design consideration for mobility support in future centralized IEEE 802.11 networks.

Keywords: 802.11, centralized Architecture, CAPWAP, Roaming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3038
2512 Parametric Modeling Approach for Call Holding Times for IP based Public Safety Networks via EM Algorithm

Authors: Badarch Tuyatsetseg

Abstract:

This paper presents parametric probability density models for call holding times (CHTs) into emergency call center based on the actual data collected for over a week in the public Emergency Information Network (EIN) in Mongolia. When the set of chosen candidates of Gamma distribution family is fitted to the call holding time data, it is observed that the whole area in the CHT empirical histogram is underestimated due to spikes of higher probability and long tails of lower probability in the histogram. Therefore, we provide the Gaussian parametric model of a mixture of lognormal distributions with explicit analytical expressions for the modeling of CHTs of PSNs. Finally, we show that the CHTs for PSNs are fitted reasonably by a mixture of lognormal distributions via the simulation of expectation maximization algorithm. This result is significant as it expresses a useful mathematical tool in an explicit manner of a mixture of lognormal distributions.

Keywords: A mixture of lognormal distributions, modeling call holding times, public safety network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
2511 Combining Skin Color and Optical Flow for Computer Vision Systems

Authors: Muhammad Raza Ali, Tim Morris

Abstract:

Skin color is an important visual cue for computer vision systems involving human users. In this paper we combine skin color and optical flow for detection and tracking of skin regions. We apply these techniques to gesture recognition with encouraging results. We propose a novel skin similarity measure. For grouping detected skin regions we propose a novel skin region grouping mechanism. The proposed techniques work with any number of skin regions making them suitable for a multiuser scenario.

Keywords: Bayesian tracking, chromaticity space, optical flowgesture recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
2510 Analysis of Histogram Asymmetry for Waste Recognition

Authors: Janusz Bobulski, Kamila Pasternak

Abstract:

Despite many years of effort and research, the problem of waste management is still current. There is a lack of fast and effective algorithms for classifying individual waste fractions. Many programs and projects improve statistics on the percentage of waste recycled every year. In these efforts, it is worth using modern Computer Vision techniques supported by artificial intelligence. In the article, we present a method of identifying plastic waste based on the asymmetry analysis of the histogram of the image containing the waste. The method is simple but effective (94%), which allows it to be implemented on devices with low computing power, in particular on microcomputers. Such de-vices will be used both at home and in waste sorting plants.

Keywords: Computer vision, environmental protection, image processing, waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 313
2509 Neural Network Based Determination of Splice Junctions by ROC Analysis

Authors: S. Makal, L. Ozyilmaz, S. Palavaroglu

Abstract:

Gene, principal unit of inheritance, is an ordered sequence of nucleotides. The genes of eukaryotic organisms include alternating segments of exons and introns. The region of Deoxyribonucleic acid (DNA) within a gene containing instructions for coding a protein is called exon. On the other hand, non-coding regions called introns are another part of DNA that regulates gene expression by removing from the messenger Ribonucleic acid (RNA) in a splicing process. This paper proposes to determine splice junctions that are exon-intron boundaries by analyzing DNA sequences. A splice junction can be either exon-intron (EI) or intron exon (IE). Because of the popularity and compatibility of the artificial neural network (ANN) in genetic fields; various ANN models are applied in this research. Multi-layer Perceptron (MLP), Radial Basis Function (RBF) and Generalized Regression Neural Networks (GRNN) are used to analyze and detect the splice junctions of gene sequences. 10-fold cross validation is used to demonstrate the accuracy of networks. The real performances of these networks are found by applying Receiver Operating Characteristic (ROC) analysis.

Keywords: Gene, neural networks, ROC analysis, splice junctions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
2508 Integrating AI Visualization Tools to Enhance Student Engagement and Understanding in AI Education

Authors: Yong W. Foo, Lai M. Tang

Abstract:

Artificial Intelligence (AI), particularly the usage of deep neural networks for hierarchical representations from data, has found numerous complex applications across various domains, including computer vision, robotics, autonomous vehicles, and other scientific fields. However, their inherent “black box” nature can sometimes make it challenging for early researchers or school students of various levels to comprehend and trust the results they produce. Consequently, there has been a growing demand for reliable visualization tools in engineering and science education to help learners understand, trust, and explain a deep learning network. This has led to a notable emphasis on the visualization of AI in the research community in recent years. AI visualization tools are increasingly being adopted to significantly improve the comprehension of complex topics in deep learning. This paper presents an approach to empower students to actively explore the inner workings of deep neural networks by integrating the student-centered learning approach of flipped classroom models with the investigative capabilities of AI visualization tools, namely, the TensorFlow Playground, the Local Interpretable Model-agnostic Explanations (LIME), and the SHapley Additive exPlanations (SHAP), for delivering an AI education curriculum. Integrating these two factors is crucial for fostering ownership, responsibility, and critical thinking skills in the age of AI.

