Search results for: linear regression models.
4325 A Robust LS-SVM Regression
Authors: József Valyon, Gábor Horváth
Abstract:
In comparison to the original SVM, which involves a quadratic programming task; LS–SVM simplifies the required computation, but unfortunately the sparseness of standard SVM is lost. Another problem is that LS-SVM is only optimal if the training samples are corrupted by Gaussian noise. In Least Squares SVM (LS–SVM), the nonlinear solution is obtained, by first mapping the input vector to a high dimensional kernel space in a nonlinear fashion, where the solution is calculated from a linear equation set. In this paper a geometric view of the kernel space is introduced, which enables us to develop a new formulation to achieve a sparse and robust estimate.Keywords: Support Vector Machines, Least Squares SupportVector Machines, Regression, Sparse approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20634324 Study on Optimal Control Strategy of PM2.5 in Wuhan, China
Authors: Qiuling Xie, Shanliang Zhu, Zongdi Sun
Abstract:
In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given.
Keywords: Grey relational degree, multiple linear regression, membership function, nonlinear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14084323 A Study of Panel Logit Model and Adaptive Neuro-Fuzzy Inference System in the Prediction of Financial Distress Periods
Authors: Ε. Giovanis
Abstract:
The purpose of this paper is to present two different approaches of financial distress pre-warning models appropriate for risk supervisors, investors and policy makers. We examine a sample of the financial institutions and electronic companies of Taiwan Security Exchange (TSE) market from 2002 through 2008. We present a binary logistic regression with paned data analysis. With the pooled binary logistic regression we build a model including more variables in the regression than with random effects, while the in-sample and out-sample forecasting performance is higher in random effects estimation than in pooled regression. On the other hand we estimate an Adaptive Neuro-Fuzzy Inference System (ANFIS) with Gaussian and Generalized Bell (Gbell) functions and we find that ANFIS outperforms significant Logit regressions in both in-sample and out-of-sample periods, indicating that ANFIS is a more appropriate tool for financial risk managers and for the economic policy makers in central banks and national statistical services.Keywords: ANFIS, Binary logistic regression, Financialdistress, Panel data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23424322 Comparison of Different Data Acquisition Techniques for Shape Optimization Problems
Authors: Attila Vámosi, Tamás Mankovits, Dávid Huri, Imre Kocsis, Tamás Szabó
Abstract:
Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. For example rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. The shape optimization problem of rubber parts led to the study of FEM based calculation processes. This type of problems was posed and investigated by several authors. In this paper the time demand of certain calculation methods are studied and the possibilities of time reduction is presented.
Keywords: Rubber bumper, data acquisition, finite element analysis, support vector regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21484321 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent
Authors: Zhifeng Kong
Abstract:
Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.Keywords: Over-parameterization, Rectified Linear Units (ReLU), convergence, gradient descent, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8964320 Improve Safety Performance of Un-Signalized Intersections in Oman
Authors: Siham G. Farag
Abstract:
The main objective of this paper is to provide a new methodology for road safety assessment in Oman through the development of suitable accident prediction models. GLM technique with Poisson or NBR using SAS package was carried out to develop these models. The paper utilized the accidents data of 31 un-signalized T-intersections during three years. Five goodness-of-fit measures were used to assess the overall quality of the developed models. Two types of models were developed separately; the flow-based models including only traffic exposure functions, and the full models containing both exposure functions and other significant geometry and traffic variables. The results show that, traffic exposure functions produced much better fit to the accident data. The most effective geometric variables were major-road mean speed, minor-road 85th percentile speed, major-road lane width, distance to the nearest junction, and right-turn curb radius. The developed models can be used for intersection treatment or upgrading and specify the appropriate design parameters of T-intersections. Finally, the models presented in this thesis reflect the intersection conditions in Oman and could represent the typical conditions in several countries in the middle east area, especially gulf countries.
