Search results for: task based learning.
12610 Analysis of Heuristic Based Hybrid Simulated Annealing Algorithm for Multiprocessor Task Scheduling
Authors: Supriya Arya, Sunita Dhingra
Abstract:
Multiprocessor task scheduling problem for dependent and independent tasks is computationally complex problem. Many methods are proposed to achieve optimal running time. As the multiprocessor task scheduling is NP hard in nature, therefore, many heuristics are proposed which have improved the makespan of the problem. But due to problem specific nature, the heuristic method which provide best results for one problem, might not provide good results for another problem. So, Simulated Annealing which is meta heuristic approach is considered. It can be applied on all types of problems. However, due to many runs, meta heuristic approach takes large computation time. Hence, the hybrid approach is proposed by combining the Duplication Scheduling Heuristic and Simulated Annealing (SA) and the makespan results of Simple Simulated Annealing and Hybrid approach are analyzed.
Keywords: Multiprocessor task scheduling Problem, Makespan, Duplication Scheduling Heuristic, Simulated Annealing, Hybrid Approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222612609 Experimenting the Influence of Input Modality on Involvement Load Hypothesis
Authors: Mohammad Hassanzadeh
Abstract:
As far as incidental vocabulary learning is concerned, the basic contention of the Involvement Load Hypothesis (ILH) is that retention of unfamiliar words is, generally, conditional upon the degree of involvement in processing them. This study examined input modality and incidental vocabulary uptake in a task-induced setting whereby three variously loaded task types (marginal glosses, fill-in-task, and sentence-writing) were alternately assigned to one group of students at Allameh Tabataba’i University (n=2l) during six classroom sessions. While one round of exposure was comprised of the audiovisual medium (TV talk shows), the second round consisted of textual materials with approximately similar subject matter (reading texts). In both conditions, however, the tasks were equivalent to one another. Taken together, the study pursued the dual objectives of establishing a litmus test for the ILH and its proposed values of ‘need’, ‘search’ and ‘evaluation’ in the first place. Secondly, it sought to bring to light the superiority issue of exposure to audiovisual input versus the written input as far as the incorporation of tasks is concerned. At the end of each treatment session, a vocabulary active recall test was administered to measure their incidental gains. Running a one-way analysis of variance revealed that the audiovisual intervention yielded higher gains than the written version even when differing tasks were included. Meanwhile, task 'three' (sentence-writing) turned out the most efficient in tapping learners' active recall of the target vocabulary items. In addition to shedding light on the superiority of audiovisual input over the written input when circumstances are relatively held constant, this study for the most part, did support the underlying tenets of ILH.
Keywords: Evaluation, incidental vocabulary learning, input mode, involvement load hypothesis, need, search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 115312608 Learning Theories within Coaching Process
Authors: P. Fazel
Abstract:
These days we face with so many advertisements in magazines, those mentioned coaching is pragmatic specialties which help people make change in their lives. Up to know Specialty coaches are not necessarily therapists, consultants or psychologist, thus they may not know psychological theories. The International Coach Federation identifies "facilitating learning and results" as one of its four core coach competencies, without understanding learning theories coaching practice hangs in theoretical abyss. Thus the aim of this article is investigating learning theories within coaching process. Therefore, I reviewed some cognitive and behavioral learning theories and analyzed their contribution with coaching process which has been introduced in mentor coaches and ICF certified coaches' papers and books. The result demonstrated that coaching profession is strongly grounded in learning theories, and it will be strengthened by the validation of theories and evidence-based research as we move forward. Thus, it needs more research in order to applying effective theoretical frameworks.
Keywords: Coaching, Learning theories. Cognitive learning theories, behavioral learning theories.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642412607 The Design of the Blended Learning System via E-Media and Online Learning for the Asynchronous Learning: Case Study of Process Management Subject
Authors: Pimploi Tirastittam, Suppara Charoenpoom
Abstract:
Nowadays the asynchronous learning has granted the permission to the anywhere and anything learning via the technology and E-media which give the learner more convenient. This research is about the design of the blended and online learning for the asynchronous learning of the process management subject in order to create the prototype of this subject asynchronous learning which will create the easiness and increase capability in the learning. The pattern of learning is the integration between the in-class learning and online learning via the internet. This research is mainly focused on the online learning and the online learning can be divided into 5 parts which are virtual classroom, online content, collaboration, assessment and reference material. After the system design was finished, it was evaluated and tested by 5 experts in blended learning design and 10 students which the user’s satisfaction level is good. The result is as good as the assumption so the system can be used in the process management subject for a real usage.
