Search results for: optimal Golomb ruler
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1613

Search results for: optimal Golomb ruler

1463 Optimal Placement and Sizing of SVC for Load Margin Improvement Using BF Algorithm

Authors: Santi Behera, M. Tripathy, J. K. Satapathy

Abstract:

Power systems are operating under stressed condition due to continuous increase in demand of load. This can lead to voltage instability problem when face additional load increase or contingency. In order to avoid voltage instability suitable size of reactive power compensation at optimal location in the system is required which improves the load margin. This work aims at obtaining optimal size as well as location of compensation in the 39- bus New England system with the help of Bacteria Foraging and Genetic algorithms. To reduce the computational time the work identifies weak candidate buses in the system, and then picks only two of them to take part in the optimization. The objective function is based on a recently proposed voltage stability index which takes into account the weighted average sensitivity index is a simpler and faster approach than the conventional CPF algorithm. BFOA has been found to give better results compared to GA.

Keywords: BFOA, GA, SSVSL, WASI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
1462 A New Heuristic Approach for Optimal Network Reconfiguration in Distribution Systems

Authors: R. Srinivasa Rao, S. V. L. Narasimham

Abstract:

This paper presents a novel approach for optimal reconfiguration of radial distribution systems. Optimal reconfiguration involves the selection of the best set of branches to be opened, one each from each loop, such that the resulting radial distribution system gets the desired performance. In this paper an algorithm is proposed based on simple heuristic rules and identified an effective switch status configuration of distribution system for the minimum loss reduction. This proposed algorithm consists of two parts; one is to determine the best switching combinations in all loops with minimum computational effort and the other is simple optimum power loss calculation of the best switching combination found in part one by load flows. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on 33-bus system. The results show that the performance of the proposed method is better than that of the other methods.

Keywords: Distribution system, network reconfiguration, powerloss reduction, radial network, heuristic technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2775
1461 Automatic Generation Control Design Based on Full State Vector Feedback for a Multi-Area Energy System Connected via Parallel AC/DC Lines

Authors: Gulshan Sharma

Abstract:

This article presents the design of optimal automatic generation control (AGC) based on full state feedback control for a multi-area interconnected power system. An extra high voltage AC transmission line in parallel with a high voltage DC link is considered as an area interconnection between the areas. The optimal AGC are designed and implemented in the wake of 1% load perturbation in one of the areas and the system dynamic response plots for various system states are obtained to investigate the system dynamic performance. The pattern of closed-loop eigenvalues are also determined to analyze the system stability. From the investigations carried out in the work, it is revealed that the dynamic performance of the system under consideration has an appreciable improvement when a high voltage DC line is paralleled with an extra high voltage AC line as an interconnection between the areas. The investigation of closed-loop eigenvalues reveals that the system stability is ensured in all case studies carried out with the designed optimal AGC.

Keywords: Automatic generation control, area control error, DC link, optimal AGC regulator, closed-loop eigenvalues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826
1460 Finding Pareto Optimal Front for the Multi-Mode Time, Cost Quality Trade-off in Project Scheduling

Authors: H. Iranmanesh, M. R. Skandari, M. Allahverdiloo

Abstract:

Project managers are the ultimate responsible for the overall characteristics of a project, i.e. they should deliver the project on time with minimum cost and with maximum quality. It is vital for any manager to decide a trade-off between these conflicting objectives and they will be benefited of any scientific decision support tool. Our work will try to determine optimal solutions (rather than a single optimal solution) from which the project manager will select his desirable choice to run the project. In this paper, the problem in project scheduling notated as (1,T|cpm,disc,mu|curve:quality,time,cost) will be studied. The problem is multi-objective and the purpose is finding the Pareto optimal front of time, cost and quality of a project (curve:quality,time,cost), whose activities belong to a start to finish activity relationship network (cpm) and they can be done in different possible modes (mu) which are non-continuous or discrete (disc), and each mode has a different cost, time and quality . The project is constrained to a non-renewable resource i.e. money (1,T). Because the problem is NP-Hard, to solve the problem, a meta-heuristic is developed based on a version of genetic algorithm specially adapted to solve multi-objective problems namely FastPGA. A sample project with 30 activities is generated and then solved by the proposed method.

