
 

 

 
Abstract—A high performance computer includes a fast 

processor and millions bytes of memory. During the data processing, 
huge amount of information are shuffled between the memory and 
processor. Because of its small size and its effectiveness speed, cache 
has become a common feature of high performance computers. 
Enhancing cache performance proved to be essential in the speed up 
of cache-based computers. Most enhancement approaches can be 
classified as either software based or hardware controlled. The 
performance of the cache is quantified in terms of hit ratio or miss 
ratio. In this paper, we are optimizing the cache performance based 
on enhancing the cache hit ratio. The optimum cache performance is 
obtained by focusing on the cache hardware modification in the way 
to make a quick rejection to the missed line's tags from the hit-or 
miss comparison stage, and thus a low hit time for the wanted line in 
the cache is achieved. In the proposed technique which we called 
Even- Odd Tabulation (EOT), the cache lines come from the main 
memory into cache are classified in two types; even line's tags and 
odd line's tags depending on their Least Significant Bit (LSB). This 
division is exploited by EOT technique to reject the miss match line's 
tags in very low time compared to the time spent by the main 
comparator in the cache, giving an optimum hitting time for the 
wanted cache line. The high performance of EOT technique against 
the familiar mapping technique FAM is shown in the simulated 
results. 
 

Keywords—Caches, Cache performance, Hit time, Cache hit 
ratio, Cache mapping, Cache memory. 

 
Symbols   

C   Number of characters per a line's tag/or memory field’s tag 
EOT  Even- Odd Tabulation  
FAM  Fully Associative Mapping 
DM  Direct Mapping 
CPU  Central Processing Unit 
D   Number of lines in the cache 
v   Number of sets in the cache 
a   Number of lines per  set 
LSB  Least Significant Bit 
t   Number of bits per  tag 
w   Word field bits  

I.INTRODUCTION 

 INCE the early development of computer systems, there 
has been a growing need for faster and more powerful 

computer systems. This motivated the researchers in the areas 
of hardware and software development of computer systems. 
In order to alleviate the impact of the growing gap between 
CPU speed and main memory performance, today’s computer 
architectures implement hierarchical memory structures [1]. 
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The idea behind this approach is to hide both the low main 

memory bandwidth and the latency of main memory accesses 
as well as to provide a large amount of real memory at an 
economical price. Although, there was a speed enhancement 
for both CPU and main memory, the speed gap between them 
has widened.  

Moving further away from the CPU, the layers of memory 
successively become larger and slower. The memory 
components which are located between the processor core and 
main memory are called cache memories or caches. They are 
intended to contain copies of main memory blocks to speed up 
accesses to frequently needed data. The next lower level of the 
memory hierarchy is the main memory which is large but 
comparatively slow. The  external memory such as hard disk 
drives or remote memory components in a distributed 
computing environment represent the lower end of any 
common hierarchical memory design [2], [ 3]. 

The good overall performance of a computer system cannot 
be achieved without good cache performance. Based on this 
change on computer architecture, techniques have been 
designed to minimize instruction count to improve CPU 
performance may not achieve a good performance unless take 
into consideration cache performance [4]. 

In this paper, we explore the potential performance gains 
that cache conscious design offers in understanding and 
improving the performance. We develop a novel technique 
which we called Even- Odd Tabulation (EOT) to enhance the 
cache performance in terms of reducing the hit time. The cache 
line's tags are tabulated into two groups: even line's tags and 
odd line's tags. Depending on the line number that is looking 
for, the cache line's tags of opposite LSB are undesired tags 
and rejected a way directly before going to the complete and 
long C-characters comparison.  By this approach, the line's tag 
of a missed match LSB does not pass to the C-character 
comparison stage and there is no waste of time. Thus the 
desired cache line is located quickly, leading to maximum hit 
ratio.   

This paper is structured as follows. In Section II, we will 
introduce some fundamental cache characteristics, including a 
brief discussion of conventional elementary cache optimization 
techniques. Section III presents our proposed technique to 
improve the cache hit time. In Section IV shows the simulation 
results and explains the performance of the proposed technique 
against the conventional methods. Finally, Section V 
concludes the paper work. 