Keywords: Accidents Prediction Models (APMs), Generalized Linear Model (GLM), T-intersections, Oman.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20634319 Quality Parameters of Offset Printing Wastewater
Authors: Kiurski S. Jelena, Kecić S. Vesna, Aksentijević M. Snežana
Abstract:
Samples of tap and wastewater were collected in three offset printing facilities in Novi Sad, Serbia. Ten physicochemical parameters were analyzed within all collected samples: pH, conductivity, m - alkalinity, p - alkalinity, acidity, carbonate concentration, hydrogen carbonate concentration, active oxygen content, chloride concentration and total alkali content. All measurements were conducted using the standard analytical and instrumental methods. Comparing the obtained results for tap water and wastewater, a clear quality difference was noticeable, since all physicochemical parameters were significantly higher within wastewater samples. The study also involves the application of simple linear regression analysis on the obtained dataset. By using software package ORIGIN 5 the pH value was mutually correlated with other physicochemical parameters. Based on the obtained values of Pearson coefficient of determination a strong positive correlation between chloride concentration and pH (r = -0.943), as well as between acidity and pH (r = -0.855) was determined. In addition, statistically significant difference was obtained only between acidity and chloride concentration with pH values, since the values of parameter F (247.634 and 182.536) were higher than Fcritical (5.59). In this way, results of statistical analysis highlighted the most influential parameter of water contamination in offset printing, in the form of acidity and chloride concentration. The results showed that variable dependence could be represented by the general regression model: y = a0 + a1x+ k, which further resulted with matching graphic regressions.
Keywords: Pollution, printing industry, simple linear regression analysis, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16744318 Geometrically Non-Linear Free Vibration Analysis of Functionally Graded Rectangular Plates
Authors: Boukhzer Abdenbi, El Bikri Khalid, Benamar Rhali
Abstract:
In the present study, the problem of geometrically non-linear free vibrations of functionally graded rectangular plates (FGRP) is studied. The theoretical model, previously developed and based on Hamilton’s principle, is adapted here to determine the fundamental non-linear mode shape of these plates. Frequency parameters, displacements and stress are given for various power-law distributions of the volume fractions of the constituents and various aspect ratios. Good agreement with previous published results is obtained in the case of linear and non-linear analyses.
Keywords: Non-linear vibration, functionally graded materials, rectangular plates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22464317 Application of Differential Transformation Method for Solving Dynamical Transmission of Lassa Fever Model
Authors: M. A. Omoloye, M. I. Yusuff, O. K. S. Emiola
Abstract:
The use of mathematical models for solving biological problems varies from simple to complex analyses, depending on the nature of the research problems and applicability of the models. The method is more common nowadays. Many complex models become impractical when transmitted analytically. However, alternative approach such as numerical method can be employed. It appropriateness in solving linear and non-linear model equation in Differential Transformation Method (DTM) which depends on Taylor series make it applicable. Hence this study investigates the application of DTM to solve dynamic transmission of Lassa fever model in a population. The mathematical model was formulated using first order differential equation. Firstly, existence and uniqueness of the solution was determined to establish that the model is mathematically well posed for the application of DTM. Numerically, simulations were conducted to compare the results obtained by DTM and that of fourth-order Runge-Kutta method. As shown, DTM is very effective in predicting the solution of epidemics of Lassa fever model.
Keywords: Differential Transform Method, Existence and uniqueness, Lassa fever, Runge-Kutta Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4894316 Statistics of Exon Lengths in Animals, Plants, Fungi, and Protists
Authors: Alexander Kaplunovsky, Vladimir Khailenko, Alexander Bolshoy, Shara Atambayeva, AnatoliyIvashchenko
Abstract:
Eukaryotic protein-coding genes are interrupted by spliceosomal introns, which are removed from the RNA transcripts before translation into a protein. The exon-intron structures of different eukaryotic species are quite different from each other, and the evolution of such structures raises many questions. We try to address some of these questions using statistical analysis of whole genomes. We go through all the protein-coding genes in a genome and study correlations between the net length of all the exons in a gene, the number of the exons, and the average length of an exon. We also take average values of these features for each chromosome and study correlations between those averages on the chromosomal level. Our data show universal features of exon-intron structures common to animals, plants, and protists (specifically, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Cryptococcus neoformans, Homo sapiens, Mus musculus, Oryza sativa, and Plasmodium falciparum). We have verified linear correlation between the number of exons in a gene and the length of a protein coded by the gene, while the protein length increases in proportion to the number of exons. On the other hand, the average length of an exon always decreases with the number of exons. Finally, chromosome clustering based on average chromosome properties and parameters of linear regression between the number of exons in a gene and the net length of those exons demonstrates that these average chromosome properties are genome-specific features.
