Search results for: complex shifted linear system
10494 Linear Quadratic Gaussian/Loop Transfer Recover Control Flight Control on a Nonlinear Model
Authors: T. Sanches, K. Bousson
Abstract:
As part of the development of a 4D autopilot system for unmanned aerial vehicles (UAVs), i.e. a time-dependent robust trajectory generation and control algorithm, this work addresses the problem of optimal path control based on the flight sensors data output that may be unreliable due to noise on data acquisition and/or transmission under certain circumstances. Although several filtering methods, such as the Kalman-Bucy filter or the Linear Quadratic Gaussian/Loop Transfer Recover Control (LQG/LTR), are available, the utter complexity of the control system, together with the robustness and reliability required of such a system on a UAV for airworthiness certifiable autonomous flight, required the development of a proper robust filter for a nonlinear system, as a way of further mitigate errors propagation to the control system and improve its ,performance. As such, a nonlinear algorithm based upon the LQG/LTR, is validated through computational simulation testing, is proposed on this paper.
Keywords: Autonomous flight, LQG/LTR, nonlinear state estimator, robust flight control and stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69510493 Traffic Signal Coordinated Control Optimization: A Case Study
Authors: Pengdi Diao, Zhuo Wang, Zundong Zhang, Hua Cheng
Abstract:
In the urban traffic network, the intersections are the “bottleneck point" of road network capacity. And the arterials are the main body in road network and the key factor which guarantees the normal operation of the city-s social and economic activities. The rapid increase in vehicles leads to seriously traffic jam and cause the increment of vehicles- delay. Most cities of our country are traditional single control system, which cannot meet the need for the city traffic any longer. In this paper, Synchro6.0 as a platform to minimize the intersection delay, optimizesingle signal cycle and split for Zhonghua Street in Handan City. Meanwhile, linear control system uses to optimize the phase for the t arterial road in this system. Comparing before and after use the control, capacities and service levels of this road and the adjacent road have improved significantly.Keywords: linear control system; delay mode; signal optimization; synchro6.0 simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212510492 Variogram Fitting Based on the Wilcoxon Norm
Authors: Hazem Al-Mofleh, John Daniels, Joseph McKean
Abstract:
Within geostatistics research, effective estimation of the variogram points has been examined, particularly in developing robust alternatives. The parametric fit of these variogram points which eventually defines the kriging weights, however, has not received the same attention from a robust perspective. This paper proposes the use of the non-linear Wilcoxon norm over weighted non-linear least squares as a robust variogram fitting alternative. First, we introduce the concept of variogram estimation and fitting. Then, as an alternative to non-linear weighted least squares, we discuss the non-linear Wilcoxon estimator. Next, the robustness properties of the non-linear Wilcoxon are demonstrated using a contaminated spatial data set. Finally, under simulated conditions, increasing levels of contaminated spatial processes have their variograms points estimated and fit. In the fitting of these variogram points, both non-linear Weighted Least Squares and non-linear Wilcoxon fits are examined for efficiency. At all levels of contamination (including 0%), using a robust estimation and robust fitting procedure, the non-weighted Wilcoxon outperforms weighted Least Squares.Keywords: Non-Linear Wilcoxon, robust estimation, Variogram estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96910491 Fractal Patterns for Power Quality Detection Using Color Relational Analysis Based Classifier
Authors: Chia-Hung Lin, Mei-Sung Kang, Cong-Hui Huang, Chao-Lin Kuo
Abstract:
This paper proposes fractal patterns for power quality (PQ) detection using color relational analysis (CRA) based classifier. Iterated function system (IFS) uses the non-linear interpolation in the map and uses similarity maps to construct various fractal patterns of power quality disturbances, including harmonics, voltage sag, voltage swell, voltage sag involving harmonics, voltage swell involving harmonics, and voltage interruption. The non-linear interpolation functions (NIFs) with fractal dimension (FD) make fractal patterns more distinguishing between normal and abnormal voltage signals. The classifier based on CRA discriminates the disturbance events in a power system. Compared with the wavelet neural networks, the test results will show accurate discrimination, good robustness, and faster processing time for detecting disturbing events.Keywords: Power Quality (PQ), Color Relational Analysis(CRA), Iterated Function System (IFS), Non-linear InterpolationFunction (NIF), Fractal Dimension (FD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164810490 Accurate Control of a Pneumatic System using an Innovative Fuzzy Gain-Scheduling Pattern
Authors: M. G. Papoutsidakis, G. Chamilothoris, F. Dailami, N. Larsen, A Pipe
Abstract:
Due to their high power-to-weight ratio and low cost, pneumatic actuators are attractive for robotics and automation applications; however, achieving fast and accurate control of their position have been known as a complex control problem. A methodology for obtaining high position accuracy with a linear pneumatic actuator is presented. During experimentation with a number of PID classical control approaches over many operations of the pneumatic system, the need for frequent manual re-tuning of the controller could not be eliminated. The reason for this problem is thermal and energy losses inside the cylinder body due to the complex friction forces developed by the piston displacements. Although PD controllers performed very well over short periods, it was necessary in our research project to introduce some form of automatic gain-scheduling to achieve good long-term performance. We chose a fuzzy logic system to do this, which proved to be an easily designed and robust approach. Since the PD approach showed very good behaviour in terms of position accuracy and settling time, it was incorporated into a modified form of the 1st order Tagaki- Sugeno fuzzy method to build an overall controller. This fuzzy gainscheduler uses an input variable which automatically changes the PD gain values of the controller according to the frequency of repeated system operations. Performance of the new controller was significantly improved and the need for manual re-tuning was eliminated without a decrease in performance. The performance of the controller operating with the above method is going to be tested through a high-speed web network (GRID) for research purposes.Keywords: Fuzzy logic, gain scheduling, leaky integrator, pneumatic actuator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175010489 Parameter Tuning of Complex Systems Modeled in Agent Based Modeling and Simulation