II.CACHE DESIGN 

 Typically, a memory hierarchy contains a rather small 
number of registers on the chip which are accessible without 
delay. Furthermore, a small cache, usually called level one 
(L1) cache, is placed on the chip to ensure low latency and 

 
Enhancing Cache Performance Based on 

Improved Average Access Time  
Jasim. A. Ghaeb  

S

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:6, No:4, 2012 

494International Scholarly and Scientific Research & Innovation 6(4) 2012 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

4,
 2

01
2 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

32
8.

pd
f



 

 

high bandwidth. The L1 cache is often split into two separate 
parts; one keeps data, the other instructions. The latency of on-
chip caches is commonly one or two cycles. The L1 caches are 
usually backed up by a level two (L2) cache. Currently, L2 
cache memories are typically located on-chip as well; e.g., in 
the case of Intel’s Itanium CPU. The off-chip caches are much 
bigger and provide data with lower bandwidth and higher 
access latency [5], [6]. The cache design has a direct effect on 
the cost and performance of the computer system. The various 
designs explored in this section have different addressing 
mechanisms in terms of cost and speed but have one common 
feature that every cache is divided into d-lines each containing 
2W-words. The address generated by the CPU is formed of two 
components, a line index b and a word offset f within the line. 
When such an address is generated, the cache is first checked 
for the presence of the requested line b, if found, then the 
offset f is used to fetch the needed data. Otherwise the 
specified line b must be fetched from the lower level of 
memory. All cache approaches are based on selecting where to 
store a particular block and how to locate it for a memory 
request. Hence, cache organizations are classified according to 
the various ways the memory blocks are assigned to the cache 
and thus such an assignment usually adhere to a particular 
mapping technique [7]-[10]. In the following subsections, we 
will survey a number of conventional cache designs. Each 
design will have a different mapping strategy that will map the 
memory blocks to the cache lines. In order to highlight the 
performance of the proposed EOT technique, a comparison is 
made with the conventional Fully Associative Mapping 
Technique (FΑΜ). 

 
A. Aspects of Cache Architectures 
Data within the cache are stored in cache lines. A cache line 

holds the contents of a contiguous block of main memory. If 
data requested by the processor are found in a cache line, it is 
called a cache hit. Otherwise, a cache miss occurs. The 
contents of the memory block containing the requested word 
are fetched from a lower memory layer and copied into a cache 
line. For this purpose, another data item must typically be 
replaced. Therefore, in order to guarantee low access latency, 
the question into which cache line the data should be loaded 
and how to retrieve them must be handled efficiently. In the 
next subsections, we will brief the well-known techniques and 
introduce the privileges and drawbacks of each. 

 
1.  Direct Mapping (DM) 
In respect of hardware complexity, the cheapest approach to 

implement block placement is direct mapping [11]- [13]; its 
function maps any block in the main memory into only one 
possible cache line. The cache line is marked by a tag value to 
distinguish a particular block of data from the other blocks that 
can locate in that line.  

Direct mapped caches are fast, simple and inexpensive to 
implement. Moreover, direct mapped cache has been among 
the most popular cache architectures in the past and is still 
very common for off-chip caches. However, its main 
disadvantage is the frequent occurrence of conflict. Conflict 
occurs while executing a program task that requires several 

variables that resides in two or more blocks that map to the 
same cache line. 
 

2. Fully Associative Mapping (FAM) 
In contrast to the simple mapping for a direct mapping 

cache, an associative cache allows any of the memory blocks 
to be mapped to any of the cache lines [8], [14]. Such 
flexibility allows for better utilization of the cache without 
conflict. In this design, the line numbers of the current cache 
contents are placed in an associative cache directory. The 
block is searched for in the cache directory.  If the CPU finds 
its match, then the data is in the cache and the corresponding 
block is accessed. A mismatch results in a cache miss, and a 
fetch is issued to main memory. Since the block could be 
placed in any cache line, one of the resident blocks is 
overwritten. The choice of replacement block may cause future 
cache misses.  