Keywords: Blended Learning, Asynchronous Learning, Design, Process Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155412606 Extending E-learning systems based on Clause-Rule model
Authors: Keisuke Nakamura, Kiyoshi Akama, Hiroshi Mabuchi
Abstract:
E-Learning systems are used by many learners and teachers. The developer is developing the e-Learning system. However, the developer cannot do system construction to satisfy all of users- demands. We discuss a method of constructing e-Learning systems where learners and teachers can design, try to use, and share extending system functions that they want to use; which may be nally added to the system by system managers.Keywords: Clause-Rule-Model, database-access, e-Learning, Web-Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167912605 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration
Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith
Abstract:
Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.Keywords: Multimodal image registration, GAN, cycle consistency, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81012604 An Interactive Tool for Teaching and Learning English at Upper Primary Level for Mauritius
Authors: Sameerchand Pudaruth, Avinash Mantaye
Abstract:
E-learning refers to the specific kind of learning experienced within the domain of educational technology, which can be used in or out of the classroom. In this paper, we give an overview of an e-learning platform 'An Innovative Interactive and Online English Platform for Upper Primary Students' is an interactive web-based application which will serve as an aid to the primary school students in Mauritius. The objectives of this platform are to offer quality learning resources for the English subject at our primary level of education, encourage self-learning and hence promote e-learning. The platform developed consists of several interesting features, for example, the English Verb Conjugation tool, Negative Form tool, Interrogative Form tool and Close Test Generator. Thus, this learning platform will be useful at a time where our country is looking for an alternative to private tuition and also, looking forward to increase the pass rate.Keywords: educational technology, e-learning, Mauritius.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222212603 Analysis of Education Faculty Students’ Attitudes towards E-Learning According to Different Variables
Authors: Eyup Yurt, Ahmet Kurnaz, Ismail Sahin
Abstract:
The purpose of the study is to investigate the education faculty students’ attitudes towards e-learning according to different variables. In current study, the data were collected from 393 students of an education faculty in Turkey. In this study, theattitude towards e‐learning scale and the demographic information form were used to collect data. The collected data were analyzed by t-test, ANOVA and Pearson correlation coefficient. It was found that there is a significant difference in students’ tendency towards e-learning and avoidance from e-learning based on gender. Male students have more positive attitudes towards e-learning than female students. Also, the students who used the internet lesshave higher levels of avoidance from e-learning. Additionally, it is found that there is a positive and significant relationship between the number of personal mobile learning devices and tendency towards e-learning. On the other hand, there is a negative and significant relationship between the number of personal mobile learning devices and avoidance from e-learning. Also, suggestions were presented according to findings.
Keywords: Education faculty students, attitude towards e-learning, gender, daily Internet usage time, m-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 216412602 Learning User Keystroke Patterns for Authentication
Authors: Ying Zhao
Abstract:
Keystroke authentication is a new access control system to identify legitimate users via their typing behavior. In this paper, machine learning techniques are adapted for keystroke authentication. Seven learning methods are used to build models to differentiate user keystroke patterns. The selected classification methods are Decision Tree, Naive Bayesian, Instance Based Learning, Decision Table, One Rule, Random Tree and K-star. Among these methods, three of them are studied in more details. The results show that machine learning is a feasible alternative for keystroke authentication. Compared to the conventional Nearest Neighbour method in the recent research, learning methods especially Decision Tree can be more accurate. In addition, the experiment results reveal that 3-Grams is more accurate than 2-Grams and 4-Grams for feature extraction. Also, combination of attributes tend to result higher accuracy.Keywords: Keystroke Authentication, Pattern recognition, MachineLearning, Instance-based Learning, Bayesian, Decision Tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 282212601 Project Base Learning for IT Personnel Resources Development using TVML
Authors: Tansuriyavong Suriyon, Endo Takanobu, Boonmee Choompol
Abstract:
Using the animations video of teaching materials is an effective learning method. However, we thought that more effective learning method is to produce the teaching video by learners themselves. The learners who act as the producer must learn and understand well to produce and present video of teaching materials to others. The purpose of this study is to propose the project based learning (PBL) technique by co-producing video of IT (information technology) teaching materials. We used the T2V player to produce the video based on TVML a TV program description language. By proposed method, we have assigned the learners to produce the animations video for “National Examination for Information Processing Technicians (IPA examination)" in Japan, in order to get them learns various knowledge and skill on IT field. Experimental result showed that learning effect has occurred at the video production process that useful for IT personnel resources development.Keywords: TVML , T2V Player, The animation made as learning materials, National Examination for Information Processing Technicians, IT Education, Problem Based Learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153412600 Developing Leadership and Teamwork Skills of Pre-Service Teacher through Learning Camp