Keywords: Deep Learning, Explainable AI, AI Visualization, Representation Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33
2507 A Multi Steps Algorithm for Sperm Segmentation in Microscopic Image

Authors: Fereidoon Nowshiravan Rahatabad, Mohammad Hassan Moradi, Vahid Reza Nafisi

Abstract:

Nothing that an effective cure for infertility happens when we can find a unique solution, a great deal of study has been done in this field and this is a hot research subject for to days study. So we could analyze the men-s seaman and find out about fertility and infertility and from this find a true cure for this, since this will be a non invasive and low risk procedure, it will be greatly welcomed. In this research, the procedure has been based on few Algorithms enhancement and segmentation of images which has been done on the images taken from microscope in different fertility institution and have obtained a suitable result from the computer images which in turn help us to distinguish these sperms from fluids and its surroundings.

Keywords: Computer-Assisted Sperm Analysis (CASA), Spermidentification, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
2506 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks

Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi

Abstract:

Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on timecontrolled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSO algorithm is a versatile management model for the operation of realworld water distribution system.

Keywords: JPSO, operation, optimization, water distribution system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
2505 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.

Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594
2504 A Study of Analyzing the Selection of Promotion Activities and Destination Attributes in Tourism Industry in Vietnam - From the Perspective of Tourism Industrial Service Network (TISN)

Authors: Wen-Hsiang Lai, Nguyen Quang Vinh

Abstract:

In order to explore the relationship of promotion activities, destination attribute and destination image of Vietnam and find possible solutions, this study uses decision system analysis (DSA) method to develop flowcharts based on three rounds of expert interviews. The interviews were conducted with the experts who were confirmed to directly participate or influence on the decision making that drives the promotion of Vietnam tourism process. This study identifies three models and describes specific decisions on promotion activities, destination attributes and destination images. This study finally derives a general model for promoting the Tourism Industrial Service Network (TISN) in Vietnam. This study finds that the coordination with all sectors and industries of tourism to facilitate favorable condition and improving destination attributes in linking with the efficient promotion activities is highly recommended in order to make visitors satisfied and improve the destination image.

Keywords: Destination attributes, Destination image, Decision system analysis, Tourism promotion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2307
2503 Expressive Modes and Species of Language

Authors: Richard Elling Moe

Abstract:

Computer languages are usually lumped together into broad -paradigms-, leaving us in want of a finer classification of kinds of language. Theories distinguishing between -genuine differences- in language has been called for, and we propose that such differences can be observed through a notion of expressive mode. We outline this concept, propose how it could be operationalized and indicate a possible context for the development of a corresponding theory. Finally we consider a possible application in connection with evaluation of language revision. We illustrate this with a case, investigating possible revisions of the relational algebra in order to overcome weaknesses of the division operator in connection with universal queries.

Keywords: Expressive mode, Computer language species, Evaluation of revision, Relational algebra, Universal database queries

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1326
2502 Exploring the Situational Approach to Decision Making: User eConsent on a Health Social Network

Authors: W. Rowan, Y. O’Connor, L. Lynch, C. Heavin

Abstract:

Situation Awareness can offer the potential for conscious dynamic reflection. In an era of online health data sharing, it is becoming increasingly important that users of health social networks (HSNs) have the information necessary to make informed decisions as part of the registration process and in the provision of eConsent. This research aims to leverage an adapted Situation Awareness (SA) model to explore users’ decision making processes in the provision of eConsent. A HSN platform was used to investigate these behaviours. A mixed methods approach was taken. This involved the observation of registration behaviours followed by a questionnaire and focus group/s. Early results suggest that users are apt to automatically accept eConsent, and only later consider the long-term implications of sharing their personal health information. Further steps are required to continue developing knowledge and understanding of this important eConsent process. The next step in this research will be to develop a set of guidelines for the improved presentation of eConsent on the HSN platform.

Keywords: eConsent, health social network, mixed methods, situation awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851
2501 A Medical Resource Forecasting Model for Emergency Room Patients with Acute Hepatitis

Authors: R. J. Kuo, W. C. Cheng, W. C. Lien, T. J. Yang

Abstract:

Taiwan is a hyper endemic area for the Hepatitis B virus (HBV). The estimated total number of HBsAg carriers in the general population who are more than 20 years old is more than 3 million. Therefore, a case record review is conducted from January 2003 to June 2007 for all patients with a diagnosis of acute hepatitis who were admitted to the Emergency Department (ED) of a well-known teaching hospital. The cost for the use of medical resources is defined as the total medical fee. In this study, principal component analysis (PCA) is firstly employed to reduce the number of dimensions. Support vector regression (SVR) and artificial neural network (ANN) are then used to develop the forecasting model. A total of 117 patients meet the inclusion criteria. 61% patients involved in this study are hepatitis B related. The computational result shows that the proposed PCA-SVR model has superior performance than other compared algorithms. In conclusion, the Child-Pugh score and echogram can both be used to predict the cost of medical resources for patients with acute hepatitis in the ED.