Keywords: Comparative genomics, exon-intron structure, eukaryotic clustering, linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25734315 A Comparison of Air Pollution in Developed and Developing Cities: A Case Study of London and Beijing
Abstract:
With the rapid development of industrialization, countries in different stages of development in the world have gradually begun to pay attention to the impact of air pollution on health and the environment. Air control in developed countries is an effective reference for air control in developing countries. Artificial intelligence and other technologies also play a positive role in the prediction of air pollution. By comparing the annual changes of pollution in London and Beijing, this paper concludes that the pollution in developed cities is relatively low and stable, while the pollution in Beijing is relatively heavy and unstable, but is clearly improving. In addition, by analyzing the changes of major pollutants in Beijing in the past eight years, it is concluded that all pollutants except O3 show a significant downward trend. In addition, all pollutants except O3 have certain correlation. For example, PM10 and PM2.5 have the greatest influence on air quality index (AQI). Python, which is commonly used by artificial intelligence, is used as the main software to establish two models, support vector machine (SVM) and linear regression. By comparing the two models under the same conditions, it is concluded that SVM has higher accuracy in pollution prediction. The results of this study provide valuable reference for pollution control and prediction in developing countries.
Keywords: Air pollution, particulate matter, AQI, correlation coefficient, air pollution prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5814314 Simplex Method for Solving Linear Programming Problems with Fuzzy Numbers
Authors: S. H. Nasseri, E. Ardil, A. Yazdani, R. Zaefarian
Abstract:
The fuzzy set theory has been applied in many fields, such as operations research, control theory, and management sciences, etc. In particular, an application of this theory in decision making problems is linear programming problems with fuzzy numbers. In this study, we present a new method for solving fuzzy number linear programming problems, by use of linear ranking function. In fact, our method is similar to simplex method that was used for solving linear programming problems in crisp environment before.Keywords: Fuzzy number linear programming, rankingfunction, simplex method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35264313 Vibration of a Beam on an Elastic Foundation Using the Variational Iteration Method
Authors: Desmond Adair, Kairat Ismailov, Martin Jaeger
Abstract:
Modelling of Timoshenko beams on elastic foundations has been widely used in the analysis of buildings, geotechnical problems, and, railway and aerospace structures. For the elastic foundation, the most widely used models are one-parameter mechanical models or two-parameter models to include continuity and cohesion of typical foundations, with the two-parameter usually considered the better of the two. Knowledge of free vibration characteristics of beams on an elastic foundation is considered necessary for optimal design solutions in many engineering applications, and in this work, the efficient and accurate variational iteration method is developed and used to calculate natural frequencies of a Timoshenko beam on a two-parameter foundation. The variational iteration method is a technique capable of dealing with some linear and non-linear problems in an easy and efficient way. The calculations are compared with those using a finite-element method and other analytical solutions, and it is shown that the results are accurate and are obtained efficiently. It is found that the effect of the presence of the two-parameter foundation is to increase the beam’s natural frequencies and this is thought to be because of the shear-layer stiffness, which has an effect on the elastic stiffness. By setting the two-parameter model’s stiffness parameter to zero, it is possible to obtain a one-parameter foundation model, and so, comparison between the two foundation models is also made.
Keywords: Timoshenko beam, variational iteration method, two-parameter elastic foundation model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9764312 Robust Regression and its Application in Financial Data Analysis
Authors: Mansoor Momeni, Mahmoud Dehghan Nayeri, Ali Faal Ghayoumi, Hoda Ghorbani
Abstract:
This research is aimed to describe the application of robust regression and its advantages over the least square regression method in analyzing financial data. To do this, relationship between earning per share, book value of equity per share and share price as price model and earning per share, annual change of earning per share and return of stock as return model is discussed using both robust and least square regressions, and finally the outcomes are compared. Comparing the results from the robust regression and the least square regression shows that the former can provide the possibility of a better and more realistic analysis owing to eliminating or reducing the contribution of outliers and influential data. Therefore, robust regression is recommended for getting more precise results in financial data analysis.
