Open Science Index, Computer and Information Engineering Vol:6, No:4, 2012 publications.waset.org/7328.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:6, No:4, 2012

Enhancing Cache Performance Based on
|mproved Average Access Time

Jasim. A. Ghaebh

Abstract—A high performance computer includes a fast
processor and millions bytes of memory. During the data processing,
huge amount of information are shuffled between the memory and
processor. Because of its small size and its effectiveness speed, cache
has become a common feature of high performance computers.
Enhancing cache performance proved to be essential in the speed up
of cache-based computers. Most enhancement approaches can be
classified as either software based or hardware controlled. The
performance of the cache is quantified in terms of hit ratio or miss
ratio. In this paper, we are optimizing the cache performance based
on enhancing the cache hit ratio. The optimum cache performance is
obtained by focusing on the cache hardware modification in the way
to make a quick rejection to the missed line's tags from the hit-or
miss comparison stage, and thus alow hit time for the wanted linein
the cache is achieved. In the proposed technique which we called
Even- Odd Tabulation (EOT), the cache lines come from the main
memory into cache are classified in two types; even line's tags and
odd line's tags depending on their Least Significant Bit (LSB). This
division is exploited by EOT technique to reject the miss match line's
tags in very low time compared to the time spent by the main
comparator in the cache, giving an optimum hitting time for the
wanted cache line. The high performance of EOT technique against
the familiar mapping technique FAM is shown in the simulated
results.

Keywords—Caches, Cache performance, Hit time, Cache hit
ratio, Cache mapping, Cache memory.

Symbols
C Number of characters per aline's tag/or memory field’' stag
EOT Even- Odd Tabulation

FAM Fully Associative Mapping
DM Direct Mapping

CPU Centra Processing Unit

D Number of linesin the cache
\Y Number of setsin the cache
a Number of lines per set
LSB Least Significant Bit

t Number of bits per tag

w Word field bits

|.INTRODUCTION

INCE the early development of computer systems, there

has been a growing need for faster and more powerful
computer systems. This motivated the researchers in the areas
of hardware and software development of computer systems.
In order to alleviate the impact of the growing gap between
CPU speed and main memory performance, today’s computer
architectures implement hierarchical memory structures[1].

Jasim. A. Ghaeb is with the Hashemite University, Department of
Electrical Engineering, P.O. Box 150459, Zarga 13115, Jordan.
Email:gaebja@hu.edu.jo

International Scholarly and Scientific Research & Innovation 6(4) 2012

The idea behind this approach is to hide both the low main
memory bandwidth and the latency of main memory accesses
as well as to provide a large amount of real memory at an
economical price. Although, there was a speed enhancement
for both CPU and main memory, the speed gap between them
has widened.

Moving further away from the CPU, the layers of memory
successively become larger and dlower. The memory
components which are located between the processor core and
main memory are called cache memories or caches. They are
intended to contain copies of main memory blocks to speed up
accesses to frequently needed data. The next lower level of the
memory hierarchy is the main memory which is large but
comparatively slow. The external memory such as hard disk
drives or remote memory components in a distributed
computing environment represent the lower end of any
common hierarchical memory design [2], [3].

The good overall performance of a computer system cannot
be achieved without good cache performance. Based on this
change on computer architecture, techniques have been
designed to minimize instruction count to improve CPU
performance may not achieve a good performance unless take
into consideration cache performance [4].

In this paper, we explore the potential performance gains
that cache conscious design offers in understanding and
improving the performance. We develop a novel technique
which we called Even- Odd Tabulation (EOT) to enhance the
cache performance in terms of reducing the hit time. The cache
line's tags are tabulated into two groups: even line's tags and
odd line's tags. Depending on the line number that is looking
for, the cache line's tags of opposite LSB are undesired tags
and rejected a way directly before going to the complete and
long C-characters comparison. By this approach, the line's tag
of a missed match LSB does not pass to the C-character
comparison stage and there is no waste of time. Thus the
desired cache line is located quickly, leading to maximum hit
ratio.

