

Abstract—A high performance computer includes a fast

processor and millions bytes of memory. During the data processing,
huge amount of information are shuffled between the memory and
processor. Because of its small size and its effectiveness speed, cache
has become a common feature of high performance computers.
Enhancing cache performance proved to be essential in the speed up
of cache-based computers. Most enhancement approaches can be
classified as either software based or hardware controlled. The
performance of the cache is quantified in terms of hit ratio or miss
ratio. In this paper, we are optimizing the cache performance based
on enhancing the cache hit ratio. The optimum cache performance is
obtained by focusing on the cache hardware modification in the way
to make a quick rejection to the missed line's tags from the hit-or
miss comparison stage, and thus a low hit time for the wanted line in
the cache is achieved. In the proposed technique which we called
Even- Odd Tabulation (EOT), the cache lines come from the main
memory into cache are classified in two types; even line's tags and
odd line's tags depending on their Least Significant Bit (LSB). This
division is exploited by EOT technique to reject the miss match line's
tags in very low time compared to the time spent by the main
comparator in the cache, giving an optimum hitting time for the
wanted cache line. The high performance of EOT technique against
the familiar mapping technique FAM is shown in the simulated
results.

Keywords—Caches, Cache performance, Hit time, Cache hit
ratio, Cache mapping, Cache memory.

Symbols

C Number of characters per a line's tag/or memory field’s tag
EOT Even- Odd Tabulation
FAM Fully Associative Mapping
DM Direct Mapping
CPU Central Processing Unit
D Number of lines in the cache
v Number of sets in the cache
a Number of lines per set
LSB Least Significant Bit
t Number of bits per tag
w Word field bits

I.INTRODUCTION

 INCE the early development of computer systems, there
has been a growing need for faster and more powerful

computer systems. This motivated the researchers in the areas
of hardware and software development of computer systems.
In order to alleviate the impact of the growing gap between
CPU speed and main memory performance, today’s computer
architectures implement hierarchical memory structures [1].

Jasim. A. Ghaeb is with the Hashemite University, Department of

Electrical Engineering, P.O. Box 150459, Zarqa 13115, Jordan.
Email:gaebja@hu.edu.jo

The idea behind this approach is to hide both the low main

memory bandwidth and the latency of main memory accesses
as well as to provide a large amount of real memory at an
economical price. Although, there was a speed enhancement
for both CPU and main memory, the speed gap between them
has widened.

Moving further away from the CPU, the layers of memory
successively become larger and slower. The memory
components which are located between the processor core and
main memory are called cache memories or caches. They are
intended to contain copies of main memory blocks to speed up
accesses to frequently needed data. The next lower level of the
memory hierarchy is the main memory which is large but
comparatively slow. The external memory such as hard disk
drives or remote memory components in a distributed
computing environment represent the lower end of any
common hierarchical memory design [2], [3].

The good overall performance of a computer system cannot
be achieved without good cache performance. Based on this
change on computer architecture, techniques have been
designed to minimize instruction count to improve CPU
performance may not achieve a good performance unless take
into consideration cache performance [4].

In this paper, we explore the potential performance gains
that cache conscious design offers in understanding and
improving the performance. We develop a novel technique
which we called Even- Odd Tabulation (EOT) to enhance the
cache performance in terms of reducing the hit time. The cache
line's tags are tabulated into two groups: even line's tags and
odd line's tags. Depending on the line number that is looking
for, the cache line's tags of opposite LSB are undesired tags
and rejected a way directly before going to the complete and
long C-characters comparison. By this approach, the line's tag
of a missed match LSB does not pass to the C-character
comparison stage and there is no waste of time. Thus the
desired cache line is located quickly, leading to maximum hit
ratio.

This paper is structured as follows. In Section II, we will
introduce some fundamental cache characteristics, including a
brief discussion of conventional elementary cache optimization
techniques. Section III presents our proposed technique to
improve the cache hit time. In Section IV shows the simulation
results and explains the performance of the proposed technique
against the conventional methods. Finally, Section V
concludes the paper work.