Keywords: Financial data analysis, Influential data, Outliers, Robust regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19324311 Ordinal Regression with Fenton-Wilkinson Order Statistics: A Case Study of an Orienteering Race
Authors: Joonas Pääkkönen
Abstract:
In sports, individuals and teams are typically interested in final rankings. Final results, such as times or distances, dictate these rankings, also known as places. Places can be further associated with ordered random variables, commonly referred to as order statistics. In this work, we introduce a simple, yet accurate order statistical ordinal regression function that predicts relay race places with changeover-times. We call this function the Fenton-Wilkinson Order Statistics model. This model is built on the following educated assumption: individual leg-times follow log-normal distributions. Moreover, our key idea is to utilize Fenton-Wilkinson approximations of changeover-times alongside an estimator for the total number of teams as in the notorious German tank problem. This original place regression function is sigmoidal and thus correctly predicts the existence of a small number of elite teams that significantly outperform the rest of the teams. Our model also describes how place increases linearly with changeover-time at the inflection point of the log-normal distribution function. With real-world data from Jukola 2019, a massive orienteering relay race, the model is shown to be highly accurate even when the size of the training set is only 5% of the whole data set. Numerical results also show that our model exhibits smaller place prediction root-mean-square-errors than linear regression, mord regression and Gaussian process regression.Keywords: Fenton-Wilkinson approximation, German tank problem, log-normal distribution, order statistics, ordinal regression, orienteering, sports analytics, sports modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8334310 The Leaves of a Tree
Authors: Zhu Jiaming, Yu Mengna
Abstract:
In this article, models based on quantitative analysis, physical geometry and regression analysis are established, by using analytic hierarchy process analysis, fuzzy cluster analysis, fuzzy photographic and data fitting. The reasons of various leaf shapes among different species and the differences between the leaf shapes on same tree have been solved by using software, such as Eviews, VB and Matlab. We also successfully estimate the leaf mass of a tree and the correlation with the tree profile.Keywords: Leaf shape; Mass; Fuzzy cluster; Regression analysis; Eviews; Matlab
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15974309 Identification of Nonlinear Systems Structured by Hammerstein-Wiener Model
Authors: A. Brouri, F. Giri, A. Mkhida, F. Z. Chaoui, A. Elkarkri, M. L. Chhibat
Abstract:
Standard Hammerstein-Wiener models consist of a linear subsystem sandwiched by two memoryless nonlinearities. The problem of identifying Hammerstein-Wiener systems is addressed in the presence of linear subsystem of structure totally unknown and polynomial input and output nonlinearities. Presently, the system nonlinearities are allowed to be noninvertible. The system identification problem is dealt by developing a two-stage frequency identification method. First, the parameters of system nonlinearities are identified. In the second stage, a frequency approach is designed to estimate the linear subsystem frequency gain. All involved estimators are proved to be consistent.
Keywords: Nonlinear system identification, Hammerstein systems, Wiener systems, frequency identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24004308 Development of Accident Predictive Model for Rural Roadway
Authors: Fajaruddin Mustakim, Motohiro Fujita
Abstract:
This paper present the study carried out of accident analysis, black spot study and to develop accident predictive models based on the data collected at rural roadway, Federal Route 50 (F050) Malaysia. The road accident trends and black spot ranking were established on the F050. The development of the accident prediction model will concentrate in Parit Raja area from KM 19 to KM 23. Multiple non-linear regression method was used to relate the discrete accident data with the road and traffic flow explanatory variable. The dependent variable was modeled as the number of crashes namely accident point weighting, however accident point weighting have rarely been account in the road accident prediction Models. The result show that, the existing number of major access points, without traffic light, rise in speed, increasing number of Annual Average Daily Traffic (AADT), growing number of motorcycle and motorcar and reducing the time gap are the potential contributors of increment accident rates on multiple rural roadway.Keywords: Accident Trends, Black Spot Study, Accident Prediction Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32834307 Combining Bagging and Additive Regression
Authors: Sotiris B. Kotsiantis
Abstract:
Bagging and boosting are among the most popular re-sampling ensemble methods that generate and combine a diversity of regression models using the same learning algorithm as base-learner. Boosting algorithms are considered stronger than bagging on noise-free data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in this work we built an ensemble using an averaging methodology of bagging and boosting ensembles with 10 sub-learners in each one. We performed a comparison with simple bagging and boosting ensembles with 25 sub-learners on standard benchmark datasets and the proposed ensemble gave better accuracy.