Authors: Sirimanee Banjong
Abstract:
This study aimed to 1) develop pre-service teachers’ leadership skills through camp-based learning, and 2) develop preservice teachers’ teamwork skills through camp-based learning. An applied research methodology was used. The target group was derived from a purposive selection. It involved 32 fourth-year students in Early Childhood Education Program enrolling a course entitled Seminar in Early Childhood Education provided during second semester of academic year 2013. The treatment was camp-based learning activities which applied a PDCA process including four stages: 1) plan, 2) do, 3) check, and 4) act. Research instruments were a learning camp program, a camp-based learning management plan, a 5-level assessment form for leadership skills and a 5-level assessment form for assessing teamwork skills. Data were analyzed using descriptive statistics. Results were: 1) pre-service teachers’ leadership skills yielded the before treatment average score at x= 3.4, S.D.=0.6 2and the after-treatment average score at x 4.29 , S.D.=0.66 pre-service teachers’ teamwork skills yielded the before-treatment average score at x=3.31, S.D.=0.60 and the after-treatment average score at x=4.42, S.D.=0.66 Both differences were statistically significant at the .05 level. Thus, the pre-service teachers’ leadership and teamwork skills were significantly improved through the camp-based learning approach.Keywords: Learning camp, leadership skills, teamwork skills.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 135012599 Use of a Learner's Log for Effective Self-Directed Learning in PBL
Authors: Amudha Kadirvelu, Sivalal Sadasivan
Abstract:
While the problem based learning (PBL) approach promotes unsupervised self-directed learning (SDL), many students experience difficulty juggling the role of being an information recipient and information seeker. Logbooks have been used to assess trainee doctors but not in other areas. This study aimed to determine the effectiveness of logbook for assessing SDL during PBL sessions in first year medical students. The log book included a learning checklist and knowledge and skills components. Comparisons with the baseline assessment of student performance in PBL and that at semester end after logbook intervention showed significant improvements in student performance (31.5 ± 8 vs. 17.7 ± 4.4; p<0.001) with a large effect size of 3.93. The learner-s log for PBL has played an important role in enhancing SDL in first year medical students. Learner-s log could be a good self-assessment tool for the undergraduate medical students.
Keywords: Problem based learning, self-directed learning, logbook, self-assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201412598 Active Learning Strategies to Develop Student Skills in Information Systems for Management
Authors: F. Castro Lopes, S. Fernandes
Abstract:
Active learning strategies are at the center of any change process aimed to improve the development of student skills. This paper aims to analyze the impact of teaching strategies, including problem-based learning (PBL), in the curricular unit of information system for management, based on students’ perceptions of how they contribute to develop the desired learning outcomes of the curricular unit. This course is part of the 1st semester and 3rd year of the graduate degree program in management at a private higher education institution in Portugal. The methodology included an online questionnaire to students (n = 40). Findings from students reveal a positive impact of the teaching strategies used. In general, 35% considered that the strategies implemented in the course contributed to the development of courses’ learning objectives. Students considered PBL as the learning strategy that better contributed to enhance the courses’ learning outcomes. This conclusion brings forward the need for further reflection and discussion on the impact of student feedback on teaching and learning processes.
Keywords: Higher education, active learning strategies, skills development, student assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5912597 Technology Based Learning Environment and Student Achievement in English as a Foreign Language in Pakistan
Authors: M. Athar Hussain, M. Zafar Iqbal., M. Saeed Akhtar
Abstract:
The fast growing accessibility and capability of emerging technologies have fashioned enormous possibilities of designing, developing and implementing innovative teaching methods in the classroom. The global technological scenario has paved the way to new pedagogies in teaching-learning process focusing on technology based learning environment and its impact on student achievement. The present experimental study was conducted to determine the effectiveness of technology based learning environment on student achievement in English as a foreign language. The sample of the study was 90 students of 10th grade of a public school located in Islamabad. A pretest- posttest equivalent group design was used to compare the achievement of the two groups. A Pretest and A posttest containing 50 items each from English textbook were developed and administered. The collected data were statistically analyzed. The results showed that there was a significant difference between the mean scores of Experimental group and the Control group. The performance of Experimental group was better on posttest scores that indicted that teaching through technology based learning environment enhanced the achievement level of the students. On the basis of the results, it was recommended that teaching and learning through information and communication technologies may be adopted to enhance the language learning capability of the students.