This paper is structured as follows. In Section 11, we will
introduce some fundamental cache characteristics, including a
brief discussion of conventional elementary cache optimization
techniques. Section 11l presents our proposed technique to
improve the cache hit time. In Section IV shows the simulation
results and explains the performance of the proposed technique
against the conventiona methods. Finaly, Section V
concludes the paper work.

II.CACHE DESIGN

Typically, a memory hierarchy contains a rather small
number of registers on the chip which are accessible without
delay. Furthermore, a small cache, usually called level one
(L1) cache, is placed on the chip to ensure low latency and

494 1SN1:0000000091950263

Open Science Index, Computer and Information Engineering Vol:6, No:4, 2012 publications.waset.org/7328.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:6, No:4, 2012

high bandwidth. The L1 cache is often split intmteeparate
parts; one keeps data, the other instructions.ldtkecy of on-
chip caches is commonly one or two cycles. The ddhes are
usually backed up by a level two (L2) cache. Cutyer2

cache memories are typically located on-chip ag; wey., in
the case of Intel’s Itanium CPU. The off-chip caxlee much
bigger and provide data with lower bandwidth andhkr
access latency [5], [6]. The cache design hasexdaffect on
the cost and performance of the computer system.vahous
designs explored in this section have different rasising
mechanisms in terms of cost and speed but havea@menon
feature that every cache is divided into d-lineshezontaining
2"-words. The address generated by the CPU is foohesio

components, a line inddxand a word offset within the line.
When such an address is generated, the cachstistiecked
for the presence of the requested llmeif found, then the

variables that resides in two or more blocks thapro the
same cache line.

2. Fully Associative Mapping (FAM)

In contrast to the simple mapping for a direct magp
cache, an associative cache allows any of the mebiocks
to be mapped to any of the cache lines [8], [14lciS
flexibility allows for better utilization of the che without
conflict. In this design, the line numbers of therent cache
contents are placed in an associative cache diyecithe
block is searched for in the cache directory. h&f CPU finds
its match, then the data is in the cache and theegponding
block is accessed. A mismatch results in a caclss,rand a
fetch is issued to main memory. Since the blocklddae
placed in any cache line, one of the resident logk
overwritten. The choice of replacement block mayseafuture

offset f is used to fetch the needed data. Otherwise tltache misses.

specified lineb must be fetched from the lower level of

memory. All cache approaches are based on selegtinge to
store a particular block and how to locate it fomamory
request. Hence, cache organizations are classitiedrding to
the various ways the memory blocks are assigneldet@ache
and thus such an assignment usually adhere to tecuar
mapping technique [7]-[10]. In the following subsens, we
will survey a number of conventional cache desigiach
design will have a different mapping strategy thit map the
memory blocks to the cache lines. In order to higtlthe
performance of the proposed EOT technique, a caspais

Direct mapped and fully associative caches cancea gas
special cases of k-way set-associative cachessets andl-
lines per a set. AV =d, a direct mapped cache is a one-way
set-associative cache, whereas a fully associatiehe isd-
way one set-associative. In a fully associativéheaand in al-
way set-associative cache, a memory block can dseglinto
several alternative cache lines.

Computer architects have recently focused on isangahe
set associatively of on-chip caches. A k-way sestaisitive
cache is characterized by a higher hardware coritylexut
usually implies higher hit rates [14]- [16]. Thecdehe lines of

made with the conventional FU”y Associative Mapgpin k-Way set-associative cache are grouped imeets. The

Technique (RM).

A. Aspects of Cache Architectures

Data within the cache are stored in cache linesaghe line
holds the contents of a contiguous block of maimowy. If
data requested by the processor are found in a&damh it is
called a cache hit. Otherwise, a cache miss occline
contents of the memory block containing the reqdestord
are fetched from a lower memory layer and copiéal éncache
line. For this purpose, another data item mustcsifyi be
replaced. Therefore, in order to guarantee low statency,
the question into which cache line the data shdeldoaded
and how to retrieve them must be handled efficjenti the
next subsections, we will brief the well-known teirjues and
introduce the privileges and drawbacks of each.