Authors: Rabia Korkmaz Tan, Şebnem Bora
Abstract:
The major problem encountered when modeling complex systems with agent-based modeling and simulation techniques is the existence of large parameter spaces. A complex system model cannot be expected to reflect the whole of the real system, but by specifying the most appropriate parameters, the actual system can be represented by the model under certain conditions. When the studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in agent based simulations, and these studies have focused on tuning parameters of a single model. In this study, an approach of parameter tuning is proposed by using metaheuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Firefly (FA) algorithms. With this hybrid structured study, the parameter tuning problems of the models in the different fields were solved. The new approach offered was tested in two different models, and its achievements in different problems were compared. The simulations and the results reveal that this proposed study is better than the existing parameter tuning studies.
Keywords: Parameter tuning, agent based modeling and simulation, metaheuristic algorithms, complex systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 124410488 Measuring the Efficiency of Medical Equipment
Authors: Panagiotis H. Tsarouhas
Abstract:
the reliability analysis of the medical equipments can help to increase the availability and the efficiency of the systems. In this manuscript we present a simple method of decomposition that could be easily applied on the complex medical systems. Using this method we can easily calculate the effect of the subsystems or components on the reliability of the overall system. Furthermore, to investigate the effect of subsystems or components on system performance, we perform a numerical study varying every time the worst reliability of subsystem or component with another which has higher reliability. It can also be useful to engineers and designers of medical equipment, who wishes to optimize the complex systems.Keywords: Reliability, Availability, Series-parallel System, medical equipment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 239610487 A Family of Zero Stable Block Integrator for the Solutions of Ordinary Differential Equations
Authors: A. M. Sagir
Abstract:
In this paper, linear multistep technique using power series as the basis function is used to develop the block methods which are suitable for generating direct solution of the special second order ordinary differential equations with associated initial or boundary conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain two different four discrete schemes, each of order (5,5,5,5)T, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block methods are tested on linear and non-linear ordinary differential equations and the results obtained compared favorably with the exact solution.Keywords: Block Method, Hybrid, Linear Multistep Method, Self – starting, Special Second Order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148310486 H∞ Fuzzy Integral Power Control for DFIG Wind Energy System
Authors: N. Chayaopas, W. Assawinchaichote
Abstract:
In order to maximize energy capturing from wind energy, controlling the doubly fed induction generator to have optimal power from the wind, generator speed and output electrical power control in wind energy system have a great importance due to the nonlinear behavior of wind velocities. In this paper purposes the design of a control scheme is developed for power control of wind energy system via H∞ fuzzy integral controller. Firstly, the nonlinear system is represented in term of a TS fuzzy control design via linear matrix inequality approach to find the optimal controller to have an H∞ performance are derived. The proposed control method extract the maximum energy from the wind and overcome the nonlinearity and disturbances problems of wind energy system which give good tracking performance and high efficiency power output of the DFIG.Keywords: H∞ fuzzy integral control, linear matrix inequality, wind energy system, doubly fed induction generator (DFIG).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 115310485 Application of Differential Transformation Method for Solving Dynamical Transmission of Lassa Fever Model
Authors: M. A. Omoloye, M. I. Yusuff, O. K. S. Emiola
Abstract:
The use of mathematical models for solving biological problems varies from simple to complex analyses, depending on the nature of the research problems and applicability of the models. The method is more common nowadays. Many complex models become impractical when transmitted analytically. However, alternative approach such as numerical method can be employed. It appropriateness in solving linear and non-linear model equation in Differential Transformation Method (DTM) which depends on Taylor series make it applicable. Hence this study investigates the application of DTM to solve dynamic transmission of Lassa fever model in a population. The mathematical model was formulated using first order differential equation. Firstly, existence and uniqueness of the solution was determined to establish that the model is mathematically well posed for the application of DTM. Numerically, simulations were conducted to compare the results obtained by DTM and that of fourth-order Runge-Kutta method. As shown, DTM is very effective in predicting the solution of epidemics of Lassa fever model.