Keywords: Acute hepatitis, Medical resource cost, Artificial neural network, Support vector regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
2500 An Enhanced AODV Routing Protocol for Wireless Sensor and Actuator Networks

Authors: Apidet Booranawong, Wiklom Teerapabkajorndet

Abstract:

An enhanced ad-hoc on-demand distance vector routing (E-AODV) protocol for control system applications in wireless sensor and actuator networks (WSANs) is proposed. Our routing algorithm is designed by considering both wireless network communication and the control system aspects. Control system error and network delay are the main selection criteria in our routing protocol. The control and communication performance is evaluated on multi-hop IEEE 802.15.4 networks for building-temperature control systems. The Gilbert-Elliott error model is employed to simulate packet loss in wireless networks. The simulation results demonstrate that the E-AODV routing approach can significantly improve the communication performance better than an original AODV routing under various packet loss rates. However, the control performance result by our approach is not much improved compared with the AODV routing solution.

Keywords: WSANs, building temperature control, AODV routing protocol, control system error, settling time, delay, delivery ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253
2499 Optimal Placement and Sizing of Energy Storage System in Distribution Network with Photovoltaic Based Distributed Generation Using Improved Firefly Algorithms

Authors: Ling Ai Wong, Hussain Shareef, Azah Mohamed, Ahmad Asrul Ibrahim

Abstract:

The installation of photovoltaic based distributed generation (PVDG) in active distribution system can lead to voltage fluctuation due to the intermittent and unpredictable PVDG output power. This paper presented a method in mitigating the voltage rise by optimally locating and sizing the battery energy storage system (BESS) in PVDG integrated distribution network. The improved firefly algorithm is used to perform optimal placement and sizing. Three objective functions are presented considering the voltage deviation and BESS off-time with state of charge as the constraint. The performance of the proposed method is compared with another optimization method such as the original firefly algorithm and gravitational search algorithm. Simulation results show that the proposed optimum BESS location and size improve the voltage stability.

Keywords: BESS, PVDG, firefly algorithm, voltage fluctuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
2498 An Efficient MIPv6 Return Routability Scheme Based on Geometric Computing

Authors: Yen-Cheng Chen, Fu-Chen Yang

Abstract:

IETF defines mobility support in IPv6, i.e. MIPv6, to allow nodes to remain reachable while moving around in the IPv6 internet. When a node moves and visits a foreign network, it is still reachable through the indirect packet forwarding from its home network. This triangular routing feature provides node mobility but increases the communication latency between nodes. This deficiency can be overcome by using a Binding Update (BU) scheme, which let nodes keep up-to-date IP addresses and communicate with each other through direct IP routing. To further protect the security of BU, a Return Routability (RR) procedure was developed. However, it has been found that RR procedure is vulnerable to many attacks. In this paper, we will propose a lightweight RR procedure based on geometric computing. In consideration of the inherent limitation of computing resources in mobile node, the proposed scheme is developed to minimize the cost of computations and to eliminate the overhead of state maintenance during binding updates. Compared with other CGA-based BU schemes, our scheme is more efficient and doesn-t need nonce tables in nodes.

Keywords: Mobile IPv6, Binding update, Geometric computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
2497 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples

Authors: Wullapa Wongsinlatam

Abstract:

Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.

Keywords: Artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1094
2496 Scalable Cloud-Based LEO Satellite Constellation Simulator

Authors: Karim Sobh, Khaled El-Ayat, Fady Morcos, Amr El-Kadi

Abstract:

Distributed applications deployed on LEO satellites and ground stations require substantial communication between different members in a constellation to overcome the earth coverage barriers imposed by GEOs. Applications running on LEO constellations suffer the earth line-of-sight blockage effect. They need adequate lab testing before launching to space. We propose a scalable cloud-based network simulation framework to simulate problems created by the earth line-of-sight blockage. The framework utilized cloud IaaS virtual machines to simulate LEO satellites and ground stations distributed software. A factorial ANOVA statistical analysis is conducted to measure simulator overhead on overall communication performance. The results showed a very low simulator communication overhead. Consequently, the simulation framework is proposed as a candidate for testing LEO constellations with distributed software in the lab before space launch.