1. Direct Mapping (DM)

In respect of hardware complexity, the cheapestagmh to
implement block placement is direct mapping [113]f its
function maps any block in the main memory intoyoahe
possible cache line. The cache line is marked tagaalue to
distinguish a particular block of data from theatblocks that
can locate in that line.

Direct mapped caches are fast, simple and inexpensi
implement. Moreover, direct mapped cache has bemng
the most popular cache architectures in the padtisrstill
very common for off-chip caches.
disadvantage is the frequent occurrence of conflicinflict
occurs while executing a program task that requiegeral

International Scholarly and Scientific Research & Innovation 6(4) 2012

495

contents of any memory block can be placed into cashe
line of the corresponding set. This design is a pamised
design that avoids the problem of conflicts anddpendency
of the cycle time on the cache size. For a givet) @Bdress,
the address is obtained as in the direct mappiobgec® Mod

L wherelL is the number of sets. Once the required set is
determined, the desired bloékis associatively searched for
among the members of the set. When a cache misgspcc
replacement decisions take into account only mesmbéthe
set where the miss occurred, not the whole cacbefli€t will
rarely occur since two blocks accessed at the samgefrom
the same correspondence set may reside in diffefeoks of

a set. Thus, the set associative mapping cachaiaeg@n has
most of the speed advantage of the direct mappshec and
much of the flexibility of the full associative da& both at a
moderate cost.Due to its cost-performance edge, set
associative cache design has been selected by coamyuter
manufactures when implementing a cache for theinpzder
systems.

3. Sector Mapping Cache (SMC)

In sector mapping, the main memory and the cachdath
divided into sectors; each sector is composed mfiraber of
blocks [17]. Any sector in the main memory can nrdp any
sector in the cache and a tag is stored with eactorsin the
cache to identify the main memory sector addressvever, a

However, its maitomplete sector is not transferred to the cachkeack to the

main memory as one unit. Instead, individual blocke
transferred as required. On cache sector missrebeired

1SN1:0000000091950263

Open Science Index, Computer and Information Engineering Vol:6, No:4, 2012 publications.waset.org/7328.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:6, No:4, 2012

block of the sector is transferred into a speddiation within
one sector.

Sector mapping might be regarded as a fully astBeeia
mapping scheme with valid bits, as in some micropssor
caches. Each block in the fully associative mappadhe
corresponds to a sector, and each byte corresporalsector
block.

B.Cache Performance Model
Typical design and optimization techniques attentpt
reduce the number of instructions that are execlg@ding to

[ll. PROPOSEDMETHODOLOGY

In this paper, we investigate the benefits of ojiing cache
performance and focusing exclusively on enhandimgcache
hit ratio; since the cache performance can be iiledsin
terms of cache hit and cache miss ratios. The caohé&ol
comparator and its technique play a crucial roleache hit
time and thus in improving the cache performanceolr
proposed EOT technique, the line's tags are assimego
groups; even line's tags and odd line's tags deépgrmoh their
Least Significant Bit (LSB). Each line's tag is Bacacters
size and each character is 4-bits. Before feedirdibe's tag

a high speed computer system. Many attempts had bed C-characters to the main cache comparator fooraplete

carried out to improve the cache memory performaSeehan
and Abdel-Hag modified the set associative mappirg way
to increase the set size virtually by allowing rlgaving
processes to make use of empty lines in cache and
overwrite the cache lines by each other [9]. Spjutbposed
the elbow caching to improve the skewed-associataghing,
which depends on the efficiency of data movemerivéen
alternate positions in the cache [18].

The performance of a cache can be quantified imdesf
the hit and miss rates, the cost of a hit, andnties penalty,
where a cache hit is a memory access that finds idathe
cache and a cache miss is one that does not.