II.CACHE DESIGN

 Typically, a memory hierarchy contains a rather small
number of registers on the chip which are accessible without
delay. Furthermore, a small cache, usually called level one
(L1) cache, is placed on the chip to ensure low latency and

Enhancing Cache Performance Based on

Improved Average Access Time
Jasim. A. Ghaeb

S

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:6, No:4, 2012

494International Scholarly and Scientific Research & Innovation 6(4) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

4,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

32
8.

pd
f

high bandwidth. The L1 cache is often split into two separate
parts; one keeps data, the other instructions. The latency of on-
chip caches is commonly one or two cycles. The L1 caches are
usually backed up by a level two (L2) cache. Currently, L2
cache memories are typically located on-chip as well; e.g., in
the case of Intel’s Itanium CPU. The off-chip caches are much
bigger and provide data with lower bandwidth and higher
access latency [5], [6]. The cache design has a direct effect on
the cost and performance of the computer system. The various
designs explored in this section have different addressing
mechanisms in terms of cost and speed but have one common
feature that every cache is divided into d-lines each containing
2W-words. The address generated by the CPU is formed of two
components, a line index b and a word offset f within the line.
When such an address is generated, the cache is first checked
for the presence of the requested line b, if found, then the
offset f is used to fetch the needed data. Otherwise the
specified line b must be fetched from the lower level of
memory. All cache approaches are based on selecting where to
store a particular block and how to locate it for a memory
request. Hence, cache organizations are classified according to
the various ways the memory blocks are assigned to the cache
and thus such an assignment usually adhere to a particular
mapping technique [7]-[10]. In the following subsections, we
will survey a number of conventional cache designs. Each
design will have a different mapping strategy that will map the
memory blocks to the cache lines. In order to highlight the
performance of the proposed EOT technique, a comparison is
made with the conventional Fully Associative Mapping
Technique (FΑΜ).

A. Aspects of Cache Architectures
Data within the cache are stored in cache lines. A cache line

holds the contents of a contiguous block of main memory. If
data requested by the processor are found in a cache line, it is
called a cache hit. Otherwise, a cache miss occurs. The
contents of the memory block containing the requested word
are fetched from a lower memory layer and copied into a cache
line. For this purpose, another data item must typically be
replaced. Therefore, in order to guarantee low access latency,
the question into which cache line the data should be loaded
and how to retrieve them must be handled efficiently. In the
next subsections, we will brief the well-known techniques and
introduce the privileges and drawbacks of each.

1. Direct Mapping (DM)
In respect of hardware complexity, the cheapest approach to

implement block placement is direct mapping [11]- [13]; its
function maps any block in the main memory into only one
possible cache line. The cache line is marked by a tag value to
distinguish a particular block of data from the other blocks that
can locate in that line.

Direct mapped caches are fast, simple and inexpensive to
implement. Moreover, direct mapped cache has been among
the most popular cache architectures in the past and is still
very common for off-chip caches. However, its main
disadvantage is the frequent occurrence of conflict. Conflict
occurs while executing a program task that requires several

variables that resides in two or more blocks that map to the
same cache line.

2. Fully Associative Mapping (FAM)
In contrast to the simple mapping for a direct mapping

cache, an associative cache allows any of the memory blocks
to be mapped to any of the cache lines [8], [14]. Such
flexibility allows for better utilization of the cache without
conflict. In this design, the line numbers of the current cache
contents are placed in an associative cache directory. The
block is searched for in the cache directory. If the CPU finds
its match, then the data is in the cache and the corresponding
block is accessed. A mismatch results in a cache miss, and a
fetch is issued to main memory. Since the block could be
placed in any cache line, one of the resident blocks is
overwritten. The choice of replacement block may cause future
cache misses.

Direct mapped and fully associative caches can be seen as
special cases of k-way set-associative caches of v-sets and d-
lines per a set. At v d= , a direct mapped cache is a one-way
set-associative cache, whereas a fully associative cache is d-
way one set-associative. In a fully associative cache and in a d-
way set-associative cache, a memory block can be placed into
several alternative cache lines.