Keywords: FastPGA, Multi-Execution Activity Mode, ParetoOptimality, Project Scheduling, Time-Cost-Quality Trade-Off.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
1459 On the Optimality of Blocked Main Effects Plans

Authors: Rita SahaRay, Ganesh Dutta

Abstract:

In this article, experimental situations are considered where a main effects plan is to be used to study m two-level factors using n runs which are partitioned into b blocks, not necessarily of same size. Assuming the block sizes to be even for all blocks, for the case n ≡ 2 (mod 4), optimal designs are obtained with respect to type 1 and type 2 optimality criteria in the class of designs providing estimation of all main effects orthogonal to the block effects. In practice, such orthogonal estimation of main effects is often a desirable condition. In the wider class of all available m two level even sized blocked main effects plans, where the factors do not occur at high and low levels equally often in each block, E-optimal designs are also characterized. Simple construction methods based on Hadamard matrices and Kronecker product for these optimal designs are presented.

Keywords: Design matrix, Hadamard matrix, Kronecker product, type 1 criteria, type 2 criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054
1458 Neural Network Optimal Power Flow(NN-OPF) based on IPSO with Developed Load Cluster Method

Authors: Mat Syai'in, Adi Soeprijanto

Abstract:

An Optimal Power Flow based on Improved Particle Swarm Optimization (OPF-IPSO) with Generator Capability Curve Constraint is used by NN-OPF as a reference to get pattern of generator scheduling. There are three stages in Designing NN-OPF. The first stage is design of OPF-IPSO with generator capability curve constraint. The second stage is clustering load to specific range and calculating its index. The third stage is training NN-OPF using constructive back propagation method. In training process total load and load index used as input, and pattern of generator scheduling used as output. Data used in this paper is power system of Java-Bali. Software used in this simulation is MATLAB.

Keywords: Optimal Power Flow, Generator Capability Curve, Improved Particle Swarm Optimization, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
1457 MaxMin Share Based Medium Access for Attaining Fairness and Channel Utilization in Mobile Adhoc Networks

Authors: P. Priakanth, P. Thangaraj

Abstract:

Due to the complex network architecture, the mobile adhoc network-s multihop feature gives additional problems to the users. When the traffic load at each node gets increased, the additional contention due its traffic pattern might cause the nodes which are close to destination to starve the nodes more away from the destination and also the capacity of network is unable to satisfy the total user-s demand which results in an unfairness problem. In this paper, we propose to create an algorithm to compute the optimal MAC-layer bandwidth assigned to each flow in the network. The bottleneck links contention area determines the fair time share which is necessary to calculate the maximum allowed transmission rate used by each flow. To completely utilize the network resources, we compute two optimal rates namely, the maximum fair share and minimum fair share. We use the maximum fair share achieved in order to limit the input rate of those flows which crosses the bottleneck links contention area when the flows that are not allocated to the optimal transmission rate and calculate the following highest fair share. Through simulation results, we show that the proposed protocol achieves improved fair share and throughput with reduced delay.

Keywords: MAC-layer, MANETs, Multihop, optimal rate, Transmission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
1456 Using Tabu Search to Analyze the Mauritian Economic Sectors

Authors: J. Cheeneebash, V. Beeharry, A. Gopaul

Abstract:

The aim of this paper is to express the input-output matrix as a linear ordering problem which is classified as an NP-hard problem. We then use a Tabu search algorithm to find the best permutation among sectors in the input-output matrix that will give an optimal solution. This optimal permutation can be useful in designing policies and strategies for economists and government in their goal of maximizing the gross domestic product.