Keywords: English as a Foreign Language, Student Achievement, Technology Based Learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 313712596 Motor Skill Adaptation Depends On the Level of Learning
Authors: Herbert Ugrinowitsch, Suziane Peixoto dos Santos-Naves, Michele Viviene Carbinatto, Rodolfo NovellinoBenda, Go Tani
Abstract:
An experiment was conducted to examine the effect of the level of performance stabilization on the human adaptability to perceptual-motor perturbation in a complex coincident timing task. Three levels of performance stabilization were established operationally: pre-stabilization, stabilization, and super-stabilization groups. Each group practiced the task until reached its level of stabilization in a constant sequence of movements and under a constant time constraint before exposure to perturbation. The results clearly showed that performance stabilization is a pre-condition for adaptation. Moreover, variability before reaching stabilization is harmful to adaptation and persistent variability after stabilization is beneficial. Moreover, the behavior of variability is specific to each measure.
Keywords: Adaptation, motor skill, perturbation, stabilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178212595 Acceptance of Mobile Learning: a Respecification and Validation of Information System Success
Authors: Chin-Cheh Yi, Pei-Wen Liao, Chin-Feng Huang, I-Hui Hwang
Abstract:
With the proliferation of mobile computing technology, mobile learning (m-learning) will play a vital role in the rapidly growing electronic learning market. However, the acceptance of m-learning by individuals is critical to the successful implementation of m-learning systems. Thus, there is a need to research the factors that affect users- intention to use m-learning. Based on an updated information system (IS) success model, data collected from 350 respondents in Taiwan were tested against the research model using the structural equation modeling approach. The data collected by questionnaire were analyzed to check the validity of constructs. Then hypotheses describing the relationships between the identified constructs and users- satisfaction were formulated and tested.
Keywords: m-learning, information system success, users' satisfaction, perceived value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198312594 Feature-Based Summarizing and Ranking from Customer Reviews
Authors: Dim En Nyaung, Thin Lai Lai Thein
Abstract:
Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.
Keywords: Opinion Mining, Opinion Summarization, Sentiment Analysis, Text Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 293312593 JaCoText: A Pretrained Model for Java Code-Text Generation
Authors: Jessica Lòpez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri
Abstract:
Pretrained transformer-based models have shown high performance in natural language generation task. However, a new wave of interest has surged: automatic programming language generation. This task consists of translating natural language instructions to a programming code. Despite the fact that well-known pretrained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformers neural network. It aims to generate java source code from natural language text. JaCoText leverages advantages of both natural language and code generation models. More specifically, we study some findings from the state of the art and use them to (1) initialize our model from powerful pretrained models, (2) explore additional pretraining on our java dataset, (3) carry out experiments combining the unimodal and bimodal data in the training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.
Keywords: Java code generation, Natural Language Processing, Sequence-to-sequence Models, Transformers Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85512592 Correlation Analysis to Quantify Learning Outcomes for Different Teaching Pedagogies
Authors: Kanika Sood, Sijie Shang
Abstract:
A fundamental goal of education includes preparing students to become a part of the global workforce by making beneficial contributions to society. In this paper, we analyze student performance for multiple courses that involve different teaching pedagogies: a cooperative learning technique and an inquiry-based learning strategy. Student performance includes student engagement, grades, and attendance records. We perform this study in the Computer Science department for online and in-person courses for 450 students. We will perform correlation analysis to study the relationship between student scores and other parameters such as gender, mode of learning. We use natural language processing and machine learning to analyze student feedback data and performance data. We assess the learning outcomes of two teaching pedagogies for undergraduate and graduate courses to showcase the impact of pedagogical adoption and learning outcome as determinants of academic achievement. Early findings suggest that when using the specified pedagogies, students become experts on their topics and illustrate enhanced engagement with peers.