Computer architects have recently focused on increasing the
set associatively of on-chip caches. A k-way set-associative
cache is characterized by a higher hardware complexity, but
usually implies higher hit rates [14]- [16]. The d-cache lines of
k-way set-associative cache are grouped into v-sets. The
contents of any memory block can be placed into any cache
line of the corresponding set. This design is a compromised
design that avoids the problem of conflicts and the dependency
of the cycle time on the cache size. For a given CPU address,
the address is obtained as in the direct mapping cache: B Mod
L where L is the number of sets. Once the required set is
determined, the desired block B is associatively searched for
among the members of the set. When a cache miss occurs,
replacement decisions take into account only members of the
set where the miss occurred, not the whole cache. Conflict will
rarely occur since two blocks accessed at the same time from
the same correspondence set may reside in different blocks of
a set. Thus, the set associative mapping cache organization has
most of the speed advantage of the direct mapping cache and
much of the flexibility of the full associative cache, both at a
moderate cost. Due to its cost-performance edge, set
associative cache design has been selected by many computer
manufactures when implementing a cache for their computer
systems.

3. Sector Mapping Cache (SMC)
In sector mapping, the main memory and the cache are both

divided into sectors; each sector is composed of a number of
blocks [17]. Any sector in the main memory can map into any
sector in the cache and a tag is stored with each sector in the
cache to identify the main memory sector address. However, a
complete sector is not transferred to the cache or back to the
main memory as one unit. Instead, individual blocks are
transferred as required. On cache sector miss, the required

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:6, No:4, 2012

495International Scholarly and Scientific Research & Innovation 6(4) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

4,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

32
8.

pd
f

block of the sector is transferred into a specific location within
one sector.

Sector mapping might be regarded as a fully associative
mapping scheme with valid bits, as in some microprocessor
caches. Each block in the fully associative mapped cache
corresponds to a sector, and each byte corresponds to a sector
block.

B.Cache Performance Model
Typical design and optimization techniques attempt to

reduce the number of instructions that are executed leading to
a high speed computer system. Many attempts had been
carried out to improve the cache memory performance. Serhan
and Abdel-Hag modified the set associative mapping in a way
to increase the set size virtually by allowing interleaving
processes to make use of empty lines in cache and not
overwrite the cache lines by each other [9]. Spjuth proposed
the elbow caching to improve the skewed-associative caching,
which depends on the efficiency of data movement between
alternate positions in the cache [18].

The performance of a cache can be quantified in terms of
the hit and miss rates, the cost of a hit, and the miss penalty,
where a cache hit is a memory access that finds data in the
cache and a cache miss is one that does not.

For cache reading, the cost of a cache hit is roughly the time
to access an entry in the cache. The miss penalty is the
additional cost of replacing a cache line with one containing
the desired data. Due to the principle of locality, there are a
number of accesses to items in the block that is brought into
cache, leading to faster overall access time. The fraction of the
total number of blocks that are missed in the cache and need to
access main memory is the miss ratio. Higher hit-rates provide
a high cache performance. Designers use average memory
access time as a way to measure cache performance. It is the
average time to access memory considering both hits and
misses and the frequency of different access which affects the
performance. For two memory levels, the average access time
(Tav) is determined in terms of cache hit and cache miss ratios
and access times for cache and main memory [6]. It is given
by:

Tav = (Cache hit ratio) × (Hit time) + (Cache miss ratio) × (Miss Penalty) (1)

Since the speeds of the actual memory used will be

improved independently, most effort in cache design is spent
on fast control and decreasing the miss rates. We can classify
misses into three categories, compulsory misses, capacity
misses and conflict misses. Compulsory misses are when data
is loaded into the cache for the first time (e.g. program startup)
and are unavoidable. Capacity misses are when data is
reloaded because the cache is not large enough to hold all the
data no matter how we organize the data. All other misses are
conflict misses which will occur because of a line may be
discarded and later retrieved if too many lines map to its set in
the case of direct mapped or set-associative cache. These
misses are also called collision or interference misses.