Keywords: Input-Output matrix, linear ordering problem, Tabusearch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
1455 Efficient Design Optimization of Multi-State Flow Network for Multiple Commodities

Authors: Yu-Cheng Chou, Po Ting Lin

Abstract:

The network of delivering commodities has been an important design problem in our daily lives and many transportation applications. The delivery performance is evaluated based on the system reliability of delivering commodities from a source node to a sink node in the network. The system reliability is thus maximized to find the optimal routing. However, the design problem is not simple because (1) each path segment has randomly distributed attributes; (2) there are multiple commodities that consume various path capacities; (3) the optimal routing must successfully complete the delivery process within the allowable time constraints. In this paper, we want to focus on the design optimization of the Multi-State Flow Network (MSFN) for multiple commodities. We propose an efficient approach to evaluate the system reliability in the MSFN with respect to randomly distributed path attributes and find the optimal routing subject to the allowable time constraints. The delivery rates, also known as delivery currents, of the path segments are evaluated and the minimal-current arcs are eliminated to reduce the complexity of the MSFN. Accordingly, the correct optimal routing is found and the worst-case reliability is evaluated. It has been shown that the reliability of the optimal routing is at least higher than worst-case measure. Two benchmark examples are utilized to demonstrate the proposed method. The comparisons between the original and the reduced networks show that the proposed method is very efficient.

Keywords: Multiple Commodities, Multi-State Flow Network (MSFN), Time Constraints, Worst-Case Reliability (WCR)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
1454 Finding Pareto Optimal Front for the Multi- Mode Time, Cost Quality Trade-off in Project Scheduling

Authors: H. Iranmanesh, M. R. Skandari, M. Allahverdiloo

Abstract:

Project managers are the ultimate responsible for the overall characteristics of a project, i.e. they should deliver the project on time with minimum cost and with maximum quality. It is vital for any manager to decide a trade-off between these conflicting objectives and they will be benefited of any scientific decision support tool. Our work will try to determine optimal solutions (rather than a single optimal solution) from which the project manager will select his desirable choice to run the project. In this paper, the problem in project scheduling notated as (1,T|cpm,disc,mu|curve:quality,time,cost) will be studied. The problem is multi-objective and the purpose is finding the Pareto optimal front of time, cost and quality of a project (curve:quality,time,cost), whose activities belong to a start to finish activity relationship network (cpm) and they can be done in different possible modes (mu) which are non-continuous or discrete (disc), and each mode has a different cost, time and quality . The project is constrained to a non-renewable resource i.e. money (1,T). Because the problem is NP-Hard, to solve the problem, a meta-heuristic is developed based on a version of genetic algorithm specially adapted to solve multi-objective problems namely FastPGA. A sample project with 30 activities is generated and then solved by the proposed method.

Keywords: FastPGA, Multi-Execution Activity Mode, Pareto Optimality, Project Scheduling, Time-Cost-Quality Trade-Off.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
1453 Optimal Design of Reference Node Placement for Wireless Indoor Positioning Systems in Multi-Floor Building

Authors: Kittipob Kondee, Chutima Prommak

Abstract:

In this paper, we propose an optimization technique that can be used to optimize the placements of reference nodes and improve the location determination performance for the multi-floor building. The proposed technique is based on Simulated Annealing algorithm (SA) and is called MSMR-M. The performance study in this work is based on simulation. We compare other node-placement techniques found in the literature with the optimal node-placement solutions obtained from our optimization. The results show that using the optimal node-placement obtained by our proposed technique can improve the positioning error distances up to 20% better than those of the other techniques. The proposed technique can provide an average error distance within 1.42 meters.

Keywords: Indoor positioning System, Optimization System design, Multi-Floor Building, Wireless Sensor Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1983
1452 Optimal Path Planner for Autonomous Vehicles

Authors: M. Imran Akram, Ahmed Pasha, Nabeel Iqbal

Abstract:

In this paper a real-time trajectory generation algorithm for computing 2-D optimal paths for autonomous aerial vehicles has been discussed. A dynamic programming approach is adopted to compute k-best paths by minimizing a cost function. Collision detection is implemented to detect intersection of the paths with obstacles. Our contribution is a novel approach to the problem of trajectory generation that is computationally efficient and offers considerable gain over existing techniques.