Keywords: Differential Transform Method, Existence and uniqueness, Lassa fever, Runge-Kutta Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49010484 On Some Properties of Interval Matrices
Authors: K. Ganesan
Abstract:
By using a new set of arithmetic operations on interval numbers, we discuss some arithmetic properties of interval matrices which intern helps us to compute the powers of interval matrices and to solve the system of interval linear equations.Keywords: Interval arithmetic, Interval matrix, linear equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205510483 An Approximate Solution of the Classical Van der Pol Oscillator Coupled Gyroscopically to a Linear Oscillator Using Parameter-Expansion Method
Authors: Mohammad Taghi Darvishi, Samad Kheybari
Abstract:
In this article, we are dealing with a model consisting of a classical Van der Pol oscillator coupled gyroscopically to a linear oscillator. The major problem is analyzed. The regular dynamics of the system is considered using analytical methods. In this case, we provide an approximate solution for this system using parameter-expansion method. Also, we find approximate values for frequencies of the system. In parameter-expansion method the solution and unknown frequency of oscillation are expanded in a series by a bookkeeping parameter. By imposing the non-secularity condition at each order in the expansion the method provides different approximations to both the solution and the frequency of oscillation. One iteration step provides an approximate solution which is valid for the whole solution domain.
Keywords: Parameter-expansion method, classical Van der Pol oscillator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185810482 Relationship between Sums of Squares in Linear Regression and Semi-parametric Regression
Authors: Dursun Aydın, Bilgin Senel
Abstract:
In this paper, the sum of squares in linear regression is reduced to sum of squares in semi-parametric regression. We indicated that different sums of squares in the linear regression are similar to various deviance statements in semi-parametric regression. In addition to, coefficient of the determination derived in linear regression model is easily generalized to coefficient of the determination of the semi-parametric regression model. Then, it is made an application in order to support the theory of the linear regression and semi-parametric regression. In this way, study is supported with a simulated data example.Keywords: Semi-parametric regression, Penalized LeastSquares, Residuals, Deviance, Smoothing Spline.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185410481 Rapid Data Acquisition System for Complex Algorithm Testing in Plastic Molding Industry
Authors: A. Tellaeche, R. Arana
Abstract:
Injection molding is a very complicated process to monitor and control. With its high complexity and many process parameters, the optimization of these systems is a very challenging problem. To meet the requirements and costs demanded by the market, there has been an intense development and research with the aim to maintain the process under control. This paper outlines the latest advances in necessary algorithms for plastic injection process and monitoring, and also a flexible data acquisition system that allows rapid implementation of complex algorithms to assess their correct performance and can be integrated in the quality control process. This is the main topic of this paper. Finally, to demonstrate the performance achieved by this combination, a real case of use is presented.
