Search results for: high performance computing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10696

Search results for: high performance computing

10546 Analyzing the Impact of DCF and PCF on WLAN Network Standards 802.11a, 802.11b and 802.11g

Authors: Amandeep Singh Dhaliwal

Abstract:

Networking solutions, particularly wireless local area networks have revolutionized the technological advancement. Wireless Local Area Networks (WLANs) have gained a lot of popularity as they provide location-independent network access between computing devices. There are a number of access methods used in Wireless Networks among which DCF and PCF are the fundamental access methods. This paper emphasizes on the impact of DCF and PCF access mechanisms on the performance of the IEEE 802.11a, 802.11b and 802.11g standards. On the basis of various parameters viz. throughput, delay, load etc performance is evaluated between these three standards using above mentioned access mechanisms. Analysis revealed a superior throughput performance with low delays for 802.11g standard as compared to 802.11 a/b standard using both DCF and PCF access methods.

Keywords: DCF, IEEE, PCF, WLAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5374
10545 Analyzing the Factors that Cause Parallel Performance Degradation in Parallel Graph-Based Computations Using Graph500

Authors: Mustafa Elfituri, Jonathan Cook

Abstract:

Recently, graph-based computations have become more important in large-scale scientific computing as they can provide a methodology to model many types of relations between independent objects. They are being actively used in fields as varied as biology, social networks, cybersecurity, and computer networks. At the same time, graph problems have some properties such as irregularity and poor locality that make their performance different than regular applications performance. Therefore, parallelizing graph algorithms is a hard and challenging task. Initial evidence is that standard computer architectures do not perform very well on graph algorithms. Little is known exactly what causes this. The Graph500 benchmark is a representative application for parallel graph-based computations, which have highly irregular data access and are driven more by traversing connected data than by computation. In this paper, we present results from analyzing the performance of various example implementations of Graph500, including a shared memory (OpenMP) version, a distributed (MPI) version, and a hybrid version. We measured and analyzed all the factors that affect its performance in order to identify possible changes that would improve its performance. Results are discussed in relation to what factors contribute to performance degradation.

Keywords: Graph computation, Graph500 benchmark, parallel architectures, parallel programming, workload characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 548
10544 Minimizing the Broadcast Traffic in the Jordanian Discovery Schools Network using PPPoE

Authors: Sameh H. Ghwanmeh

Abstract:

Discovery schools in Jordan are connected in one flat ATM bridge network. All Schools connected to the network will hear broadcast traffic. High percentage of unwanted traffic such as broadcast, consumes the bandwidth between schools and QRC. Routers in QRC have high CPU utilization. The number of connections on the router is very high, and may exceed recommend manufacturing specifications. One way to minimize number of connections to the routers in QRC, and minimize broadcast traffic is to use PPPoE. In this study, a PPPoE solution has been presented which shows high performance for the clients when accessing the school server resources. Despite the large number of the discovery schools at MoE, the experimental results show that the PPPoE solution is able to yield a satisfactory performance for each client at the school and noticeably reduce the traffic broadcast to the QRC.

Keywords: Education, networking, performance, e-content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
10543 Networking the Biggest Challenge in Hybrid Cloud Deployment

Authors: Aishwarya Shekhar, Devesh Kumar Srivastava

Abstract:

Cloud computing has emerged as a promising direction for cost efficient and reliable service delivery across data communication networks. The dynamic location of service facilities and the virtualization of hardware and software elements are stressing the communication networks and protocols, especially when data centres are interconnected through the internet. Although the computing aspects of cloud technologies have been largely investigated, lower attention has been devoted to the networking services without involving IT operating overhead. Cloud computing has enabled elastic and transparent access to infrastructure services without involving IT operating overhead. Virtualization has been a key enabler for cloud computing. While resource virtualization and service abstraction have been widely investigated, networking in cloud remains a difficult puzzle. Even though network has significant role in facilitating hybrid cloud scenarios, it hasn't received much attention in research community until recently. We propose Network as a Service (NaaS), which forms the basis of unifying public and private clouds. In this paper, we identify various challenges in adoption of hybrid cloud. We discuss the design and implementation of a cloud platform.