Keywords: dynamic programming, graph search, path planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
1451 Optimal Multilayer Perceptron Structure For Classification of HIV Sub-Type Viruses

Authors: Zeyneb Kurt, Oguzhan Yavuz

Abstract:

The feature of HIV genome is in a wide range because of it is highly heterogeneous. Hence, the infection ability of the virus changes related with different chemokine receptors. From this point, R5 and X4 HIV viruses use CCR5 and CXCR5 coreceptors respectively while R5X4 viruses can utilize both coreceptors. Recently, in Bioinformatics, R5X4 viruses have been studied to classify by using the coreceptors of HIV genome. The aim of this study is to develop the optimal Multilayer Perceptron (MLP) for high classification accuracy of HIV sub-type viruses. To accomplish this purpose, the unit number in hidden layer was incremented one by one, from one to a particular number. The statistical data of R5X4, R5 and X4 viruses was preprocessed by the signal processing methods. Accessible residues of these virus sequences were extracted and modeled by Auto-Regressive Model (AR) due to the dimension of residues is large and different from each other. Finally the pre-processed dataset was used to evolve MLP with various number of hidden units to determine R5X4 viruses. Furthermore, ROC analysis was used to figure out the optimal MLP structure.

Keywords: Multilayer Perceptron, Auto-Regressive Model, HIV, ROC Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
1450 A PIM (Processor-In-Memory) for Computer Graphics : Data Partitioning and Placement Schemes

Authors: Jae Chul Cha, Sandeep K. Gupta

Abstract:

The demand for higher performance graphics continues to grow because of the incessant desire towards realism. And, rapid advances in fabrication technology have enabled us to build several processor cores on a single die. Hence, it is important to develop single chip parallel architectures for such data-intensive applications. In this paper, we propose an efficient PIM architectures tailored for computer graphics which requires a large number of memory accesses. We then address the two important tasks necessary for maximally exploiting the parallelism provided by the architecture, namely, partitioning and placement of graphic data, which affect respectively load balances and communication costs. Under the constraints of uniform partitioning, we develop approaches for optimal partitioning and placement, which significantly reduce search space. We also present heuristics for identifying near-optimal placement, since the search space for placement is impractically large despite our optimization. We then demonstrate the effectiveness of our partitioning and placement approaches via analysis of example scenes; simulation results show considerable search space reductions, and our heuristics for placement performs close to optimal – the average ratio of communication overheads between our heuristics and the optimal was 1.05. Our uniform partitioning showed average load-balance ratio of 1.47 for geometry processing and 1.44 for rasterization, which is reasonable.

Keywords: Data Partitioning and Placement, Graphics, PIM, Search Space Reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
1449 PSO Based Weight Selection and Fixed Structure Robust Loop Shaping Control for Pneumatic Servo System with 2DOF Controller

Authors: Randeep Kaur, Jyoti Ohri

Abstract:

This paper proposes a new technique to design a fixed-structure robust loop shaping controller for the pneumatic servosystem. In this paper, a new method based on a particle swarm optimization (PSO) algorithm for tuning the weighting function parameters to design an H∞ controller is presented. The PSO algorithm is used to minimize the infinity norm of the transfer function of the nominal closed loop system to obtain the optimal parameters of the weighting functions. The optimal stability margin is used as an objective in PSO for selecting the optimal weighting parameters; it is shown that the proposed method can simplify the design procedure of H∞ control to obtain optimal robust controller for pneumatic servosystem. In addition, the order of the proposed controller is much lower than that of the conventional robust loop shaping controller, making it easy to implement in practical works. Also two-degree-of-freedom (2DOF) control design procedure is proposed to improve tracking performance in the face of noise and disturbance. Result of simulations demonstrates the advantages of the proposed controller in terms of simple structure and robustness against plant perturbations and disturbances.

Keywords: Robust control, Pneumatic Servosystem, PSO, H∞ control, 2DOF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2424
1448 Multi-Objective Fuzzy Model in Optimal Sitingand Sizing of DG for Loss Reduction

Authors: H. Shayeghi, B. Mohamadi

Abstract:

This paper presents a possibilistic (fuzzy) model in optimal siting and sizing of Distributed Generation (DG) for loss reduction and improve voltage profile in power distribution system. Multi-objective problem is developed in two phases. In the first one, the set of non-dominated planning solutions is obtained (with respect to the objective functions of fuzzy economic cost, and exposure) using genetic algorithm. In the second phase, one solution of the set of non-dominated solutions is selected as optimal solution, using a suitable max-min approach. This method can be determined operation-mode (PV or PQ) of DG. Because of considering load uncertainty in this paper, it can be obtained realistic results. The whole process of this method has been implemented in the MATLAB7 environment with technical and economic consideration for loss reduction and voltage profile improvement. Through numerical example the validity of the proposed method is verified.