Keywords: Plastic injection, machine learning, rapid complex algorithm prototyping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212310480 Understanding Workplace Behavior through Organizational Culture and Complex Adaptive Systems Theory
Authors: Péter Restás, Andrea Czibor, Zsolt Péter Szabó
Abstract:
Purpose: This article aims to rethink the phenomena of employee behavior as a product of a system. Both organizational culture and Complex Adaptive Systems (CAS) theory emphasize that individual behavior depends on the specific system and the unique organizational culture. These two major theories are both represented in the field of organizational studies; however, they are rarely used together for the comprehensive understanding of workplace behavior. Methodology: By reviewing the literature we use key concepts stemming from organizational culture and CAS theory in order to show the similarities between these theories and create an enriched understanding of employee behavior. Findings: a) Workplace behavior is defined here as social cognition issue. b) Organizations are discussed here as complex systems, and cultures which drive and dictate the cognitive processes of agents in the system. c) Culture gives CAS theory a context which lets us see organizations not just as ever-changing and unpredictable, but as such systems that aim to create and maintain stability by recurring behavior. Conclusion: Applying the knowledge from culture and CAS theory sheds light on our present understanding of employee behavior, also emphasizes the importance of novel ways in organizational research and management.
Keywords: Complex adaptive systems theory, employee behavior, organizational culture, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136610479 Algorithms for the Fast Computation of PWL and PHL Transforms
Authors: Fituri H Belgassem, Abdulbasit Nigrat, Seddeeq Ghrari
Abstract:
In this paper, the construction of fast algorithms for the computation of Periodic Walsh Piecewise-Linear PWL transform and the Periodic Haar Piecewise-Linear PHL transform will be presented. Algorithms for the computation of the inverse transforms are also proposed. The matrix equation of the PWL and PHL transforms are introduced. Comparison of the computational requirements for the periodic piecewise-linear transforms and other orthogonal transforms shows that the periodic piecewise-linear transforms require less number of operations than some orthogonal transforms such as the Fourier, Walsh and the Discrete Cosine transforms.
Keywords: Piece wise linear transforms, Fast transforms, Fast algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166110478 Construction of a Low Carbon Eco-City Index System Based on CAS Theory: A Case of Hexi Newtown in Nanjing, China
Authors: Xu Tao, Yilun Xu, Dingwei Xiang, Yaofei Sun
Abstract:
The practice of urban planning and construction based on the concept of the “low carbon eco-city” has been universally accepted by the academic community in response to urban issues such as population, resources, environment, and social development. Based on this, the current article first analyzes the concepts of low carbon eco-city, then builds a complex adaptive system (CAS) theory based on Chinese traditional philosophical thinking, and analyzes the adaptive relationship between material and non-material elements. A three-dimensional evaluation model of natural ecology, economic low carbon, and social harmony was constructed. Finally, the construction of a low carbon eco-city index system in Hexi Newtown of Nanjing was used as an example to verify the effectiveness of the research results; this paradigm provides a new way to achieve a low carbon eco-city system.
Keywords: Complex adaptive system, low carbon ecology, index system, model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 99810477 Auto Regressive Tree Modeling for Parametric Optimization in Fuzzy Logic Control System
Authors: Arshia Azam, J. Amarnath, Ch. D. V. Paradesi Rao
Abstract:
The advantage of solving the complex nonlinear problems by utilizing fuzzy logic methodologies is that the experience or expert-s knowledge described as a fuzzy rule base can be directly embedded into the systems for dealing with the problems. The current limitation of appropriate and automated designing of fuzzy controllers are focused in this paper. The structure discovery and parameter adjustment of the Branched T-S fuzzy model is addressed by a hybrid technique of type constrained sparse tree algorithms. The simulation result for different system model is evaluated and the identification error is observed to be minimum.Keywords: Fuzzy logic, branch T-S fuzzy model, tree modeling, complex nonlinear system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138910476 A Model-following Adaptive Controller for Linear/Nonlinear Plantsusing Radial Basis Function Neural Networks
Authors: Yuichi Masukake, Yoshihisa Ishida
Abstract:
In this paper, we proposed a method to design a model-following adaptive controller for linear/nonlinear plants. Radial basis function neural networks (RBF-NNs), which are known for their stable learning capability and fast training, are used to identify linear/nonlinear plants. Simulation results show that the proposed method is effective in controlling both linear and nonlinear plants with disturbance in the plant input.Keywords: Linear/nonlinear plants, neural networks, radial basisfunction networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148210475 Use of Linear Programming for Optimal Production in a Production Line in Saudi Food Co.
Authors: Qasim M. Kriri
Abstract:
Few Saudi Arabia production companies face financial profit issues until this moment. This work presents a linear integer programming model that solves a production problem of a Saudi Food Company in Saudi Arabia. An optimal solution to the above-mentioned problem is a Linear Programming solution. In this regard, the main purpose of this project is to maximize profit. Linear Programming Technique has been used to derive the maximum profit from production of natural juice at Saudi Food Co. The operations of production of the company were formulated and optimal results are found out by using Lindo Software that employed Sensitivity Analysis and Parametric linear programming in order develop Linear Programming. In addition, the parameter values are increased, then the values of the objective function will be increased.