III. PROPOSED METHODOLOGY
In this paper, we investigate the benefits of optimizing cache

performance and focusing exclusively on enhancing the cache
hit ratio; since the cache performance can be classified in
terms of cache hit and cache miss ratios. The cache control
comparator and its technique play a crucial role in cache hit
time and thus in improving the cache performance. In our
proposed EOT technique, the line's tags are assumed in two
groups; even line's tags and odd line's tags depending on their
Least Significant Bit (LSB). Each line's tag is C-characters
size and each character is 4-bits. Before feeding the line's tag
of C-characters to the main cache comparator for a complete
C-character comparison, the line's tag is passed through the
even-or odd comparator for filtering. By this even-or odd
comparator, all the cache's tags of opposite LSB to the
memory address’s tag that is looking for will be rejected
directly and quickly before entering the complete and long C-
character comparison stage. Therefore, a lot of miss match
line's tags are discarded quickly before going to the main
cache comparator, leading to an optimum hit time for the
wanted cache line.

It is not necessary for all the cache line’s tags fetched from
the main memory to be divided equally between the even and
odd values. Thus depending on the current values of the line's
tags in the cache, the performance of the EOT technique can
be categorized in four cases:

i. Case- one: Equal hit ratio
If the current values of the line's tags in the cache come

equally between the even and odd values, then the hit ratio will
be the same for locating an even line's tag or odd line's tag.

ii. Case- two: High hit ratio
If the current line's tags of opposite LSB to the one that is

seeking for in the cache are coming more, the hit time is low
and a high hit ratio is obtained. This is due to the high speed
rejection of the miss match- LSB line's tags by the even-or odd
comparator.

iii. Case- three: Worse hit ratio
This is the rarely case. There is no improvement in the hit

ratio if the current values of the line's tags in the cache are all
coming in even or odd order and the cache line that is looking
for in even or odd order, respectively.

iv. Case- four: Uncounted hit ratio
If the current values of the line's tags come randomly in the

cache, the line hit time is unknown and depends on the random
distribution of the tags values in the cache.

A.Even- Odd Tabulation Technique (EOT)
 For mapping the main memory blocks into cache lines, the
memory address word is divided into two fields; the tag field
of t-bits and word field of w-bits. The tag value of the memory
address that is looking for needs to be compared with all line's
tags in the cache to grasp the desired cache line for a word
access. In EOT technique, before feeding the line's tags to the
main cache comparator of a counted time comparison, a
discriminated stage is added for even tags and odd tags. This
stage is implemented by adding the even-or odd comparator as
shown in Fig.1.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:6, No:4, 2012

496International Scholarly and Scientific Research & Innovation 6(4) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

4,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

32
8.

pd
f

Fig. 1 Even- Odd Tabulation Technique

B. Pseudo code for EOT Technique
A java code is written to implement the EOT technique and

determine the cache line hit time at different memory sizes.
The Pseudo code is given in Appendix (A). It includes the
following steps:

1. Step one
Take the tag value of the memory address of C-characters

that is looking for and the cache line's tag of C-characters and
feed them to the even-or odd comparator.

2. Step two
Compare the LSBs of both; memory address's tag and cache

line's tag. If there is a mismatch between them, the cache line's
tag is rejected directly. Otherwise, the line's tag is pushed
forward to the main cache comparator.

3. Step three
Compare the passed- line's tag with the memory address's

tag at the main cache comparator for a complete C-characters
comparison.

4. Step four
Continue on comparison process until reaching the cache

line's tag of C-matches. It is the wanted one, so break the
comparison.

IV. RESULTS AND DISCUSSIONS

The performance of the proposed technique EOT is
determined and compared with the well known technique
FAM. The simulation results are based on cache hit time and
investigated for different sizes of cache and main memory.
Fig.2 shows the cache hit time for the EOT technique against
that of FAM technique. The cache is 16k line size and their
lines are taken randomly from a main memory of 4M byte. The
performance of EOT and FAM are simulated for 20 line’s tags
generated randomly from the cache. The high performance of
EOT technique for cache hit time is arisen strongly. It is at
average improvement of 36.57% compared to FAM technique.
Fig.3 shows the performance of EOT against that of FAM
technique, for 20 line’s tags selected randomly from a 32k line

cache. The cache lines are also taken randomly from a main
memory of 16M byte. The average improvement in cache hit
time by EOT compared to FAM is 40.57%.

In Fig.4, the current values of the line’s tags are brought and
forced equally between even and odd values for 16k line
cache. Due to the direct and quick rejection of the half line’s
tags by the even-or odd comparator, the EOT technique has
shown a high performance for cache hit time. Its average
improvement compared to FAM is 45.45%.