Keywords: Fuzzy Power Flow, DG siting and sizing, LoadUncertainty, Multi-objective Possibilistic Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
1447 Enhanced Particle Swarm Optimization Approach for Solving the Non-Convex Optimal Power Flow

Authors: M. R. AlRashidi, M. F. AlHajri, M. E. El-Hawary

Abstract:

An enhanced particle swarm optimization algorithm (PSO) is presented in this work to solve the non-convex OPF problem that has both discrete and continuous optimization variables. The objective functions considered are the conventional quadratic function and the augmented quadratic function. The latter model presents non-differentiable and non-convex regions that challenge most gradient-based optimization algorithms. The optimization variables to be optimized are the generator real power outputs and voltage magnitudes, discrete transformer tap settings, and discrete reactive power injections due to capacitor banks. The set of equality constraints taken into account are the power flow equations while the inequality ones are the limits of the real and reactive power of the generators, voltage magnitude at each bus, transformer tap settings, and capacitor banks reactive power injections. The proposed algorithm combines PSO with Newton-Raphson algorithm to minimize the fuel cost function. The IEEE 30-bus system with six generating units is used to test the proposed algorithm. Several cases were investigated to test and validate the consistency of detecting optimal or near optimal solution for each objective. Results are compared to solutions obtained using sequential quadratic programming and Genetic Algorithms.

Keywords: Particle Swarm Optimization, Optimal Power Flow, Economic Dispatch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368
1446 Parallel Branch and Bound Model Using Logarithmic Sampling (PBLS) for Symmetric Traveling Salesman Problem

Authors: Sheikh Muhammad Azam, Masood-ur-Rehman, Adnan Khalid Bhatti, Nadeem Daudpota

Abstract:

Very Large and/or computationally complex optimization problems sometimes require parallel or highperformance computing for achieving a reasonable time for computation. One of the most popular and most complicate problems of this family is “Traveling Salesman Problem". In this paper we have introduced a Branch & Bound based algorithm for the solution of such complicated problems. The main focus of the algorithm is to solve the “symmetric traveling salesman problem". We reviewed some of already available algorithms and felt that there is need of new algorithm which should give optimal solution or near to the optimal solution. On the basis of the use of logarithmic sampling, it was found that the proposed algorithm produced a relatively optimal solution for the problem and results excellent performance as compared with the traditional algorithms of this series.

Keywords: Parallel execution, symmetric traveling salesman problem, branch and bound algorithm, logarithmic sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337
1445 Evaluation of a PSO Approach for Optimum Design of a First-Order Controllers for TCP/AQM Systems

Authors: Sana Testouri, Karim Saadaoui, Mohamed Benrejeb

Abstract:

This paper presents a Particle Swarm Optimization (PSO) method for determining the optimal parameters of a first-order controller for TCP/AQM system. The model TCP/AQM is described by a second-order system with time delay. First, the analytical approach, based on the D-decomposition method and Lemma of Kharitonov, is used to determine the stabilizing regions of a firstorder controller. Second, the optimal parameters of the controller are obtained by the PSO algorithm. Finally, the proposed method is implemented in the Network Simulator NS-2 and compared with the PI controller.

Keywords: AQM, first-order controller, time delay, stability, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
1444 Differential Evolution Based Optimal Choice and Location of Facts Devices in Restructured Power System

Authors: K. Balamurugan, V. Dharmalingam, R. Muralisachithanandam, R. Sankaran

Abstract:

This paper deals with the optimal choice and location of FACTS devices in deregulated power systems using Differential Evolution algorithm. The main objective of this paper is to achieve the power system economic generation allocation and dispatch in deregulated electricity market. Using the proposed method, the locations of the FACTS devices, their types and ratings are optimized simultaneously. Different kinds of FACTS devices such as TCSC and SVC are simulated in this study. Furthermore, their investment costs are also considered. Simulation results validate the capability of this new approach in minimizing the overall system cost function, which includes the investment costs of the FACTS devices and the bid offers of the market participants. The proposed algorithm is an effective and practical method for the choice and location of suitable FACTS devices in deregulated electricity market.