Keywords: Parameter linear programming, objective function, sensitivity analysis, optimize profit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 290810474 On a New Numerical Analysis for the Symmetric Shortest Queue Problem
Authors: Tayeb Lardjane, Rabah Messaci
Abstract:
We consider a network of two M/M/1 parallel queues having the same poisonnian arrival stream with rate λ. Upon his arrival to the system a customer heads to the shortest queue and stays until being served. If the two queues have the same length, an arriving customer chooses one of the two queues with the same probability. Each duration of service in the two queues is an exponential random variable with rate μ and no jockeying is permitted between the two queues. A new numerical method, based on linear programming and convex optimization, is performed for the computation of the steady state solution of the system.
Keywords: Steady state solution, matrix formulation, convex set, shortest queue, linear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148610473 Material Characterization and Numerical Simulation of a Rubber Bumper
Authors: Tamás Mankovits, Dávid Huri, Imre Kállai, Imre Kocsis, Tamás Szabó
Abstract:
Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. In this paper a comprehensive investigation is introduced including laboratory measurements, mesh density analysis and complex finite element simulations to obtain the load-displacement curve of the chosen rubber bumper. Contact and friction effects are also taken into consideration. The aim of this research is to elaborate a FEM model which is accurate and competitive for a future shape optimization task.
Keywords: Rubber bumper, finite element analysis, compression test, Mooney-Rivlin material model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 358410472 Development of Orbital TIG Welding Robot System for the Pipe
Authors: Dongho Kim, Sung Choi, Kyowoong Pee, Youngsik Cho, Seungwoo Jeong, Soo-Ho Kim
Abstract:
This study is about the orbital TIG welding robot system which travels on the guide rail installed on the pipe, and welds and tracks the pipe seam using the LVS (Laser Vision Sensor) joint profile data. The orbital welding robot system consists of the robot, welder, controller, and LVS. Moreover we can define the relationship between welding travel speed and wire feed speed, and we can make the linear equation using the maximum and minimum amount of weld metal. Using the linear equation we can determine the welding travel speed and the wire feed speed accurately corresponding to the area of weld captured by LVS. We applied this orbital TIG welding robot system to the stainless steel or duplex pipe on DSME (Daewoo Shipbuilding and Marine Engineering Co. Ltd.,) shipyard and the result of radiographic test is almost perfect. (Defect rate: 0.033%).
Keywords: Adaptive welding, automatic welding, Pipe welding, Orbital welding, Laser vision sensor, LVS, welding D/B.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 386810471 An Inverse Optimal Control Approach for the Nonlinear System Design Using ANN
Authors: M. P. Nanda Kumar, K. Dheeraj
Abstract:
The design of a feedback controller, so as to minimize a given performance criterion, for a general non-linear dynamical system is difficult; if not impossible. But for a large class of non-linear dynamical systems, the open loop control that minimizes a performance criterion can be obtained using calculus of variations and Pontryagin’s minimum principle. In this paper, the open loop optimal trajectories, that minimizes a given performance measure, is used to train the neural network whose inputs are state variables of non-linear dynamical systems and the open loop optimal control as the desired output. This trained neural network is used as the feedback controller. In other words, attempts are made here to solve the “inverse optimal control problem” by using the state and control trajectories that are optimal in an open loop sense.
