Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30371
Forces Association-Based Active Contour

Authors: Aicha Baya Goumeidane, Nafaa. Nacereddine

Abstract:

A welded structure must be inspected to guarantee that the weld quality meets the design requirements to assure safety and reliability. However, X-ray image analyses and defect recognition with the computer vision techniques are very complex. Most difficulties lie in finding the small, irregular defects in poor contrast images which requires pre processing to image, extract, and classify features from strong background noise. This paper addresses the issue of designing methodology to extract defect from noisy background radiograph with image processing. Based on the use of actives contours this methodology seems to give good results

Keywords: Computer Vision, welding, Radiography, active contour

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1084422

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531

References:


[1] Nockemann, C., Heidt, H., & Thomsen, N. (1991). Reliability in ndt: Roc study of radiographic weld inspections. NDT and E International, 24(5), 235-245.
[2] N. Nacereddine, L. Hamami, D. Ziou, N. Tridi "Statistical tools for weld defect evaluation in radiographic testing" in Proceeding of 9th European Conference on Non-Destructive Testing 2006, Berlin, Germany, Sept. 25-29, 2006.
[3] Nacereddine, N., Tridi, M.: Computer-Analysis and Classification of Welded industrial Radiography based Invariant Attributes Neural Networks. Proceeding of the 4th Symposium on Image and Signal Processing Analysis, Zagreb, Croatia, (2005) 88-93.
[4] Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. Int-l J. Computer Vision, 321-331 (1988)
[5] Caselles V, Catte F, Coll T, Dibos F. A geometric model for active contours in image processing. Numer Math 1993;66(1):1
[6] Xu C, Prince J. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 1998;7(3):359-69.
[7] C. Xu and J. Prince, "Generalized Gradient Vector Flow: External Forces For active Contours", Signal Processing, 1998, vol. 71, pp. 131-139.
[8] Li C, Liu J, Fox MD. Segmentation of edge preserving gradient vector flow: an approach toward automatically initializing and splitting of snakes. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), vol. 1. 2005. p. 162-7.
[9] Ronfard R. Region-based strategies for active contour models. Int J Comput Vis 1994;13(2):229-51.
[10] Ivins, J., Porrill, J.: Active region models for segmenting medical images. In: Proceedings of the IEEE Internation Conference on Image Processing (1994)
[11] Abd-Almageed, W., Smith, C.E.: Mixture models for dynamic statistical pressure snakes. In: IEEE International Conference on Pattern Recognition, Quebec City, Canada (2002)
[12] Abd-Almageed, W., Ramadan, S., Smith, C.E.: Kernel Snakes: Nonparametric Active Contour Models. In: IEEE international conference on systems, man and cybernetics, Washington (2003)
[13] Chan T, Vese L. Active contours without edges. IEEE Trans Image Process 2001;10(2):266-77.
[14] Paragios N, Deriche R. Geodesic active regions and level set methods for supervised texture segmentation. Int J Comput Vis 2002;46(3):223-47.
[15] Jardim, S.M.G.V.B., Figuerido, M.A.T.: Segmentation of Fetal Ultrasound Images. Ultrasound in Med. & Biol. 31(2), 243–250 (2005)
[16] A. B. Goumeidane, M. Khamadja, N. Nacereddine: Maximum Likelihood Curves for Multiple Objects Extraction: Application to Radiographic Inspection for Weld Defects Detection. International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 210-222
[17] TIAN Yuan, DU Dong, CAI Guorui, WANG Li, ZHANG Hua: Automatic Defect Detection in X-Ray Images Using Image Data Fusion
[18] P. Perona and J. Malik. “Scale-space and edge detection using anisotropic diffusion”, IEEE trans. on Pattern Analysis and Machine Intelligence, 12(7), July 1990.
[19] F. Preteux, Description et interprétation des images par la morphologie mathématique. Application à l’imagerie médicale. Thèse d’état d l’université P. et M. Curie Paris VI. (1987) .
[20] T. Stojiè, I. Reljin, B. Rejlin, “Local Contrast Enhancement In Digital Mammography by using Mathematical Morphology” IEEE Confrence on 2005.
[21] I. El Feghi, S. Huang, M.A. Sid-Ahmed and M. Ahmadi , “Contrast enhancement of radiograph image based on local heterogeneity measures,”ICIP 2004.
[22] Z. Tu and C. Bajai, “A Fast Adaptive Method for Image Contrast Enhancement”, ICIP 2004.
[23] J. Kim, L. Kim, and S. Hwang, “An Advanced Contrast Enhancement Using Partially Overlapped Sub-Block Histogram Equalization,” IEEE Trans. Circuit and systems VOL. 11, NO. 4, APRIL 2001.
[24] L. D. Cohen, “On active contour models and balloons,” CVGIF: Image Understand., vol. 53, pp. 211 218, Mar. 1991.
[25] L. D. Cohen and I. Cohen, “Finite-element methods for active contour models and balloons for 2-D and 3-D images,” IEEE Trans. Pattern Anal. Machine Intell,