Direct mapped and fully associative caches can be seen as 
special cases of k-way set-associative caches of v-sets and d-
lines per a set. At v d= , a direct mapped cache is a one-way 
set-associative cache, whereas a fully associative cache is d-
way one set-associative. In a fully associative cache and in a d-
way set-associative cache, a memory block can be placed into 
several alternative cache lines. 

Computer architects have recently focused on increasing the 
set associatively of on-chip caches. A k-way set-associative 
cache is characterized by a higher hardware complexity, but 
usually implies higher hit rates [14]- [16]. The d-cache lines of 
k-way set-associative cache are grouped into v-sets. The 
contents of any memory block can be placed into any cache 
line of the corresponding set. This design is a compromised 
design that avoids the problem of conflicts and the dependency 
of the cycle time on the cache size. For a given CPU address, 
the address is obtained as in the direct mapping cache: B Mod 
L where L is the number of sets. Once the required set is 
determined, the desired block B is associatively searched for 
among the members of the set. When a cache miss occurs, 
replacement decisions take into account only members of the 
set where the miss occurred, not the whole cache. Conflict will 
rarely occur since two blocks accessed at the same time from 
the same correspondence set may reside in different blocks of 
a set. Thus, the set associative mapping cache organization has 
most of the speed advantage of the direct mapping cache and 
much of the flexibility of the full associative cache, both at a 
moderate cost. Due to its cost-performance edge, set 
associative cache design has been selected by many computer 
manufactures when implementing a cache for their computer 
systems. 

 
3. Sector Mapping Cache (SMC) 
In sector mapping, the main memory and the cache are both 

divided into sectors; each sector is composed of a number of 
blocks [17]. Any sector in the main memory can map into any 
sector in the cache and a tag is stored with each sector in the 
cache to identify the main memory sector address. However, a 
complete sector is not transferred to the cache or back to the 
main memory as one unit. Instead, individual blocks are 
transferred as required. On cache sector miss, the required 
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block of the sector is transferred into a specific location within 
one sector.   

Sector mapping might be regarded as a fully associative 
mapping scheme with valid bits, as in some microprocessor 
caches. Each block in the fully associative mapped cache 
corresponds to a sector, and each byte corresponds to a sector 
block. 

 
B.Cache Performance Model 
Typical design and optimization techniques attempt to 

reduce the number of instructions that are executed leading to 
a high speed computer system. Many attempts had been 
carried out to improve the cache memory performance. Serhan 
and Abdel-Hag modified the set associative mapping in a way 
to increase the set size virtually by allowing interleaving 
processes to make use of empty lines in cache and not 
overwrite the cache lines by each other [9]. Spjuth proposed 
the elbow caching to improve the skewed-associative caching, 
which depends on the efficiency of data movement between 
alternate positions in the cache [18].   

The performance of a cache can be quantified in terms of 
the hit and miss rates, the cost of a hit, and the miss penalty, 
where a cache hit is a memory access that finds data in the 
cache and a cache miss is one that does not.  

For cache reading, the cost of a cache hit is roughly the time 
to access an entry in the cache. The miss penalty is the 
additional cost of replacing a cache line with one containing 
the desired data. Due to the principle of locality, there are a 
number of accesses to items in the block that is brought into 
cache, leading to faster overall access time. The fraction of the 
total number of blocks that are missed in the cache and need to 
access main memory is the miss ratio. Higher hit-rates provide 
a high cache performance. Designers use average memory 
access time as a way to measure cache performance. It is the 
average time to access memory considering both hits and 
misses and the frequency of different access which affects the 
performance. For two memory levels, the average access time 
(Tav) is determined in terms of cache hit and cache miss ratios 
and access times for cache and main memory [6]. It is given 
by:  
 

Tav = (Cache hit ratio) × (Hit time) + (Cache miss ratio) × (Miss Penalty)              (1)  
 
Since the speeds of the actual memory used will be 

improved independently, most effort in cache design is spent 
on fast control and decreasing the miss rates. We can classify 
misses into three categories, compulsory misses, capacity 
misses and conflict misses. Compulsory misses are when data 
is loaded into the cache for the first time (e.g. program startup) 
and are unavoidable. Capacity misses are when data is 
reloaded because the cache is not large enough to hold all the 
data no matter how we organize the data. All other misses are 
conflict misses which will occur because of a line may be 
discarded and later retrieved if too many lines map to its set in 
the case of direct mapped or set-associative cache. These 
misses are also called collision or interference misses. 