Fig. 5 shows the worst case at where the current values of
the line’s tags in the cache are all forced in even order or in
odd order and the cache line that is looking for is in even order
or in odd order respectively. In practice, it is a rarely case. The
even- odd comparator in EOT technique becomes without
avail and it caused a regression of 4.16%.

The results summarizes that a powerful performance for a
cache hit time is obtained with the proposed technique EOT
compared to the familiar FAM technique.

0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

0

5

10

15

20

25

30

 Line's Tags, located randomly in cache

H
it-

tim
e,

 M
ic

ro
-s

ec

FAM

EOT

Fig. 2 Hit time in a 16k-line cache

0 2 4 6 8 10 12 14 16 18

x 10
6

0

5

10

15

20

25

30

35

40

45

Line's Tags, located randomly in cache

H
it-

tim
e,

 M
ic

ro
-s

ec

FMA

EOT

Fig.3 Hit time in a 32k-line cache

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:6, No:4, 2012

497International Scholarly and Scientific Research & Innovation 6(4) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

4,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

32
8.

pd
f

0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

0

5

10

15

20

25

30

Line's Tags, located randomly in cache

H
it-

tim
e,

 M
ic

ro
-s

ec

FAM

EOT

Fig.4 Hit time in 16k-line cache for equally even and odd line’s tags

0 2 4 6 8 10 12 14 16 18

x 10
6

0

5

10

15

20

25

30

Line's Tags, located randomly in cache

H
it-

tim
e,

 M
ic

ro
-s

ec

EOT

FAM

Fig.5 Hit time in a 16k-line cache for forced even order or odd order

line’s tags

 V. CONCLUSIONS
Cache performance optimization yields to significant

execution speedups. While some techniques are based on
optimizing compilers, others are based on hardware. Future
computer architecture trends further motivate research efforts
focusing on memory hierarchy optimizations. In this paper, we
presented optimum hardware cache architecture to enhance the
performance of the cache based on high hit ratio. Because
there are fewer cache lines than the main memory blocks, the
cache line’s tags can be come onto unequally two groups of
tags; even line’s tags and odd line’s tags. So the proposed
EOT approach exploited the LSB of the tag field in the main
memory address to distinguish between the match tags and
miss match tags in the cache. The even-or odd comparator
compares only the LSBs of the cache line’s tag and the
memory field tag and rejects any miss match cache line in very
low time. Consequently, only the matched cache line’s tags are
passed to the main cache comparator for a long and complete
C-character comparison. In this way a lot of miss match line’s
tags are grasped and rejected quickly in the even-or odd
comparator and they do not need to go to the main cache

comparator. Building on that, there is no waste of time and a
minimum time for cache line hitting is reached.

The performance of the proposed EOT technique is
simulated and compared to the well known FAM technique,
for different cache sizes; 16k line and 32k line. The results
have shown that the new EOT technique has achieved a high
performance for a line hit time in the cache compared to the
familiar FAM technique.

Appendix (A): Pseudo code for EOT technique
Find a cache-line’s tag using EOT technique;

Initialize time of one bit comparison = TB µs;

Initialize time of one hex-digit comparison = TH µs;
Initialize No. of Characters per a tag = C;
Initialize the “Bit-Counter” = zero;
Initialize the “Character-Counter” = zero;
for each line’s tag on cache do

Initialize the “Comparator-Counter” = zero;
Increment “Bit-Counter”;
if line’s tag and address’s tag are matched for LSB

then
for each hex-digit on line’s tag do

Increment “Character- Counter”;
if hex-digits of both Line’s tag and

address’s tag are matched then
Increment “Comparator-

Counter”;
endif;

endfor;
if Comparator- Counter equal C then

Cache line' tag is located
Time = (Bit- Counter × TB) +

(Character- Counter ×TH);
Break;

endif;
endif;

endfor;

REFERENCES

[1] U. Meyer, p. Sanders and j. Sibeyn, algorithms for memory hierarchies:
advanced lectures, springer-verlag, berlin, heidelberg 2003.