For cache reading, the cost of a cache hit is rigugk time
to access an entry in the cache. The miss pensltthe
additional cost of replacing a cache line with @oataining
the desired data. Due to the principle of localibhgre are a
number of accesses to items in the block that esiddnt into
cache, leading to faster overall access time. Taaibn of the
total number of blocks that are missed in the cactteneed to
access main memory is the miss ratio. Higher hésr@rovide

C-character comparison, the line's tag is passexlgh the
even-or odd comparator for filtering. By this evemn-odd
comparator, all the cache's tags of opposite LSBthe
memory address’s tag that is looking for will bgeoted
directly and quickly before entering the completel éong C-
character comparison stage. Therefore, a lot ok miatch
line's tags are discarded quickly before going e main
cache comparator, leading to an optimum hit time tfe
wanted cache line.

It is not necessary for all the cache line’s tagsted from
the main memory to be divided equally between treneand
odd values. Thus depending on the current valug¢keofine's
tags in the cache, the performance of the EOT tqukncan
be categorized in four cases:

i. Case- one: Equal hit ratio

If the current values of the line's tags in theheacome
equally between the even and odd values, thenithatio will
be the same for locating an even line's tag orlioéés tag.

ii. Case- two: High hit ratio

If the current line's tags of opposite LSB to thee dhat is

a high cache performance. Designers use averageomyenseeking for in the cache are coming more, theirni¢ tis low

access time as a way to measure cache performiansehe
average time to access memory considering both drts
misses and the frequency of different access waifdcts the
performance. For two memory levels, the averageszctime
(Tav) is determined in terms of cache hit and canlss ratios
and access times for cache and main memory [63. diven

by:
)

Tav = (Cache hit ratio) x (Hit time) + (Cache miatio) x (Miss Penalty)

Since the speeds of the actual memory used will
improved independently, most effort in cache desgyapent
on fast control and decreasing the miss rates. &vectassify
misses into three categories, compulsory missepacita
misses and conflict misses. Compulsory misses aenwlata
is loaded into the cache for the first time (e.gpgoam startup)

and a high hit ratio is obtained. This is due te tiigh speed
rejection of the miss match- LSB line's tags byetien-or odd
comparator.

iii. Case-three: Worse hit ratio

This is the rarely case. There is no improvemerthé hit
ratio if the current values of the line's tagshe tache are all
coming in even or odd order and the cache lineithlatoking
for in even or odd order, respectively.

iv.Case- four: Uncounted hit ratio

If the current values of the line's tags come ranigian the
Reche, the line hit time is unknown and dependgienandom
distribution of the tags values in the cache.

A.Even- Odd Tabulation Technique (EOT)
For mapping the main memory blocks into caches| the
memory address word is divided into two fields; thg field

and are unavoidable. Capacity misses are when @ataof t-bits and word field of w-bits. The tag valuktbe memory

reloaded because the cache is not large enougbldaah the
data no matter how we organize the data. All othisses are
conflict misses which will occur because of a limay be
discarded and later retrieved if too many lines faajps set in
the case of direct mapped or set-associative cathese
misses are also called collision or interferenceses.

International Scholarly and Scientific Research & Innovation 6(4) 2012

496

address that is looking for needs to be comparéd alli line's
tags in the cache to grasp the desired cache dine fword
access. In EOT technique, before feeding the liag/s to the
main cache comparator of a counted time comparigon,
discriminated stage is added for even tags andtaglsl This
stage is implemented by adding the even-or odd eoatpr as
shown in Fig.1.

1SN1:0000000091950263

Open Science Index, Computer and Information Engineering Vol:6, No:4, 2012 publications.waset.org/7328.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:6, No:4, 2012

memory address word

cache

tag field (t-bits) yord field

words

line's tag

LSB
0
‘ﬁH ‘ ﬁ“.bm ‘ i‘ %
LSB g
V &
even-or odd LSB
=221
comparator LSB
. bypass circuit K ——1
<:\—{‘

main cache
comparator

]

No Yes
(Miss in cache) (Hit in cache)

Fig. 1 Even- Odd Tabulation Technique

B. Pseudo code for EOT Technique

A java code is written to implement the EOT tecluaiGand
determine the cache line hit time at different mgmsizes.
The Pseudo code is given in Appendix (A). It indsdthe
following steps:

1. Sep one

Take the tag value of the memory address of C-clens
that is looking for and the cache line's tag offaracters and
feed them to the even-or odd comparator.