 
  

III.  PROPOSED METHODOLOGY 
In this paper, we investigate the benefits of optimizing cache 

performance and focusing exclusively on enhancing the cache 
hit ratio; since the cache performance can be classified in 
terms of cache hit and cache miss ratios. The cache control 
comparator and its technique play a crucial role in cache hit 
time and thus in improving the cache performance. In our 
proposed EOT technique, the line's tags are assumed in two 
groups; even line's tags and odd line's tags depending on their 
Least Significant Bit (LSB). Each line's tag is C-characters 
size and each character is 4-bits. Before feeding the line's tag 
of C-characters to the main cache comparator for a complete 
C-character comparison, the line's tag is passed through the 
even-or odd comparator for filtering. By this even-or odd 
comparator, all the cache's tags of opposite LSB to the 
memory address’s tag that is looking for will be rejected 
directly and quickly before entering the complete and long C-
character comparison stage. Therefore, a lot of miss match 
line's tags are discarded quickly before going to the main 
cache comparator, leading to an optimum hit time for the 
wanted cache line. 

It is not necessary for all the cache line’s tags fetched from 
the main memory to be divided equally between the even and 
odd values. Thus depending on the current values of the line's 
tags in the cache, the performance of the EOT technique can 
be categorized in four cases: 

i. Case- one: Equal hit ratio 
If the current values of the line's tags in the cache come 

equally between the even and odd values, then the hit ratio will 
be the same for locating an even line's tag or odd line's tag. 

ii. Case- two: High hit ratio 
If the current line's tags of opposite LSB to the one that is 

seeking for in the cache are coming more, the hit time is low 
and a high hit ratio is obtained. This is due to the high speed 
rejection of the miss match- LSB line's tags by the even-or odd 
comparator. 

iii. Case- three: Worse hit ratio 
This is the rarely case. There is no improvement in the hit 

ratio if the current values of the line's tags in the cache are all 
coming in even or odd order and the cache line that is looking 
for in even or odd order, respectively.   

iv. Case- four: Uncounted hit ratio 
If the current values of the line's tags come randomly in the 

cache, the line hit time is unknown and depends on the random 
distribution of the tags values in the cache.  
 

A.Even- Odd Tabulation Technique (EOT) 
    For mapping the main memory blocks into cache lines, the 
memory address word is divided into two fields; the tag field 
of t-bits and word field of w-bits. The tag value of the memory 
address that is looking for needs to be compared with all line's 
tags in the cache to grasp the desired cache line for a word 
access. In EOT technique, before feeding the line's tags to the 
main cache comparator of a counted time comparison, a 
discriminated stage is added for even tags and odd tags. This 
stage is implemented by adding the even-or odd comparator as 
shown in Fig.1. 
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Fig. 1 Even- Odd Tabulation Technique   

 
B. Pseudo code for EOT Technique 
A java code is written to implement the EOT technique and 

determine the cache line hit time at different memory sizes. 
The Pseudo code is given in Appendix (A). It includes the 
following steps: 
 

1. Step one 
Take the tag value of the memory address of C-characters 

that is looking for and the cache line's tag of C-characters and 
feed them to the even-or odd comparator. 

2. Step two 
Compare the LSBs of both; memory address's tag and cache 

line's tag. If there is a mismatch between them, the cache line's 
tag is rejected directly. Otherwise, the line's tag is pushed 
forward to the main cache comparator.  

3. Step three 
Compare the passed- line's tag with the memory address's 

tag at the main cache comparator for a complete C-characters 
comparison. 

4. Step four 
Continue on comparison process until reaching the cache 

line's tag of C-matches. It is the wanted one, so break the 
comparison. 