Keywords: Cloud computing, networking, infrastructure, hybrid cloud, open stack, Naas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
10542 Distributed Cost-Based Scheduling in Cloud Computing Environment

Authors: Rupali, Anil Kumar Jaiswal

Abstract:

Cloud computing can be defined as one of the prominent technologies that lets a user change, configure and access the services online. it can be said that this is a prototype of computing that helps in saving cost and time of a user practically the use of cloud computing can be found in various fields like education, health, banking etc.  Cloud computing is an internet dependent technology thus it is the major responsibility of Cloud Service Providers(CSPs) to care of data stored by user at data centers. Scheduling in cloud computing environment plays a vital role as to achieve maximum utilization and user satisfaction cloud providers need to schedule resources effectively.  Job scheduling for cloud computing is analyzed in the following work. To complete, recreate the task calculation, and conveyed scheduling methods CloudSim3.0.3 is utilized. This research work discusses the job scheduling for circulated processing condition also by exploring on this issue we find it works with minimum time and less cost. In this work two load balancing techniques have been employed: ‘Throttled stack adjustment policy’ and ‘Active VM load balancing policy’ with two brokerage services ‘Advanced Response Time’ and ‘Reconfigure Dynamically’ to evaluate the VM_Cost, DC_Cost, Response Time, and Data Processing Time. The proposed techniques are compared with Round Robin scheduling policy.

Keywords: Physical machines, virtual machines, support for repetition, self-healing, highly scalable programming model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851
10541 A Survey of Field Programmable Gate Array-Based Convolutional Neural Network Accelerators

Authors: Wei Zhang

Abstract:

With the rapid development of deep learning, neural network and deep learning algorithms play a significant role in various practical applications. Due to the high accuracy and good performance, Convolutional Neural Networks (CNNs) especially have become a research hot spot in the past few years. However, the size of the networks becomes increasingly large scale due to the demands of the practical applications, which poses a significant challenge to construct a high-performance implementation of deep learning neural networks. Meanwhile, many of these application scenarios also have strict requirements on the performance and low-power consumption of hardware devices. Therefore, it is particularly critical to choose a moderate computing platform for hardware acceleration of CNNs. This article aimed to survey the recent advance in Field Programmable Gate Array (FPGA)-based acceleration of CNNs. Various designs and implementations of the accelerator based on FPGA under different devices and network models are overviewed, and the versions of Graphic Processing Units (GPUs), Application Specific Integrated Circuits (ASICs) and Digital Signal Processors (DSPs) are compared to present our own critical analysis and comments. Finally, we give a discussion on different perspectives of these acceleration and optimization methods on FPGA platforms to further explore the opportunities and challenges for future research. More helpfully, we give a prospect for future development of the FPGA-based accelerator.

Keywords: Deep learning, field programmable gate array, FPGA, hardware acceleration, convolutional neural networks, CNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895
10540 Enhancing Cache Performance Based on Improved Average Access Time

Authors: Jasim. A. Ghaeb

Abstract:

A high performance computer includes a fast processor and millions bytes of memory. During the data processing, huge amount of information are shuffled between the memory and processor. Because of its small size and its effectiveness speed, cache has become a common feature of high performance computers. Enhancing cache performance proved to be essential in the speed up of cache-based computers. Most enhancement approaches can be classified as either software based or hardware controlled. The performance of the cache is quantified in terms of hit ratio or miss ratio. In this paper, we are optimizing the cache performance based on enhancing the cache hit ratio. The optimum cache performance is obtained by focusing on the cache hardware modification in the way to make a quick rejection to the missed line's tags from the hit-or miss comparison stage, and thus a low hit time for the wanted line in the cache is achieved. In the proposed technique which we called Even- Odd Tabulation (EOT), the cache lines come from the main memory into cache are classified in two types; even line's tags and odd line's tags depending on their Least Significant Bit (LSB). This division is exploited by EOT technique to reject the miss match line's tags in very low time compared to the time spent by the main comparator in the cache, giving an optimum hitting time for the wanted cache line. The high performance of EOT technique against the familiar mapping technique FAM is shown in the simulated results.