2. Step two

Compare the LSBs of both; memory address's tagaclde
line's tag. If there is a mismatch between them ctiche line's
tag is rejected directly. Otherwise, the line's tagpushed
forward to the main cache comparator.

3. Step three

Compare the passed- line's tag with the memoryeadtr
tag at the main cache comparator for a completbatacters
comparison.

4. Sep four

Continue on comparison process until reaching thehe
line's tag of C-matches. It is the wanted one, smalb the
comparison.

IV. RESULTS AND DISCUSSIONS

The performance of the proposed technique EOT
determined and compared with the well known tealmiq
FAM. The simulation results are based on cacheimi and
investigated for different sizes of cache and maiemory.
Fig.2 shows the cache hit time for the EOT techaiggainst
that of FAM technique. The cache is 16k line sin€ #heir
lines are taken randomly from a main memory of 4ebThe
performance of EOT and FAM are simulated for 2@’Brtags
generated randomly from the cache. The high pedooa of
EOT technique for cache hit time is arisen strongflyis at
average improvement of 36.57% compared to FAM tiegtn
Fig.3 shows the performance of EOT against thaFAM
technique, for 20 line’s tags selected randomlynfieo 32k line

International Scholarly and Scientific Research & Innovation 6(4) 2012

497

cache. The cache lines are also taken randomly &amain
memory of 16M byte. The average improvement in eduih
time by EOT compared to FAM is 40.57%.

In Fig.4, the current values of the line’s tags la@ught and
forced equally between even and odd values for [Hrék
cache. Due to the direct and quick rejection of Ha# line’s
tags by the even-or odd comparator, the EOT teclenltps
shown a high performance for cache hit time. ltgerage
improvement compared to FAM is 45.45%.

Fig. 5 shows the worst case at where the curreoesaof
the line’s tags in the cache are all forced in egeder or in
odd order and the cache line that is looking fanieven order
or in odd order respectively. In practice, it isagely case. The
even- odd comparator in EOT technique becomes uttho
avail and it caused a regression of 4.16%.

The results summarizes that a powerful performdocea
cache hit time is obtained with the proposed tepmiEOT
compared to the familiar FAM technique.

301

25+
A !
|
5 20}, /f T |
s | A . |
S 151! | [+ /1 EoT
g W\ " o ’ \ JI
= | /k'\ / /\\ \ | ;/%\ * (!
.flOf* /// v /,\% " ‘
\ \ \\% 11X _F (l +
150 [A Iy |
IR ‘ /)
5 \\\ ! \\‘T’/ jz T o— //\;{
/ \%\[; e —y
0 L L L L L L L L
0.5 1 15 2 25 3 35 4
Line's Tags, located randomly in cache x 10
Fig. 2 Hit time in a 16k-line cache
451
40+ T
FMA
W
35| /€ o \ /\
a0l , \ '1[' / | 7 ‘
I VAN I
o
D G S A E
; %Z s N | /‘\ il
. g 20 P A i al
is £ CNE SO el
Z 4 S Py g I
T 151 |, Ne o | 4’:(I
, ﬂ [‘1
¥ ! // ! ‘\‘ !
* Wyl
101 /i "‘»/ ‘\l , l"
sl ;K l{/ L { \) Z}
/ P
0 |
0 2 4 6 8 10 12 14 16 18
Line's Tags, located randomly in cache 6

Fig.3 Hit time in a 32k-line cache

1SN1:0000000091950263

Open Science Index, Computer and Information Engineering Vol:6, No:4, 2012 publications.waset.org/7328.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:6, No:4, 2012

301

25+

o 20f /T* FAM +
$ ’ f/ |
.g /k ‘ ‘\ |
= 15¢ / ‘Tx EOT !
) T *)_)L
‘% ! // ;1(;‘(\ /f \\ K
T 10t \/ /ﬁr* M« / ‘ . ('J‘,
?’* / ‘m X % /\ L