Keywords: Bag-of-words, cooperative learning, education, inquiry-based learning, in-person learning, Natural Language Processing, online learning, sentiment analysis, teaching pedagogy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8112591 A Neuroscience-Based Learning Technique: Framework and Application to STEM
Authors: Dante J. Dorantes-González, Aldrin Balsa-Yepes
Abstract:
Existing learning techniques such as problem-based learning, project-based learning, or case study learning are learning techniques that focus mainly on technical details, but give no specific guidelines on learner’s experience and emotional learning aspects such as arousal salience and valence, being emotional states important factors affecting engagement and retention. Some approaches involving emotion in educational settings, such as social and emotional learning, lack neuroscientific rigorousness and use of specific neurobiological mechanisms. On the other hand, neurobiology approaches lack educational applicability. And educational approaches mainly focus on cognitive aspects and disregard conditioning learning. First, authors start explaining the reasons why it is hard to learn thoughtfully, then they use the method of neurobiological mapping to track the main limbic system functions, such as the reward circuit, and its relations with perception, memories, motivations, sympathetic and parasympathetic reactions, and sensations, as well as the brain cortex. The authors conclude explaining the major finding: The mechanisms of nonconscious learning and the triggers that guarantee long-term memory potentiation. Afterward, the educational framework for practical application and the instructors’ guidelines are established. An implementation example in engineering education is given, namely, the study of tuned-mass dampers for earthquake oscillations attenuation in skyscrapers. This work represents an original learning technique based on nonconscious learning mechanisms to enhance long-term memories that complement existing cognitive learning methods.
Keywords: Emotion, emotion-enhanced memory, learning technique, STEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 101412590 MarginDistillation: Distillation for Face Recognition Neural Networks with Margin-Based Softmax
Authors: Svitov David, Alyamkin Sergey
Abstract:
The usage of convolutional neural networks (CNNs) in conjunction with the margin-based softmax approach demonstrates the state-of-the-art performance for the face recognition problem. Recently, lightweight neural network models trained with the margin-based softmax have been introduced for the face identification task for edge devices. In this paper, we propose a distillation method for lightweight neural network architectures that outperforms other known methods for the face recognition task on LFW, AgeDB-30 and Megaface datasets. The idea of the proposed method is to use class centers from the teacher network for the student network. Then the student network is trained to get the same angles between the class centers and face embeddings predicted by the teacher network.Keywords: ArcFace, distillation, face recognition, margin-based softmax.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62912589 Virtual Learning Process Environment: Cohort Analytics for Learning and Learning Processes
Authors: Ayodeji Adesina, Derek Molloy
Abstract:
Traditional higher-education classrooms allow lecturers to observe students- behaviours and responses to a particular pedagogy during learning in a way that can influence changes to the pedagogical approach. Within current e-learning systems it is difficult to perform continuous analysis of the cohort-s behavioural tendency, making real-time pedagogical decisions difficult. This paper presents a Virtual Learning Process Environment (VLPE) based on the Business Process Management (BPM) conceptual framework. Within the VLPE, course designers can model various education pedagogies in the form of learning process workflows using an intuitive flow diagram interface. These diagrams are used to visually track the learning progresses of a cohort of students. This helps assess the effectiveness of the chosen pedagogy, providing the information required to improve course design. A case scenario of a cohort of students is presented and quantitative statistical analysis of their learning process performance is gathered and displayed in realtime using dashboards.
Keywords: Business process management, cohort analytics, learning processes, virtual learning environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 281512588 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data
Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad
Abstract:
Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars, and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.Keywords: Remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205312587 On Developing a Core Guideline for English Language Training Programs in Business Settings
Authors: T. Ito, K. Kawaguchi, R. Ohta
Abstract:
The purpose of this study is to provide a guideline to assist globally-minded companies in developing task-based English- language programs for their employees. After conducting an online self-assessment questionnaire comprised of 45 job-related tasks, we analyzed responses received from 3,000 Japanese company employees and developed a checklist that considered three areas; i) the percentage of those who need to accomplish English-language tasks in their workplace (need for English), ii) a five-point self-assessment score (task performance level), and iii) the impact of previous task experience on perceived performance (experience factor). The 45 tasks were graded according to five proficiency levels. Our results helped us to create a core guideline that may assist companies in two ways: first, in helping determine which tasks employees with a certain English proficiency should be able to satisfactorily carry out, and secondly, to quickly prioritize which business-related English skills they would need in future English language programs.