Keywords: Caches, Cache performance, Hit time, Cache hit ratio, Cache mapping, Cache memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
10539 Economy-Based Computing with WebCom

Authors: Adarsh Patil, David A. Power, John P. Morrison

Abstract:

Grid environments consist of the volatile integration of discrete heterogeneous resources. The notion of the Grid is to unite different users and organisations and pool their resources into one large computing platform where they can harness, inter-operate, collaborate and interact. If the Grid Community is to achieve this objective, then participants (Users and Organisations) need to be willing to donate or share their resources and permit other participants to use their resources. Resources do not have to be shared at all times, since it may result in users not having access to their own resource. The idea of reward-based computing was developed to address the sharing problem in a pragmatic manner. Participants are offered a reward to donate their resources to the Grid. A reward may include monetary recompense or a pro rata share of available resources when constrained. This latter point may imply a quality of service, which in turn may require some globally agreed reservation mechanism. This paper presents a platform for economybased computing using the WebCom Grid middleware. Using this middleware, participants can configure their resources at times and priority levels to suit their local usage policy. The WebCom system accounts for processing done on individual participants- resources and rewards them accordingly.

Keywords: WebCom, Economy-based computing, WebComGrid Bank Reward, Condensed Graph, Distributor, Accounting, GridPoint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
10538 Digital Predistorter with Pipelined Architecture Using CORDIC Processors

Authors: Kyunghoon Kim, Sungjoon Shim, Jun Tae Kim, Jong Tae Kim

Abstract:

In a wireless communication system, a predistorter(PD) is often employed to alleviate nonlinear distortions due to operating a power amplifier near saturation, thereby improving the system performance and reducing the interference to adjacent channels. This paper presents a new adaptive polynomial digital predistorter(DPD). The proposed DPD uses Coordinate Rotation Digital Computing(CORDIC) processors and PD process by pipelined architecture. It is simpler and faster than conventional adaptive polynomial DPD. The performance of the proposed DPD is proved by MATLAB simulation.

Keywords: DPD, CORDIC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
10537 Towards a Secure Storage in Cloud Computing

Authors: Mohamed Elkholy, Ahmed Elfatatry

Abstract:

Cloud computing has emerged as a flexible computing paradigm that reshaped the Information Technology map. However, cloud computing brought about a number of security challenges as a result of the physical distribution of computational resources and the limited control that users have over the physical storage. This situation raises many security challenges for data integrity and confidentiality as well as authentication and access control. This work proposes a security mechanism for data integrity that allows a data owner to be aware of any modification that takes place to his data. The data integrity mechanism is integrated with an extended Kerberos authentication that ensures authorized access control. The proposed mechanism protects data confidentiality even if data are stored on an untrusted storage. The proposed mechanism has been evaluated against different types of attacks and proved its efficiency to protect cloud data storage from different malicious attacks.

Keywords: Access control, data integrity, data confidentiality, Kerberos authentication, cloud security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
10536 Cost and Profit Analysis of Markovian Queuing System with Two Priority Classes: A Computational Approach

Authors: S. S. Mishra, D. K. Yadav

Abstract:

This paper focuses on cost and profit analysis of single-server Markovian queuing system with two priority classes. In this paper, functions of total expected cost, revenue and profit of the system are constructed and subjected to optimization with respect to its service rates of lower and higher priority classes. A computing algorithm has been developed on the basis of fast converging numerical method to solve the system of non linear equations formed out of the mathematical analysis. A novel performance measure of cost and profit analysis in view of its economic interpretation for the system with priority classes is attempted to discuss in this paper. On the basis of computed tables observations are also drawn to enlighten the variational-effect of the model on the parameters involved therein.

Keywords: Cost and Profit, Computing, Expected Revenue, Priority classes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2716
10535 Development of High Performance Clarification System for FBR Dissolver Liquor

Authors: M.Takeuchi, T.Kitagaki, Y.Noguchi, T. Washiya

Abstract:

A high performance clarification system has been discussed for advanced aqueous reprocessing of FBR spent fuel. Dissolver residue gives the cause of troubles on the plant operation of reprocessing. In this study, the new clarification system based on the hybrid of centrifuge and filtration was proposed to get the high separation ability of the component of whole insoluble sludge. The clarification tests of simulated solid species were carried out to evaluate the clarification performance using small-scale test apparatus of centrifuge and filter unit. The density effect of solid species on the collection efficiency was mainly evaluated in the centrifugal clarification test. In the filtration test using ceramic filter with pore size of 0.2μm, on the other hand, permeability and filtration rate were evaluated in addition to the filtration efficiency. As results, it was evaluated that the collection efficiency of solid species on the new clarification system was estimated as nearly 100%. In conclusion, the high clarification performance of dissolver liquor can be achieved by the hybrid of the centrifuge and filtration system.