Keywords: Inverse Optimal Control, Radial basis function neural network, Controller Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 228810470 BIM Application Research Based on the Main Entrance and Garden Area Project of Shanghai Disneyland
Authors: Ying Yuken, Pengfei Wang, Zhang Qilin, Xiao Ben
Abstract:
Based on the main entrance and garden area (ME&G) project of Shanghai Disneyland, this paper introduces the application of BIM technology in this kind of low-rise comprehensive building with complex facade system, electromechanical system and decoration system. BIM technology is applied to the whole process of design, construction and completion of the whole project. With the construction of BIM application framework of the whole project, the key points of BIM modeling methods of different systems and the integration and coordination of BIM models are elaborated in detail. The specific application methods of BIM technology in similar complex low-rise building projects are sorted out. Finally, the paper summarizes the benefits of BIM technology application, and puts forward some suggestions for BIM management mode and practical application of similar projects in the future.Keywords: BIM, complex low-rise building, BIM modeling, model integration and coordination, 3D scanning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 106710469 Analysis of Target Location Estimation in High Performance Radar System
Authors: Jin-Hyeok Kim, Won-Chul Choi, Seung-Ri Jin, Dong-Jo Park
Abstract:
In this paper, an analysis of a target location estimation system using the best linear unbiased estimator (BLUE) for high performance radar systems is presented. In synthetic environments, we are here concerned with three key elements of radar system modeling, which makes radar systems operates accurately in strategic situation in virtual ground. Radar Cross Section (RCS) modeling is used to determine the actual amount of electromagnetic waves that are reflected from a tactical object. Pattern Propagation Factor (PPF) is an attenuation coefficient of the radar equation that contains the reflection from the surface of the earth, the diffraction, the refraction and scattering by the atmospheric environment. Clutter is the unwanted echoes of electronic systems. For the data fusion of output results from radar detection in synthetic environment, BLUE is used and compared with the mean values of each simulation results. Simulation results demonstrate the performance of the radar system.Keywords: Best linear unbiased estimator (BLUE) , data fusion, radar system modeling, target location estimation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 208410468 Order Reduction of Linear Dynamic Systems using Stability Equation Method and GA
Authors: G. Parmar, R. Prasad, S. Mukherjee
Abstract:
The authors present an algorithm for order reduction of linear dynamic systems using the combined advantages of stability equation method and the error minimization by Genetic algorithm. The denominator of the reduced order model is obtained by the stability equation method and the numerator terms of the lower order transfer function are determined by minimizing the integral square error between the transient responses of original and reduced order models using Genetic algorithm. The reduction procedure is simple and computer oriented. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. The proposed algorithm has also been extended for the order reduction of linear multivariable systems. Two numerical examples are solved to illustrate the superiority of the algorithm over some existing ones including one example of multivariable system.
Keywords: Genetic algorithm, Integral square error, Orderreduction, Stability equation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 318910467 Modeling and Simulation of Ship Structures Using Finite Element Method
Authors: Javid Iqbal, Zhu Shifan
Abstract:
The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.
Keywords: Dynamic analysis, finite element methods, ship structure, vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 246710466 Analysis of a Spatiotemporal Phytoplankton Dynamics: Higher Order Stability and Pattern Formation
Authors: Randhir Singh Baghel, Joydip Dhar, Renu Jain
Abstract:
In this paper, for the understanding of the phytoplankton dynamics in marine ecosystem, a susceptible and an infected class of phytoplankton population is considered in spatiotemporal domain. Here, the susceptible phytoplankton is growing logistically and the growth of infected phytoplankton is due to the instantaneous Holling type-II infection response function. The dynamics are studied in terms of the local and global stabilities for the system and further explore the possibility of Hopf -bifurcation, taking the half saturation period as (i.e., ) the bifurcation parameter in temporal domain. It is also observe that the reaction diffusion system exhibits spatiotemporal chaos and pattern formation in phytoplankton dynamics, which is particularly important role play for the spatially extended phytoplankton system. Also the effect of the diffusion coefficient on the spatial system for both one and two dimensional case is obtained. Furthermore, we explore the higher-order stability analysis of the spatial phytoplankton system for both linear and no-linear system. Finally, few numerical simulations are carried out for pattern formation.Keywords: Phytoplankton dynamics, Reaction-diffusion system, Local stability, Hopf-bifurcation, Global stability, Chaos, Pattern Formation, Higher-order stability analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165010465 Determination of Geometric Dimensions of a Double Sided Linear Switched Reluctance Motor
Authors: Dursun M., Koc F., Ozbay H.
Abstract:
In this study, a double-sided linear switched reluctance motor (LSRM) drive was investigated as an alternative actuator for vertical linear transportation applications such as a linear elevator door, hospital and subway doors which move linearly and where accurate position control and rapid response is requested. A prototype sliding elevator door that is focused on a home elevator with LSRMs is designed. The motor has 6/4 poles, 3 phases, 8A, 24V, 250 W and 250 N pull forces. Air gap between rotor and translator poles of the designed motor and phase coil-s ideal inductance profile are obtained in compliance with the geometric dimensions. Operation and switching sections as motor and generator has been determined from the inductance profile.Keywords: Linear switched reluctance motor, sliding door, elevator door, linear motor design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2706