\\ ’ ‘r/;z A /// \\ h JI

5} ;\:// % NUAN // ;}1\\ /?\\\ Ne\ X

L2 NN \é/ TR F

0 L L L \i/ L L L L - \éj

0.5 1 1.5 2 25 3 3.5 4

Line's Tags, located randomly in cache X 106

Fig.4 Hit time in 16k-line cache for equally evardeodd line’s tags

301

EOT
L« <
25 ﬁ %jzf/FAM i
I\ / .
“\ ’ [// L /%\
g 20+ \ | i i E ; W
I 1, ! N
§ | o FO A ¥
= 15 l /‘ ! \ // i \\\ /
g | | \ ’
£ (‘ ' \ % \ [
Z /1 J ! | ‘ | \ !
T 10- \ / ! \\ ’ &/ \ /
| ‘ i \ \\ f
by % [\ " \ k
1/ 1 77 / \ /
! | 7N j \
5 * / / \ |
¥ \ | Y Vi
\ k 4
0 L L % L L L L L L I
0 2 4 6 8 10 12 14 16 18
Line's Tags, located randomly in cache x 10°
Fig.5 Hit time in a 16k-line cache for forced evader or odd order

line’s tags

V. CONCLUSIONS
Cache performance optimizatioields to significant

execution speedups. While some techniques are based

optimizing compilers, others are based on hardwBreure

computer architecture trends further motivate nedeafforts
focusing on memory hierarchy optimizations. In thégper, we
presented optimum hardware cache architectureharee the
performance of the cache based on high hit ratecaBse
there are fewer cache lines than the main memamgkb| the
cache line’s tags can be come onto unequally tveupgs of
tags; even line’'s tags and odd line’'s tags. So pttaposed
EOT approach exploited the LSB of the tag fieldhie main
memory address to distinguish between the match sagl
miss match tags in the cache. The even-or odd catgra
compares only the LSBs of the cache line's tag trel
memory field tag and rejects any miss match caicieeih very
low time. Consequently, only the matched cacheditags are
passed to the main cache comparator for a longcanglete
C-character comparison. In this way a lot of misdah line’s

tags are grasped and rejected quickly in the eveaoeu

comparator and they do not need to go to the mathe

International Scholarly and Scientific Research & Innovation 6(4) 2012

498

comparator. Building on that, there is no wastdimg and a
minimum time for cache line hitting is reached.

The performance of the proposed EOT technique
simulated and compared to the well known FAM teghaij
for different cache sizes; 16k line and 32k lindeTresults
have shown that the new EOT technique has achiaveidh
performance for a line hit time in the cache coragato the
familiar FAM technique.

Appendix (A): Pseudo code for EOT technique
Find a cache-line’s tag using EOT technique;

Initialize time of one bit comparison = TjBs;
Initialize time of one hex-digit comparison = Tls;
Initialize No. of Characters per a tag = C;
Initialize the “Bit-Counter” = zero;
Initialize the “Character-Counter” = zero;
for each line’s tag on cachie
Initialize the “Comparator-Counter” = zero;
Increment “Bit-Counter”;

if line’s tag and address’s tag are matched for LSB

then
for each hex-digit on line’s tadp
Increment “Character- Counter”;
if hex-digits of both Line’s tag and
address’s tag are matchingn
Increment “Comparator-
Counter”;
endif;
endfor;
if Comparator- Counter equalten
Cache line' tag is located
Time = (Bit- Counter x TB) +
(Character- Counter xTH);
Break;
endif;
endif;
endfor;
REFERENCES

[1] U. Meyer, p. Sanders and j. Sibeyn, algorithmsniemory hierarchies:
advanced lectures, springer-verlag, berlin, heitgll2003.

[2] M. Kowarschik and C. WeiR3, “An Overview of Cache tiDpzation
Techniques and Cache-Aware Numerical Algorithmstture Notes in
Computer Science Vol. 2625, pp. 213-232, Sprin2@d3.