Keywords: Regressors, statistical learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16404306 Regression Test Selection Technique for Multi-Programming Language
Authors: Walid S. Abd El-hamid, Sherif S. El-Etriby, Mohiy M. Hadhoud
Abstract:
Regression testing is a maintenance activity applied to modified software to provide confidence that the changed parts are correct and that the unchanged parts have not been adversely affected by the modifications. Regression test selection techniques reduce the cost of regression testing, by selecting a subset of an existing test suite to use in retesting modified programs. This paper presents the first general regression-test-selection technique, which based on code and allows selecting test cases for any programs written in any programming language. Then it handles incomplete program. We also describe RTSDiff, a regression-test-selection system that implements the proposed technique. The results of the empirical studied that performed in four programming languages java, C#, Cµ and Visual basic show that the efficiency and effective in reducing the size of test suit.Keywords: Regression testing, testing, test selection, softwareevolution, software maintenance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15334305 Application of Feed-Forward Neural Networks Autoregressive Models with Genetic Algorithm in Gross Domestic Product Prediction
Authors: E. Giovanis
Abstract:
In this paper we present a Feed-Foward Neural Networks Autoregressive (FFNN-AR) model with genetic algorithms training optimization in order to predict the gross domestic product growth of six countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer of the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model. Moreover this technique can be used in Autoregressive-Moving Average models, with and without exogenous inputs, as also the training process with genetics algorithms optimization can be replaced by the error back-propagation algorithm.Keywords: Autoregressive model, Feed-Forward neuralnetworks, Genetic Algorithms, Gross Domestic Product
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16724304 Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity
Authors: Ali Keshavarzi, Fereydoon Sarmadian
Abstract:
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.Keywords: Easily measurable characteristics, Feed-forwardback propagation, Pedotransfer functions, CEC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22114303 The Link between Unemployment and Inflation Using Johansen’s Co-Integration Approach and Vector Error Correction Modelling
Authors: Sagaren Pillay
Abstract:
In this paper bi-annual time series data on unemployment rates (from the Labour Force Survey) are expanded to quarterly rates and linked to quarterly unemployment rates (from the Quarterly Labour Force Survey). The resultant linked series and the consumer price index (CPI) series are examined using Johansen’s cointegration approach and vector error correction modeling. The study finds that both the series are integrated of order one and are cointegrated. A statistically significant co-integrating relationship is found to exist between the time series of unemployment rates and the CPI. Given this significant relationship, the study models this relationship using Vector Error Correction Models (VECM), one with a restriction on the deterministic term and the other with no restriction.
A formal statistical confirmation of the existence of a unique linear and lagged relationship between inflation and unemployment for the period between September 2000 and June 2011 is presented. For the given period, the CPI was found to be an unbiased predictor of the unemployment rate. This relationship can be explored further for the development of appropriate forecasting models incorporating other study variables.
Keywords: Forecasting, lagged, linear, relationship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25424302 Complex-Valued Neural Networks for Blind Equalization of Time-Varying Channels
Authors: Rajoo Pandey
Abstract:
Most of the commonly used blind equalization algorithms are based on the minimization of a nonconvex and nonlinear cost function and a neural network gives smaller residual error as compared to a linear structure. The efficacy of complex valued feedforward neural networks for blind equalization of linear and nonlinear communication channels has been confirmed by many studies. In this paper we present two neural network models for blind equalization of time-varying channels, for M-ary QAM and PSK signals. The complex valued activation functions, suitable for these signal constellations in time-varying environment, are introduced and the learning algorithms based on the CMA cost function are derived. The improved performance of the proposed models is confirmed through computer simulations.