 
IV. RESULTS AND DISCUSSIONS 

The performance of the proposed technique EOT is 
determined and compared with the well known technique 
FAM. The simulation results are based on cache hit time and 
investigated for different sizes of cache and main memory.  
Fig.2 shows the cache hit time for the EOT technique against 
that of FAM technique. The cache is 16k line size and their 
lines are taken randomly from a main memory of 4M byte. The 
performance of EOT and FAM are simulated for 20 line’s tags 
generated randomly from the cache. The high performance of 
EOT technique for cache hit time is arisen strongly. It is at 
average improvement of 36.57% compared to FAM technique. 
Fig.3 shows the performance of EOT against that of FAM 
technique, for 20 line’s tags selected randomly from a 32k line 

cache. The cache lines are also taken randomly from a main 
memory of 16M byte. The average improvement in cache hit 
time by EOT compared to FAM is 40.57%.  

In Fig.4, the current values of the line’s tags are brought and 
forced equally between even and odd values for 16k line 
cache. Due to the direct and quick rejection of the half line’s 
tags by the even-or odd comparator, the EOT technique has 
shown a high performance for cache hit time. Its average 
improvement compared to FAM is 45.45%. 

Fig. 5 shows the worst case at where the current values of 
the line’s tags in the cache are all forced in even order or in 
odd order and the cache line that is looking for is in even order 
or in odd order respectively. In practice, it is a rarely case. The 
even- odd comparator in EOT technique becomes without 
avail and it caused a regression of 4.16%. 

The results summarizes that a powerful performance for a 
cache hit time is obtained with the proposed technique EOT 
compared to the familiar FAM technique. 

0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

0

5

10

15

20

25

30

 Line's Tags, located randomly in cache

H
it-

tim
e,

 M
ic

ro
-s

ec

FAM

EOT

 
Fig. 2 Hit time in a 16k-line cache 
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Fig.3 Hit time in a 32k-line cache 
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Fig.4 Hit time in 16k-line cache for equally even and odd line’s tags 
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Fig.5 Hit time in a 16k-line cache for forced even order or odd order 

line’s tags 
 

 V. CONCLUSIONS 
Cache performance optimization yields to significant 

execution speedups. While some techniques are based on 
optimizing compilers, others are based on hardware. Future 
computer architecture trends further motivate research efforts 
focusing on memory hierarchy optimizations. In this paper, we 
presented optimum hardware cache architecture to enhance the 
performance of the cache based on high hit ratio. Because 
there are fewer cache lines than the main memory blocks, the 
cache line’s tags can be come onto unequally two groups of 
tags; even line’s tags and odd line’s tags. So the proposed 
EOT approach exploited the LSB of the tag field in the main 
memory address to distinguish between the match tags and 
miss match tags in the cache. The even-or odd comparator 
compares only the LSBs of the cache line’s tag and the 
memory field tag and rejects any miss match cache line in very 
low time. Consequently, only the matched cache line’s tags are 
passed to the main cache comparator for a long and complete 
C-character comparison. In this way a lot of miss match line’s 
tags are grasped and rejected quickly in the even-or odd 
comparator and they do not need to go to the main cache 

comparator. Building on that, there is no waste of time and a 
minimum time for cache line hitting is reached.              

The performance of the proposed EOT technique is 
simulated and compared to the well known FAM technique, 
for different cache sizes; 16k line and 32k line. The results 
have shown that the new EOT technique has achieved a high 
performance for a line hit time in the cache compared to the 
familiar FAM technique.  
 

Appendix (A): Pseudo code for EOT  technique 
Find a cache-line’s tag using EOT technique;  

Initialize time of one bit comparison = TB µs; 

Initialize time of one hex-digit comparison = TH µs; 
Initialize No. of Characters per a tag = C; 
Initialize the “Bit-Counter” = zero; 
Initialize the “Character-Counter” = zero; 
for each line’s tag on cache do  

Initialize the “Comparator-Counter” = zero; 
Increment “Bit-Counter”; 
if  line’s tag and address’s tag are matched for LSB 

then 
for each hex-digit on line’s tag do 

Increment “Character- Counter”; 
if  hex-digits of both Line’s tag and 

address’s tag are matched then 
Increment “Comparator- 

Counter”;  
endif; 

endfor; 
if  Comparator- Counter equal C then 

Cache line' tag is located  
Time = (Bit- Counter × TB) + 

(Character- Counter ×TH); 
Break;  

endif; 
endif; 

endfor; 
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