Keywords: Centrifuge, Clarification, FBR dissolver liquor, Filtration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
10534 Working Motivation Factors Affecting Job Performance Effectiveness

Authors: Supattra Kanchanopast

Abstract:

The purpose of this paper was to study motivation factors affecting job performance effectiveness. This paper drew upon data collected from an Internal Audit Staffs of Internal Audit Line of Head Office of Krung Thai Public Company Limited. Statistics used included frequency, percentage, mean and standard deviation, t-test, and one-way ANOVA test. The finding revealed that the majority of the respondents were female of 46 years of age and over, married and live together, hold a bachelor degree, with an average monthly income over 70,001 Baht. The majority of respondents had over 15 years of work experience. They generally had high working motivation as well as high job performance effectiveness. The hypotheses testing disclosed that employees with different working status had different level of job performance effectiveness at a 0.01 level of significance. Working motivation factors had an effect on job performance in the same direction with high level. Individual working motivation included working completion, reorganization, working progression, working characteristic, opportunity, responsibility, management policy, supervision, relationship with their superior, relationship with co-worker, working position, working stability, safety, privacy, working conditions, and payment. All of these factors related to job performance effectiveness in the same direction with medium level.

Keywords: Internal Audit Staffs, Job Performance Effectiveness, Working Motivation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6385
10533 Using the Semantic Web in Ubiquitous and Mobile Computing: the Morfeo Experience

Authors: José M. Cantera, Miguel Jiménez, Genoveva López, Javier Soriano

Abstract:

With the advent of emerging personal computing paradigms such as ubiquitous and mobile computing, Web contents are becoming accessible from a wide range of mobile devices. Since these devices do not have the same rendering capabilities, Web contents need to be adapted for transparent access from a variety of client agents. Such content adaptation results in better rendering and faster delivery to the client device. Nevertheless, Web content adaptation sets new challenges for semantic markup. This paper presents an advanced components platform, called MorfeoSMC, enabling the development of mobility applications and services according to a channel model based on Services Oriented Architecture (SOA) principles. It then goes on to describe the potential for integration with the Semantic Web through a novel framework of external semantic annotation of mobile Web contents. The role of semantic annotation in this framework is to describe the contents of individual documents themselves, assuring the preservation of the semantics during the process of adapting content rendering, as well as to exploit these semantic annotations in a novel user profile-aware content adaptation process. Semantic Web content adaptation is a way of adding value to and facilitates repurposing of Web contents (enhanced browsing, Web Services location and access, etc).

Keywords: Semantic web, ubiquitous and mobile computing, web content transcoding, semantic markup, mobile computing middleware and services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
10532 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements

Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva

Abstract:

The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% @ 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes that have been designed, three were conventional concretes for three grades under discussion and fifteen were HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days, and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave-One-Out Validation (LOOV) methods.

Keywords: ANN, concrete mixes, compressive strength, fly ash, high performance concrete, linear regression, strength prediction models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
10531 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping

Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa

Abstract:

The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.

Keywords: Neural network computing, information processing, input-output mapping, training time, computers with high memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
10530 Experimental Study on Strength and Durability Properties of Bio-Self-Cured Fly Ash Based Concrete under Aggressive Environments

Authors: R. Malathy

Abstract:

High performance concrete is not only characterized by its high strength, workability, and durability but also by its smartness in performance without human care since the first day. If the concrete can cure on its own without external curing without compromising its strength and durability, then it is said to be high performance self-curing concrete. In this paper, an attempt is made on the performance study of internally cured concrete using biomaterials, namely Spinacea pleracea and Calatropis gigantea as self-curing agents, and it is compared with the performance of concrete with existing self-cure chemical, namely polyethylene glycol. The present paper focuses on workability, strength, and durability study on M20, M30, and M40 grade concretes replacing 30% of fly ash for cement. The optimum dosage of Spinacea pleracea, Calatropis gigantea, and polyethylene glycol was taken as 0.6%, 0.24%, and 0.3% by weight of cement from the earlier research studies. From the slump tests performed, it was found that there is a minimum variation between conventional concrete and self-cured concrete. The strength activity index is determined by keeping compressive strength of conventionally cured concrete for 28 days as unity and observed that, for self-cured concrete, it is more than 1 after 28 days and more than 1.15 after 56 days because of secondary reaction of fly ash. The performance study of concretes in aggressive environment like acid attack, sea water attack, and chloride attack was made, and the results are positive and encouraging in bio-self-cured concretes which are ecofriendly, cost effective, and high performance materials.

Keywords: Biomaterials, Calatropis gigantea, polyethylene glycol, Spinacea oleracea, self-curing concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2839
10529 State of Charge Estimator Based On High-Gain Observer for Lithium-Ion Batteries

Authors: Jaeho Han, Moonjung Kim, Won-Ho Kim, Chang-Ho Hyun

Abstract:

This paper introduces a high-gain observer based state of charge(SOC) estimator for lithium-Ion batteries. The proposed SOC estimator has a high-gain observer(HGO) structure. The HGO scheme enhances the transient response speed and diminishes the effect of uncertainties. Furthermore, it guarantees that the output feedback controller recovers the performance of the state feedback controller when the observer gain is sufficiently high. In order to show the effectiveness of the proposed method, the linear RC battery model in ADVISOR is used. The performance of the proposed method is compared with that of the conventional linear observer(CLO) and some simulation result is given.

Keywords: SOC, high-gain, observer, uncertainties, robust

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
10528 Design of an Ensemble Learning Behavior Anomaly Detection Framework

Authors: Abdoulaye Diop, Nahid Emad, Thierry Winter, Mohamed Hilia

Abstract:

Data assets protection is a crucial issue in the cybersecurity field. Companies use logical access control tools to vault their information assets and protect them against external threats, but they lack solutions to counter insider threats. Nowadays, insider threats are the most significant concern of security analysts. They are mainly individuals with legitimate access to companies information systems, which use their rights with malicious intents. In several fields, behavior anomaly detection is the method used by cyber specialists to counter the threats of user malicious activities effectively. In this paper, we present the step toward the construction of a user and entity behavior analysis framework by proposing a behavior anomaly detection model. This model combines machine learning classification techniques and graph-based methods, relying on linear algebra and parallel computing techniques. We show the utility of an ensemble learning approach in this context. We present some detection methods tests results on an representative access control dataset. The use of some explored classifiers gives results up to 99% of accuracy.

Keywords: Cybersecurity, data protection, access control, insider threat, user behavior analysis, ensemble learning, high performance computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
10527 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas

Authors: Ahmet Kayabasi, Ali Akdagli

Abstract:

In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.

Keywords: A-shaped compact microstrip antenna, Artificial Neural Network (ANN), adaptive Neuro-Fuzzy Inference System (ANFIS), Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
10526 Experimental Study of Hyperparameter Tuning a Deep Learning Convolutional Recurrent Network for Text Classification

Authors: Bharatendra Rai

Abstract:

Sequences of words in text data have long-term dependencies and are known to suffer from vanishing gradient problem when developing deep learning models. Although recurrent networks such as long short-term memory networks help overcome this problem, achieving high text classification performance is a challenging problem. Convolutional recurrent networks that combine advantages of long short-term memory networks and convolutional neural networks, can be useful for text classification performance improvements. However, arriving at suitable hyperparameter values for convolutional recurrent networks is still a challenging task where fitting of a model requires significant computing resources. This paper illustrates the advantages of using convolutional recurrent networks for text classification with the help of statistically planned computer experiments for hyperparameter tuning. 