[3] S. Mamagkakis, D. Atienza, C. Poucet, F. Qatth D. Soudris and
J. M. Mendias, “Custom Design of Multi-Level DynamMemory
Management Subsystem for Embedded Systems,” Priogsedf the
IEEE Workshop on Signal Processing Systems (SIpS/@4 1, No. 1,
2004, pp. 170-175, New York: IEEE Press, 2004.

[4] C. Baloukas, et. al, “Optimization Methodology ofyiamic Data
Structures Based on Genetic Algorithms for MultilmedEmbedded
Systems,” Elsevier, the journal of systems andwsof, Vol. 82,
pp.590-602, 2009.

[5] H. Eichenbaum, “Memory Systems,” Wiley Interdisaialy Reviews:
Cognitive Science, 1: 478—-490. doi: 10.1002/wcs2404,0.

[6] M. D. Hill and A. J. Smith, “Evaluating Associatiyeén CPU Caches,”
IEEE Transactions on Computers, Vol. 38(12), pl2t6630, 1989.

1SN1:0000000091950263

Open Science Index, Computer and Information Engineering Vol:6, No:4, 2012 publications.waset.org/7328.pdf

(7]

(8]

9]

(10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

International Scholarly and Scientific Research & Innovation 6(4) 2012

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

Vol:6, No:4, 2012

T. M. Chilimbi, M. D. Hill and James R. Larus, “CeeConscious
Structure Layout,” Proceedings of the ACM SIGPLANEerence on
programming language design and implementationNt$858113-094-
5, PLDI,1999.

W. Stallings, Computer Organization and architegtufth Edition,
Prentice Hall, 2006.

S. I. Serhan and H. M. Abdel-Haq, “Improving CachMemory
Utilization,” World academy of science, engineeriagd technology,
Vol. 26, pp. 299-304, 2007.

N. P. Topham and A. GonZalez, “Randomized CacheeRiant for
Eliminating Conflicts,” IEEE Transactions on Comergt, Vol. 48,
No.2, pp. 185-192, 1999.

J. H. Bae and C. M. Kyung, “A Supplementary SchdareReducing
Cache Access Time,” IEICE Trans. on inf. and systeviol. E79-d, No.
4, pp. 385-389, 1996.

N. P. Jouppi, Improving Direct-Mapped Cache Perfmmoe by the
Addition of a Small Fully-Associative Cache and fBteh Buffers,
IEEE Proceeding, 17th Annual International Sympwsion Computer
Architecture, Seattle, WA, USA, pp. 364-373, 28\24y 1990.

S. J. E Wilton and N. P. Jouppi, “CACTI: An Enhadidgache Access
and Cycle Time Model,” IEEE Transactions on sofiakes circuits, Vol.
31, No. 5, pp. 677-688, 1996.

P.F. Lin, “A 0.8-V 128Kb Four-Way Set-Associativev@-Level CMOS
Cache Memory Using Two-Stage Wordline/Bitline-oteth Tag-
Compare (WLOTC/BLOTC) Scheme,” IEEE Journal of 8litate
Circuits Vol. 37, No. 10, pp. 1307-1311, 2002.

Ruud Van DerPas “Memory Hierarchy in Cache Baseste®y," Sun
Microsystems, Inc, part .No. 817-0742-10, 2002.

P. Palsodkar, A. Deshmukh, P. Bajaj and A. G. Keska Approach
for Four Way Set Associative Multilevel CMOS Cacivemory,
Lecture Notes in Computer Science, Vol. 4692, p#0-746, DOI:
10.1007/978-3-540-74819-9_91, 2007.

J.B. Rothman and A.J. Smith, Sector cache desighpanformance,
IEEE Proceedings. 8th International Symposium ordéliag, Analysis
and Simulation of Computer and Telecommunicatiost&ys, 2000.
pp.124-133, San Francisco,CA,2000,doi:
10.1109/MASCOT.2000.876437.

M. Spjuth, Refinement and Evaluation of the Elboacle, master's
thesis, Department of computer systems, Uppsaladsity, Sweden,
2002.

499

1SN1:0000000091950263