Keywords: Blind Equalization, Neural Networks, Constant Modulus Algorithm, Time-varying channels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18914301 Fuzzy Control of Macroeconomic Models
Authors: Andre A. Keller
Abstract:
The optimal control is one of the possible controllers for a dynamic system, having a linear quadratic regulator and using the Pontryagin-s principle or the dynamic programming method . Stochastic disturbances may affect the coefficients (multiplicative disturbances) or the equations (additive disturbances), provided that the shocks are not too great . Nevertheless, this approach encounters difficulties when uncertainties are very important or when the probability calculus is of no help with very imprecise data. The fuzzy logic contributes to a pragmatic solution of such a problem since it operates on fuzzy numbers. A fuzzy controller acts as an artificial decision maker that operates in a closed-loop system in real time. This contribution seeks to explore the tracking problem and control of dynamic macroeconomic models using a fuzzy learning algorithm. A two inputs - single output (TISO) fuzzy model is applied to the linear fluctuation model of Phillips and to the nonlinear growth model of Goodwin.Keywords: fuzzy control, macroeconomic model, multiplier - accelerator, nonlinear accelerator, stabilization policy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19944300 A Spectral Decomposition Method for Ordinary Differential Equation Systems with Constant or Linear Right Hand Sides
Authors: R. B. Ogunrinde, C. C. Jibunoh
Abstract:
In this paper, a spectral decomposition method is developed for the direct integration of stiff and nonstiff homogeneous linear (ODE) systems with linear, constant, or zero right hand sides (RHSs). The method does not require iteration but obtains solutions at any random points of t, by direct evaluation, in the interval of integration. All the numerical solutions obtained for the class of systems coincide with the exact theoretical solutions. In particular, solutions of homogeneous linear systems, i.e. with zero RHS, conform to the exact analytical solutions of the systems in terms of t.Keywords: Spectral decomposition, eigenvalues of the Jacobian, linear RHS, homogeneous linear systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11504299 Students’ Perception of Using Dental e-Models in an Inquiry-Based Curriculum
Authors: Yanqi Yang, Chongshan Liao, Cheuk Hin Ho, Susan Bridges
Abstract:
Aim: To investigate students’ perceptions of using e-models in an inquiry-based curriculum. Approach: 52 second-year dental students completed a pre- and post-test questionnaire relating to their perceptions of e-models and their use in inquiry-based learning. The pre-test occurred prior to any learning with e-models. The follow-up survey was conducted after one year's experience of using e-models. Results: There was no significant difference between the two sets of questionnaires regarding students’ perceptions of the usefulness of e-models and their willingness to use e-models in future inquiry-based learning. Most students preferred using both plaster models and e-models in tandem. Conclusion: Students did not change their attitude towards e-models and most of them agreed or were neutral that e-models are useful in inquiry-based learning. Whilst recognizing the utility of 3D models for learning, students' preference for combining these with solid models has implications for the development of haptic sensibility in an operative discipline.
Keywords: E-models, inquiry-based curriculum, education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18184298 Ensembling Adaptively Constructed Polynomial Regression Models
Authors: Gints Jekabsons
Abstract:
The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed – a potentially non-trivial (and long) trial and error process. In our research we consider a potentially more efficient approach – Adaptive Basis Function Construction (ABFC). It lets the model building method itself construct the basis functions necessary for creating a model of arbitrary complexity with adequate predictive performance. However, there are two issues that to some extent plague the methods of both the subset selection and the ABFC, especially when working with relatively small data samples: the selection bias and the selection instability. We try to correct these issues by model post-evaluation using Cross-Validation and model ensembling. To evaluate the proposed method, we empirically compare it to ABFC methods without ensembling, to a widely used method of subset selection, as well as to some other well-known regression modeling methods, using publicly available data sets.Keywords: Basis function construction, heuristic search, modelensembles, polynomial regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16734297 Model-Based Software Regression Test Suite Reduction
Authors: Shiwei Deng, Yang Bao
Abstract:
In this paper, we present a model-based regression test suite reducing approach that uses EFSM model dependence analysis and probability-driven greedy algorithm to reduce software regression test suites. The approach automatically identifies the difference between the original model and the modified model as a set of elementary model modifications. The EFSM dependence analysis is performed for each elementary modification to reduce the regression test suite, and then the probability-driven greedy algorithm is adopted to select the minimum set of test cases from the reduced regression test suite that cover all interaction patterns. Our initial experience shows that the approach may significantly reduce the size of regression test suites.Keywords: Dependence analysis, EFSM model, greedy algorithm, regression test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19214296 Evaluation of Fitts’ Law Index of Difficulty Formulation for Screen Size Variations
Authors: Hidehiko Okada, Takayuki Akiba
Abstract:
It is well-known as Fitts’ law that the time for a user to point a target on a GUI screen can be modeled as a linear function of “index of difficulty (ID).” In this paper, the authors investigate whether the traditional ID formulation is appropriate independently of device screen sizes. Result of our experiment reveals that the ID formulation may not consistently capture actual difficulty: users’ pointing performances are not consistent among pointing target variations of which index of difficulty are consistent. The term A/W may not be appropriate because the term causes the observed inconsistency. Based on this finding, the authors then evaluate the applicability of possible models other than Fitts’ one. Multiple regression models are found to be able to appropriately represent the effects of target design variations. The authors next make an attempt to improve the definition of ID in Fitts’ model. Our idea is to raise the size or the distance values depending on the screen size. The modified model is found to fit well to the users’ pointing data, which supports the idea.
Keywords: Fitts’ law, pointing device, small screen, touch user interface, usability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628