Keywords: Convolutional recurrent networks, hyperparameter tuning, long short-term memory networks, Tukey honest significant differences

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 115
10525 Cloud Computing Databases: Latest Trends and Architectural Concepts

Authors: Tarandeep Singh, Parvinder S. Sandhu

Abstract:

The Economic factors are leading to the rise of infrastructures provides software and computing facilities as a service, known as cloud services or cloud computing. Cloud services can provide efficiencies for application providers, both by limiting up-front capital expenses, and by reducing the cost of ownership over time. Such services are made available in a data center, using shared commodity hardware for computation and storage. There is a varied set of cloud services available today, including application services (salesforce.com), storage services (Amazon S3), compute services (Google App Engine, Amazon EC2) and data services (Amazon SimpleDB, Microsoft SQL Server Data Services, Google-s Data store). These services represent a variety of reformations of data management architectures, and more are on the horizon.

Keywords: Data Management in Cloud, AWS, EC2, S3, SQS, TQG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
10524 Accelerating Side Channel Analysis with Distributed and Parallelized Processing

Authors: Kyunghee Oh, Dooho Choi

Abstract:

Although there is no theoretical weakness in a cryptographic algorithm, Side Channel Analysis can find out some secret data from the physical implementation of a cryptosystem. The analysis is based on extra information such as timing information, power consumption, electromagnetic leaks or even sound which can be exploited to break the system. Differential Power Analysis is one of the most popular analyses, as computing the statistical correlations of the secret keys and power consumptions. It is usually necessary to calculate huge data and takes a long time. It may take several weeks for some devices with countermeasures. We suggest and evaluate the methods to shorten the time to analyze cryptosystems. Our methods include distributed computing and parallelized processing.

Keywords: DPA, distributed computing, parallelized processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
10523 A Performance Comparison of Golay and Reed-Muller Coded OFDM Signal for Peak-to-Average Power Ratio Reduction

Authors: Sanjay Singh, M Sathish Kumar, H. S Mruthyunjaya

Abstract:

Multicarrier transmission system such as Orthogonal Frequency Division Multiplexing (OFDM) is a promising technique for high bit rate transmission in wireless communication systems. OFDM is a spectrally efficient modulation technique that can achieve high speed data transmission over multipath fading channels without the need for powerful equalization techniques. A major drawback of OFDM is the high Peak-to-Average Power Ratio (PAPR) of the transmit signal which can significantly impact the performance of the power amplifier. In this paper we have compared the PAPR reduction performance of Golay and Reed-Muller coded OFDM signal. From our simulation it has been found that the PAPR reduction performance of Golay coded OFDM is better than the Reed-Muller coded OFDM signal. Moreover, for the optimum PAPR reduction performance, code configuration for Golay and Reed-Muller codes has been identified.

Keywords: OFDM, PAPR, Perfect Codes, Golay Codes, Reed-Muller Codes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
10522 Dynamic Shear Energy Absorption of Ultra-High Performance Concrete

Authors: Robert J. Thomas, Colton Bedke, Andrew Sorensen

Abstract:

The exemplary mechanical performance and durability of ultra-high performance concrete (UHPC) has led to its rapid emergence as an advanced cementitious material. The uncharacteristically high mechanical strength and ductility of UHPC makes it a promising potential material for defense structures which may be subject to highly dynamic loads like impact or blast. However, the mechanical response of UHPC under dynamic loading has not been fully characterized. In particular, there is a need to characterize the energy absorption of UHPC under high-frequency shear loading. This paper presents preliminary results from a parametric study of the dynamic shear energy absorption of UHPC using the Charpy impact test. UHPC mixtures with compressive strengths in the range of 100-150 MPa exhibited dynamic shear energy absorption in the range of 0.9-1.5 kJ/m. Energy absorption is shown to be sensitive to the water/cement ratio, silica fume content, and aggregate gradation. Energy absorption was weakly correlated to compressive strength. Results are highly sensitive to specimen preparation methods, and there is a demonstrated need for a standardized test method for high frequency shear in cementitious composites.

Keywords: Charpy impact test, dynamic shear, impact loading, ultra-high performance concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180
10521 Iterative Methods for Computing the Weighted Minkowski Inverses of Matrices in Minkowski Space

Authors: Xiaoji Liu, Yonghui Qin

Abstract:

In this note, we consider a family of iterative formula for computing the weighted Minskowski inverses AM,N in Minskowski space, and give two kinds of iterations and the necessary and sufficient conditions of the convergence of iterations.