Keywords: FACTS Devices, Deregulated Electricity Market, Optimal Location, Differential Evolution, Mat Lab.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
1443 ED Machining of Particulate Reinforced MMC’s

Authors: Sarabjeet Singh Sidhu, Ajay Batish, Sanjeev Kumar

Abstract:

This paper reports the optimal process conditions for machining of three different types of MMC’s 65vol%SiC/A356.2; 10vol%SiC-5vol%quartz/Al and 30vol%SiC/A359 using PMEDM process. MRR, TWR, SR and surface integrity were evaluated after each trial and contributing process parameters were identified. The four responses were then collectively optimized using TOPSIS and optimal process conditions were identified for each type of MMC. The density of reinforced particles shields the matrix material from spark energy hence the high MRR and SR was observed with lowest reinforced particle. TWR was highest with Cu-Gr electrode due to disintegration of the weakly bonded particles in the composite electrode. Each workpiece was examined for surface integrity and ranked as per severity of surface defects observed and their rankings were used for arriving at the most optimal process settings for each workpiece. 

Keywords: Metal matrix composites (MMCs), Metal removal rate (MRR), Surface roughness (SR), Surface integrity (SI), Tool wear rate (TWR), Technique for order preference by similarity to ideal solution (TOPSIS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2878
1442 Distributed Detection and Optimal Traffic-blocking of Network Worms

Authors: Zoran Nikoloski, Narsingh Deo, Ludek Kucera

Abstract:

Despite the recent surge of research in control of worm propagation, currently, there is no effective defense system against such cyber attacks. We first design a distributed detection architecture called Detection via Distributed Blackholes (DDBH). Our novel detection mechanism could be implemented via virtual honeypots or honeynets. Simulation results show that a worm can be detected with virtual honeypots on only 3% of the nodes. Moreover, the worm is detected when less than 1.5% of the nodes are infected. We then develop two control strategies: (1) optimal dynamic trafficblocking, for which we determine the condition that guarantees minimum number of removed nodes when the worm is contained and (2) predictive dynamic traffic-blocking–a realistic deployment of the optimal strategy on scale-free graphs. The predictive dynamic traffic-blocking, coupled with the DDBH, ensures that more than 40% of the network is unaffected by the propagation at the time when the worm is contained.

Keywords: Network worms, distributed detection, optimaltraffic-blocking, individual-based simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
1441 Locating Cultural Centers in Shiraz (Iran) Applying Geographic Information System (GIS)

Authors: R. Mokhtari Malekabadi, S. Ghaed Rahmati, S. Aram

Abstract:

Optimal cultural site selection is one of the ways that can lead to the promotion of citizenship culture in addition to ensuring the health and leisure of city residents. This study examines the social and cultural needs of the community and optimal cultural site allocation and after identifying the problems and shortcomings, provides a suitable model for finding the best location for these centers where there is the greatest impact on the promotion of citizenship culture. On the other hand, non-scientific methods cause irreversible impacts to the urban environment and citizens. But modern efficient methods can reduce these impacts. One of these methods is using geographical information systems (GIS). In this study, Analytical Hierarchy Process (AHP) method was used to locate the optimal cultural site. In AHP, three principles (decomposition), (comparative analysis), and (combining preferences) are used. The objectives of this research include providing optimal contexts for passing time and performing cultural activities by Shiraz residents and also proposing construction of some cultural sites in different areas of the city. The results of this study show the correct positioning of cultural sites based on social needs of citizens. Thus, considering the population parameters and radii access, GIS and AHP model for locating cultural centers can meet social needs of citizens.