Keywords: Business settings, Can-do statements, English language training programs, Self-assessment, Task experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144812586 Personas Help Understand Users’ Needs, Goals and Desires in an Online Institutional Repository
Authors: Maha ALjohani, James Blustein
Abstract:
Communicating users' needs, goals and problems help designers and developers overcome challenges faced by end users. Personas are used to represent end users’ needs. In our research, creating personas allowed the following questions to be answered: Who are the potential user groups? What do they want to achieve by using the service? What are the problems that users face? What should the service provide to them? To develop realistic personas, we conducted a focus group discussion with undergraduate and graduate students and also interviewed a university librarian. The personas were created to help evaluating the Institutional Repository that is based on the DSpace system. The profiles helped to communicate users' needs, abilities, tasks, and problems, and the task scenarios used in the heuristic evaluation were based on these personas. Four personas resulted of a focus group discussion with undergraduate and graduate students and from interviewing a university librarian. We then used these personas to create focused task-scenarios for a heuristic evaluation on the system interface to ensure that it met users' needs, goals, problems and desires. In this paper, we present the process that we used to create the personas that led to devise the task scenarios used in the heuristic evaluation as a follow up study of the DSpace university repository.Keywords: Heuristic Evaluation, Institutional Repositories, User Experience, Human Computer Interaction, User Profiles, Personas, Task Scenarios, Heuristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 216712585 Decision Rule Induction in a Learning Content Management System
Authors: Nittaya Kerdprasop, Narin Muenrat, Kittisak Kerdprasop
Abstract:
A learning content management system (LCMS) is an environment to support web-based learning content development. Primary function of the system is to manage the learning process as well as to generate content customized to meet a unique requirement of each learner. Among the available supporting tools offered by several vendors, we propose to enhance the LCMS functionality to individualize the presented content with the induction ability. Our induction technique is based on rough set theory. The induced rules are intended to be the supportive knowledge for guiding the content flow planning. They can also be used as decision rules to help content developers on managing content delivered to individual learner.Keywords: Decision rules, Knowledge induction, Learning content management system, Rough set.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156812584 Problem-based Learning Approach to Human Computer Interaction
Authors: Oon-Seng Tan
Abstract:
Human Computer Interaction (HCI) has been an emerging field that draws in the experts from various fields to enhance the application of computer programs and the ease of computer users. HCI has much to do with learning and cognition and an emerging approach to learning and problem-solving is problembased learning (PBL). The processes of PBL involve important cognitive functions in the various stages. This paper will illustrate how closely related fields to HCI, PBL and cognitive psychology can benefit from informing each other through analysing various cognitive functions. Several cognitive functions from cognitive function disc (CFD) would be presented and discussed in relation to human-computer interface. This paper concludes with the implications of bridging the gaps amongst these disciplines.Keywords: problem-based learning, human computerinteraction, cognitive psychology, Cognitive Function Disc (CFD)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 251412583 Worker Behavior Interpretation for Flexible Production
Authors: Bastian Hartmann, Christoph Schauer, Norbert Link
Abstract:
This paper addresses the problem of recognizing and interpreting the behavior of human workers in industrial environments for the purpose of integrating humans in software controlled manufacturing environments. In this work we propose a generic concept in order to derive solutions for task-related manual production applications. Thus, we are able to use a versatile concept providing flexible components and being less restricted to a specific problem or application. We instantiate our concept in a spot welding scenario in which the behavior of a human worker is interpreted when performing a welding task with a hand welding gun. We acquire signals from inertial sensors, video cameras and triggers and recognize atomic actions by using pose data from a marker based video tracking system and movement data from inertial sensors. Recognized atomic actions are analyzed on a higher evaluation level by a finite state machine.Keywords: activity recognition, task modeling, marker-based video-tracking, inertial sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173912582 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals
Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty
Abstract:
A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient, but not the magnitude. A neural network with two hidden layers was then used to learn the coefficient magnitudes, along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.
Keywords: Quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18812581 The Effects of a Digital Dialogue Game on Higher Education Students’ Argumentation-Based Learning
Authors: Omid Noroozi
Abstract:
Digital dialogue games have opened up opportunities for learning skills by engaging students in complex problem solving that mimic real world situations, without importing unwanted constraints and risks of the real world. Digital dialogue games can be motivating and engaging to students for fun, creative thinking, and learning. This study explored how undergraduate students engage with argumentative discourse activities which have been designed to intensify debate. A pre-test, post-test design was used with students who were assigned to groups of four and asked to debate a controversial topic with the aim of exploring various 'pros and cons' on the 'Genetically Modified Organisms (GMOs)'. Findings reveal that the Digital dialogue game can facilitate argumentation-based learning. The digital Dialogue game was also evaluated positively in terms of students’ satisfaction and learning experiences.Keywords: Argumentation, dialogue, digital game, learning, motivation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200