Keywords: LEO, Cloud Computing, Constellation, Satellite, Network Simulation, Netfilter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2574
2495 Adaptive Image Transmission with P-V Diversity in Multihop Wireless Mesh Networks

Authors: Wei Wang, Dongming Peng, Honggang Wang, Hamid Sharif

Abstract:

Multirate multimedia delivery applications in multihop Wireless Mesh Network (WMN) are data redundant and delay-sensitive, which brings a lot of challenges for designing efficient transmission systems. In this paper, we propose a new cross layer resource allocation scheme to minimize the receiver side distortion within the delay bound requirements, by exploring application layer Position and Value (P-V) diversity as well as the multihop Effective Capacity (EC). We specifically consider image transmission optimization here. First of all, the maximum supportable source traffic rate is identified by exploring the multihop Effective Capacity (EC) model. Furthermore, the optimal source coding rate is selected according to the P-V diversity of multirate media streaming, which significantly increases the decoded media quality. Simulation results show the proposed approach improved media quality significantly compared with traditional approaches under the same QoS requirements.

Keywords: Multirate Multimedia Streaming, Effective CapacityMultihop Wireless Mesh Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
2494 An Evaluation of Software Connection Methods for Heterogeneous Sensor Networks

Authors: M. Hammerton, J. Trevathan, T. Myers, W. Read

Abstract:

The transfer rate of messages in distributed sensor network applications is a critical factor in a system's performance. The Sensor Abstraction Layer (SAL) is one such system. SAL is a middleware integration platform for abstracting sensor specific technology in order to integrate heterogeneous types of sensors in a network. SAL uses Java Remote Method Invocation (RMI) as its connection method, which has unsatisfying transfer rates, especially for streaming data. This paper analyses different connection methods to optimize data transmission in SAL by replacing RMI. Our results show that the most promising Java-based connections were frameworks for Java New Input/Output (NIO) including Apache MINA, JBoss Netty, and xSocket. A test environment was implemented to evaluate each respective framework based on transfer rate, resource usage, and scalability. Test results showed the most suitable connection method to improve data transmission in SAL JBoss Netty as it provides a performance enhancement of 68%.

Keywords: Wireless sensor networks, remote method invocation, transmission time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
2493 Forces Association-Based Active Contour

Authors: Aicha Baya Goumeidane, Nafaa. Nacereddine

Abstract:

A welded structure must be inspected to guarantee that the weld quality meets the design requirements to assure safety and reliability. However, X-ray image analyses and defect recognition with the computer vision techniques are very complex. Most difficulties lie in finding the small, irregular defects in poor contrast images which requires pre processing to image, extract, and classify features from strong background noise. This paper addresses the issue of designing methodology to extract defect from noisy background radiograph with image processing. Based on the use of actives contours this methodology seems to give good results

Keywords: Welding, Radiography, Computer vision, Active contour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
2492 Practical Applications and Connectivity Algorithms in Future Wireless Sensor Networks

Authors: Mohamed K. Watfa

Abstract:

Like any sentient organism, a smart environment relies first and foremost on sensory data captured from the real world. The sensory data come from sensor nodes of different modalities deployed on different locations forming a Wireless Sensor Network (WSN). Embedding smart sensors in humans has been a research challenge due to the limitations imposed by these sensors from computational capabilities to limited power. In this paper, we first propose a practical WSN application that will enable blind people to see what their neighboring partners can see. The challenge is that the actual mapping between the input images to brain pattern is too complex and not well understood. We also study the connectivity problem in 3D/2D wireless sensor networks and propose distributed efficient algorithms to accomplish the required connectivity of the system. We provide a new connectivity algorithm CDCA to connect disconnected parts of a network using cooperative diversity. Through simulations, we analyze the connectivity gains and energy savings provided by this novel form of cooperative diversity in WSNs.

Keywords: Wireless Sensor Networks, Pervasive Computing, Eye Vision Application, 3D Connectivity, Clusters, Energy Efficient, Cooperative diversity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
2491 Neural Networks and Particle Swarm Optimization Based MPPT for Small Wind Power Generator

Authors: Chun-Yao Lee, Yi-Xing Shen, Jung-Cheng Cheng, Yi-Yin Li, Chih-Wen Chang

Abstract:

This paper proposes the method combining artificial neural network (ANN) with particle swarm optimization (PSO) to implement the maximum power point tracking (MPPT) by controlling the rotor speed of the wind generator. First, the measurements of wind speed, rotor speed of wind power generator and output power of wind power generator are applied to train artificial neural network and to estimate the wind speed. Second, the method mentioned above is applied to estimate and control the optimal rotor speed of the wind turbine so as to output the maximum power. Finally, the result reveals that the control system discussed in this paper extracts the maximum output power of wind generator within the short duration even in the conditions of wind speed and load impedance variation.

Keywords: Maximum power point tracking, artificial neuralnetwork, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208