Keywords: Analytical Hierarchy Process (AHP), geographical information systems (GIS), Cultural site, locating, Shiraz.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
1440 Retail Inventory Management for Perishable Products with Two Bins Strategy

Authors: Madhukar Nagare, Pankaj Dutta, Amey Kambli

Abstract:

Perishable goods constitute a large portion of retailer inventory and lose value with time due to deterioration and/or obsolescence. Retailers dealing with such goods required considering the factors of short shelf life and the dependency of sales on inventory displayed in determining optimal procurement policy. Many retailers follow the practice of using two bins - primary bin sales fresh items at a list price and secondary bin sales unsold items at a discount price transferred from primary bin on attaining certain age. In this paper, mathematical models are developed for primary bin and for secondary bin that maximizes profit with decision variables of order quantities, optimal review period and optimal selling price at secondary bin. The demand rates in two bins are assumed to be deterministic and dependent on displayed inventory level, price and age but independent of each other. The validity of the model is shown by solving an example and the sensitivity analysis of the model is also reported.

Keywords: Retail Inventory, Perishable Products, Two Bin, Profitable Sales.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3507
1439 Trajectory-Based Modified Policy Iteration

Authors: R. Sharma, M. Gopal

Abstract:

This paper presents a new problem solving approach that is able to generate optimal policy solution for finite-state stochastic sequential decision-making problems with high data efficiency. The proposed algorithm iteratively builds and improves an approximate Markov Decision Process (MDP) model along with cost-to-go value approximates by generating finite length trajectories through the state-space. The approach creates a synergy between an approximate evolving model and approximate cost-to-go values to produce a sequence of improving policies finally converging to the optimal policy through an intelligent and structured search of the policy space. The approach modifies the policy update step of the policy iteration so as to result in a speedy and stable convergence to the optimal policy. We apply the algorithm to a non-holonomic mobile robot control problem and compare its performance with other Reinforcement Learning (RL) approaches, e.g., a) Q-learning, b) Watkins Q(λ), c) SARSA(λ).

Keywords: Markov Decision Process (MDP), Mobile robot, Policy iteration, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
1438 Optimal Compensation of Reactive Power in the Restructured Distribution Network

Authors: Atefeh Pourshafie, Mohsen. Saniei, S. S. Mortazavi, A. Saeedian

Abstract:

In this paper optimal capacitor placement problem has been formulated in a restructured distribution network. In this scenario the distribution network operator can consider reactive energy also as a service that can be sold to transmission system. Thus search for optimal location, size and number of capacitor banks with the objective of loss reduction, maximum income from selling reactive energy to transmission system and return on investment for capacitors, has been performed. Results is influenced with economic value of reactive energy, therefore problem has been solved for various amounts of it. The implemented optimization technique is genetic algorithm. For any value of reactive power economic value, when reverse of investment index increase and change from zero or negative values to positive values, the threshold value of selling reactive power has been obtained. This increasing price of economic parameter is reasonable until the network losses is less than loss before compensation.

Keywords: capacitor placement, deregulated electric market, distribution network optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
1437 Reentry Trajectory Optimization Based on Differential Evolution

Authors: Songtao Chang, Yongji Wang, Lei Liu, Dangjun Zhao

Abstract:

Reentry trajectory optimization is a multi-constraints optimal control problem which is hard to solve. To tackle it, we proposed a new algorithm named CDEN(Constrained Differential Evolution Newton-Raphson Algorithm) based on Differential Evolution( DE) and Newton-Raphson.We transform the infinite dimensional optimal control problem to parameter optimization which is finite dimensional by discretize control parameter. In order to simplify the problem, we figure out the control parameter-s scope by process constraints. To handle constraints, we proposed a parameterless constraints handle process. Through comprehensive analyze the problem, we use a new algorithm integrated by DE and Newton-Raphson to solve it. It is validated by a reentry vehicle X-33, simulation results indicated that the algorithm is effective and robust.