Keywords: iterative method, the Minskowski inverse, A

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
10520 Quantum Computing: A New Era of Computing

Authors: Jyoti Chaturvedi Gursaran

Abstract:

Nature conducts its action in a very private manner. To reveal these actions classical science has done a great effort. But classical science can experiment only with the things that can be seen with eyes. Beyond the scope of classical science quantum science works very well. It is based on some postulates like qubit, superposition of two states, entanglement, measurement and evolution of states that are briefly described in the present paper. One of the applications of quantum computing i.e. implementation of a novel quantum evolutionary algorithm(QEA) to automate the time tabling problem of Dayalbagh Educational Institute (Deemed University) is also presented in this paper. Making a good timetable is a scheduling problem. It is NP-hard, multi-constrained, complex and a combinatorial optimization problem. The solution of this problem cannot be obtained in polynomial time. The QEA uses genetic operators on the Q-bit as well as updating operator of quantum gate which is introduced as a variation operator to converge toward better solutions.

Keywords: Quantum computing, qubit, superposition, entanglement, measurement of states, evolution of states, Scheduling problem, hard and soft constraints, evolutionary algorithm, quantum evolutionary algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2662
10519 On the Joint Optimization of Performance and Power Consumption in Data Centers

Authors: Samee Ullah Khan, C. Ardil

Abstract:

We model the process of a data center as a multi- objective problem of mapping independent tasks onto a set of data center machines that simultaneously minimizes the energy consump¬tion and response time (makespan) subject to the constraints of deadlines and architectural requirements. A simple technique based on multi-objective goal programming is proposed that guarantees Pareto optimal solution with excellence in convergence process. The proposed technique also is compared with other traditional approach. The simulation results show that the proposed technique achieves superior performance compared to the min-min heuristics, and com¬petitive performance relative to the optimal solution implemented in UNDO for small-scale problems.

Keywords: Energy-efficient computing, distributed systems, multi-objective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
10518 Towards Assessment of Indicators Influence on Innovativeness of Countries' Economies: Selected Soft Computing Approaches

Authors: Marta Czyżewska, Krzysztof Pancerz, Jarosław Szkoła

Abstract:

The aim of this paper is to assess the influence of several indicators determining innovativeness of countries' economies by applying selected soft computing methods. Such methods enable us to identify correlations between indicators for period 2006-2010. The main attention in the paper is focused on selecting proper computer tools for solving this problem. As a tool supporting identification, the X-means clustering algorithm, the Apriori rules generation algorithm as well as Self-Organizing Feature Maps (SOMs) have been selected. The paper has rather a rudimentary character. We briefly describe usefulness of the selected approaches and indicate some challenges for further research.

Keywords: Assessment of indicators, innovativeness, soft computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387
10517 A Distributed Cryptographically Generated Address Computing Algorithm for Secure Neighbor Discovery Protocol in IPv6

Authors: M. Moslehpour, S. Khorsandi

Abstract:

Due to shortage in IPv4 addresses, transition to IPv6 has gained significant momentum in recent years. Like Address Resolution Protocol (ARP) in IPv4, Neighbor Discovery Protocol (NDP) provides some functions like address resolution in IPv6. Besides functionality of NDP, it is vulnerable to some attacks. To mitigate these attacks, Internet Protocol Security (IPsec) was introduced, but it was not efficient due to its limitation. Therefore, SEND protocol is proposed to automatic protection of auto-configuration process. It is secure neighbor discovery and address resolution process. To defend against threats on NDP’s integrity and identity, Cryptographically Generated Address (CGA) and asymmetric cryptography are used by SEND. Besides advantages of SEND, its disadvantages like the computation process of CGA algorithm and sequentially of CGA generation algorithm are considerable. In this paper, we parallel this process between network resources in order to improve it. In addition, we compare the CGA generation time in self-computing and distributed-computing process. We focus on the impact of the malicious nodes on the CGA generation time in the network. According to the result, although malicious nodes participate in the generation process, CGA generation time is less than when it is computed in a one-way. By Trust Management System, detecting and insulating malicious nodes is easier.

Keywords: NDP, IPsec, SEND, CGA, Modifier, Malicious node, Self-Computing, Distributed-Computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376