[2] M. Kowarschik and C. Weiß, “An Overview of Cache Optimization
Techniques and Cache-Aware Numerical Algorithms,” Lecture Notes in
Computer Science Vol. 2625, pp. 213-232, Springer, 2003.

[3] S. Mamagkakis, D. Atienza , C. Poucet , F. Catthoor , D. Soudris and
J. M. Mendias, “Custom Design of Multi-Level Dynamic Memory
Management Subsystem for Embedded Systems,” Proceedings of the
IEEE Workshop on Signal Processing Systems (SIPS'04), vol. 1, No. 1,
2004, pp. 170-175, New York: IEEE Press, 2004.

[4] C. Baloukas, et. al, “Optimization Methodology of Dynamic Data
Structures Based on Genetic Algorithms for Multimedia Embedded
Systems,” Elsevier, the journal of systems and software, Vol. 82,
pp.590–602, 2009.

[5] H. Eichenbaum, “Memory Systems,” Wiley Interdisciplinary Reviews:
Cognitive Science, 1: 478–490. doi: 10.1002/wcs.49, 2010.

[6] M. D. Hill and A. J. Smith, “Evaluating Associatively in CPU Caches,”
IEEE Transactions on Computers, Vol. 38(12), pp. 1612-1630, 1989.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:6, No:4, 2012

498International Scholarly and Scientific Research & Innovation 6(4) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

4,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

32
8.

pd
f

[7] T. M. Chilimbi, M. D. Hill and James R. Larus, “Cache-Conscious
Structure Layout,” Proceedings of the ACM SIGPLAN Conference on
programming language design and implementation, ISBN:1-58113-094-
5, PLDI ,1999.

[8] W. Stallings, Computer Organization and architecture, 7th Edition,
Prentice Hall, 2006.

[9] S. I. Serhan and H. M. Abdel-Haq, “Improving Cache Memory
Utilization,” World academy of science, engineering and technology,
Vol. 26, pp. 299-304, 2007.

[10] N. P. Topham and A. GonZalez, “Randomized Cache Placement for
Eliminating Conflicts,” IEEE Transactions on Computers, Vol. 48,
No.2, pp. 185-192, 1999.

[11] J. H. Bae and C. M. Kyung, “A Supplementary Scheme for Reducing
Cache Access Time,” IEICE Trans. on inf. and systems, Vol. E79-d, No.
4, pp. 385-389, 1996.

[12] N. P. Jouppi, Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers,
IEEE Proceeding, 17th Annual International Symposium on Computer
Architecture, Seattle, WA, USA, pp. 364-373, 28-31 May 1990.

[13] S. J. E Wilton and N. P. Jouppi, “CACTI: An Enhanced Cache Access
and Cycle Time Model,” IEEE Transactions on solid state circuits, Vol.
31, No. 5, pp. 677-688, 1996.

[14] P.F. Lin, “A 0.8-V 128Kb Four-Way Set-Associative Two-Level CMOS
Cache Memory Using Two-Stage Wordline/Bitline-oriented Tag-
Compare (WLOTC/BLOTC) Scheme,” IEEE Journal of Solid-State
Circuits Vol. 37, No. 10, pp. 1307-1311, 2002.

[15] Ruud Van DerPas “Memory Hierarchy in Cache Based System," Sun
Microsystems, Inc, part .No. 817-0742-10, 2002.

[16] P. Palsodkar, A. Deshmukh, P. Bajaj and A. G. Keskar, An Approach
for Four Way Set Associative Multilevel CMOS Cache Memory,
Lecture Notes in Computer Science, Vol. 4692, pp. 740-746, DOI:
10.1007/978-3-540-74819-9_91, 2007.

[17] J.B. Rothman and A.J. Smith, Sector cache design and performance,
IEEE Proceedings. 8th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems, 2000.
pp.124-133, San Francisco,CA,2000,doi:
10.1109/MASCOT.2000.876437.

[18] M. Spjuth, Refinement and Evaluation of the Elbow Cache, master's
thesis, Department of computer systems, Uppsala University, Sweden,
2002.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:6, No:4, 2012

499International Scholarly and Scientific Research & Innovation 6(4) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

4,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

32
8.

pd
f