Keywords: reentry vehicle, trajectory optimization, constraint optimal, differential evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
1436 Probabilistic Method of Wind Generation Placement for Congestion Management

Authors: S. Z. Moussavi, A. Badri, F. Rastegar Kashkooli

Abstract:

Wind farms (WFs) with high level of penetration are being established in power systems worldwide more rapidly than other renewable resources. The Independent System Operator (ISO), as a policy maker, should propose appropriate places for WF installation in order to maximize the benefits for the investors. There is also a possibility of congestion relief using the new installation of WFs which should be taken into account by the ISO when proposing the locations for WF installation. In this context, efficient wind farm (WF) placement method is proposed in order to reduce burdens on congested lines. Since the wind speed is a random variable and load forecasts also contain uncertainties, probabilistic approaches are used for this type of study. AC probabilistic optimal power flow (P-OPF) is formulated and solved using Monte Carlo Simulations (MCS). In order to reduce computation time, point estimate methods (PEM) are introduced as efficient alternative for time-demanding MCS. Subsequently, WF optimal placement is determined using generation shift distribution factors (GSDF) considering a new parameter entitled, wind availability factor (WAF). In order to obtain more realistic results, N-1 contingency analysis is employed to find the optimal size of WF, by means of line outage distribution factors (LODF). The IEEE 30-bus test system is used to show and compare the accuracy of proposed methodology.

Keywords: Probabilistic optimal power flow, Wind power, Pointestimate methods, Congestion management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
1435 Influence of Local Soil Conditions on Optimal Load Factors for Seismic Design of Buildings

Authors: Miguel A. Orellana, Sonia E. Ruiz, Juan Bojórquez

Abstract:

Optimal load factors (dead, live and seismic) used for the design of buildings may be different, depending of the seismic ground motion characteristics to which they are subjected, which are closely related to the type of soil conditions where the structures are located. The influence of the type of soil on those load factors, is analyzed in the present study. A methodology that is useful for establishing optimal load factors that minimize the cost over the life cycle of the structure is employed; and as a restriction, it is established that the probability of structural failure must be less than or equal to a prescribed value. The life-cycle cost model used here includes different types of costs. The optimization methodology is applied to two groups of reinforced concrete buildings. One set (consisting on 4-, 7-, and 10-story buildings) is located on firm ground (with a dominant period Ts=0.5 s) and the other (consisting on 6-, 12-, and 16-story buildings) on soft soil (Ts=1.5 s) of Mexico City. Each group of buildings is designed using different combinations of load factors. The statistics of the maximums inter-story drifts (associated with the structural capacity) are found by means of incremental dynamic analyses. The buildings located on firm zone are analyzed under the action of 10 strong seismic records, and those on soft zone, under 13 strong ground motions. All the motions correspond to seismic subduction events with magnitudes M=6.9. Then, the structural damage and the expected total costs, corresponding to each group of buildings, are estimated. It is concluded that the optimal load factors combination is different for the design of buildings located on firm ground than that for buildings located on soft soil.

Keywords: Life-cycle cost, optimal load factors, reinforced concrete buildings, total costs, type of soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 901
1434 Fish Locomotion for Innovative Marine Propulsion Systems

Authors: Omar B. Yaakob, Yasser M. Ahmed, Ahmad F. Said

Abstract:

There is an essential need for obtaining the mathematical representation of fish body undulations, which can be used for designing and building new innovative types of marine propulsion systems with less environmental impact. This research work presents a case study to derive the mathematical model for fish body movement. Observation and capturing image methods were used in this study in order to obtain a mathematical representation of Clariasbatrachus fish (catfish). An experiment was conducted by using an aquarium with dimension 0.609 m x 0.304 m x 0.304 m, and a 0.5 m ruler was attached at the base of the aquarium. Progressive Scan Monochrome Camera was positioned at 1.8 m above the base of the aquarium to provide swimming sequences. Seven points were marked on the fish body using white marker to indicate the fish movement and measuring the amplitude of undulation. Images from video recordings (20 frames/s) were analyzed frame by frame using local coordinate system, with time interval 0.05 s. The amplitudes of undulations were obtained for image analysis from each point that has been marked on fish body. A graph of amplitude of undulations versus time was plotted by using computer to derive a mathematical fit. The function for the graph is polynomial with nine orders.

Keywords: Fish locomotion, body undulation, steady and unsteady swimming modes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2202