Search results for: Web page classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1205

Search results for: Web page classification

1055 Face Recognition Using Morphological Shared-weight Neural Networks

Authors: Hossein Sahoolizadeh, Mahdi Rahimi, Hamid Dehghani

Abstract:

We introduce an algorithm based on the morphological shared-weight neural network. Being nonlinear and translation-invariant, the MSNN can be used to create better generalization during face recognition. Feature extraction is performed on grayscale images using hit-miss transforms that are independent of gray-level shifts. The output is then learned by interacting with the classification process. The feature extraction and classification networks are trained together, allowing the MSNN to simultaneously learn feature extraction and classification for a face. For evaluation, we test for robustness under variations in gray levels and noise while varying the network-s configuration to optimize recognition efficiency and processing time. Results show that the MSNN performs better for grayscale image pattern classification than ordinary neural networks.

Keywords: Face recognition, Neural Networks, Multi-layer Perceptron, masking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
1054 Fuzzy Inference System Based Unhealthy Region Classification in Plant Leaf Image

Authors: K. Muthukannan, P. Latha

Abstract:

In addition to environmental parameters like rain, temperature diseases on crop is a major factor which affects production quality & quantity of crop yield. Hence disease management is a key issue in agriculture. For the management of disease, it needs to be detected at early stage. So, treat it properly & control spread of the disease. Now a day, it is possible to use the images of diseased leaf to detect the type of disease by using image processing techniques. This can be achieved by extracting features from the images which can be further used with classification algorithms or content based image retrieval systems. In this paper, color image is used to extract the features such as mean and standard deviation after the process of region cropping. The selected features are taken from the cropped image with different image size samples. Then, the extracted features are taken in to the account for classification using Fuzzy Inference System (FIS).

Keywords: Image Cropping, Classification, Color, Fuzzy Rule, Feature Extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
1053 A New Approach for the Fingerprint Classification Based On Gray-Level Co- Occurrence Matrix

Authors: Mehran Yazdi, Kazem Gheysari

Abstract:

In this paper, we propose an approach for the classification of fingerprint databases. It is based on the fact that a fingerprint image is composed of regular texture regions that can be successfully represented by co-occurrence matrices. So, we first extract the features based on certain characteristics of the cooccurrence matrix and then we use these features to train a neural network for classifying fingerprints into four common classes. The obtained results compared with the existing approaches demonstrate the superior performance of our proposed approach.

Keywords: Biometrics, fingerprint classification, gray level cooccurrence matrix, regular texture representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
1052 Satellite Data Classification Accuracy Assessment Based from Reference Dataset

Authors: Mohd Hasmadi Ismail, Kamaruzaman Jusoff

Abstract:

In order to develop forest management strategies in tropical forest in Malaysia, surveying the forest resources and monitoring the forest area affected by logging activities is essential. There are tremendous effort has been done in classification of land cover related to forest resource management in this country as it is a priority in all aspects of forest mapping using remote sensing and related technology such as GIS. In fact classification process is a compulsory step in any remote sensing research. Therefore, the main objective of this paper is to assess classification accuracy of classified forest map on Landsat TM data from difference number of reference data (200 and 388 reference data). This comparison was made through observation (200 reference data), and interpretation and observation approaches (388 reference data). Five land cover classes namely primary forest, logged over forest, water bodies, bare land and agricultural crop/mixed horticultural can be identified by the differences in spectral wavelength. Result showed that an overall accuracy from 200 reference data was 83.5 % (kappa value 0.7502459; kappa variance 0.002871), which was considered acceptable or good for optical data. However, when 200 reference data was increased to 388 in the confusion matrix, the accuracy slightly improved from 83.5% to 89.17%, with Kappa statistic increased from 0.7502459 to 0.8026135, respectively. The accuracy in this classification suggested that this strategy for the selection of training area, interpretation approaches and number of reference data used were importance to perform better classification result.

Keywords: Image Classification, Reference Data, Accuracy Assessment, Kappa Statistic, Forest Land Cover

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3140
1051 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars, and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: Remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
1050 Classifying and Predicting Efficiencies Using Interval DEA Grid Setting

Authors: Yiannis G. Smirlis

Abstract:

The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.

Keywords: Data envelopment analysis, interval DEA, efficiency classification, efficiency prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
1049 Active Segment Selection Method in EEG Classification Using Fractal Features

Authors: Samira Vafaye Eslahi

Abstract:

BCI (Brain Computer Interface) is a communication machine that translates brain massages to computer commands. These machines with the help of computer programs can recognize the tasks that are imagined. Feature extraction is an important stage of the process in EEG classification that can effect in accuracy and the computation time of processing the signals. In this study we process the signal in three steps of active segment selection, fractal feature extraction, and classification. One of the great challenges in BCI applications is to improve classification accuracy and computation time together. In this paper, we have used student’s 2D sample t-statistics on continuous wavelet transforms for active segment selection to reduce the computation time. In the next level, the features are extracted from some famous fractal dimension estimation of the signal. These fractal features are Katz and Higuchi. In the classification stage we used ANFIS (Adaptive Neuro-Fuzzy Inference System) classifier, FKNN (Fuzzy K-Nearest Neighbors), LDA (Linear Discriminate Analysis), and SVM (Support Vector Machines). We resulted that active segment selection method would reduce the computation time and Fractal dimension features with ANFIS analysis on selected active segments is the best among investigated methods in EEG classification.

Keywords: EEG, Student’s t- statistics, BCI, Fractal Features, ANFIS, FKNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
1048 Pattern Recognition of Partial Discharge by Using Simplified Fuzzy ARTMAP

Authors: S. Boonpoke, B. Marungsri

Abstract:

This paper presents the effectiveness of artificial intelligent technique to apply for pattern recognition and classification of Partial Discharge (PD). Characteristics of PD signal for pattern recognition and classification are computed from the relation of the voltage phase angle, the discharge magnitude and the repeated existing of partial discharges by using statistical and fractal methods. The simplified fuzzy ARTMAP (SFAM) is used for pattern recognition and classification as artificial intelligent technique. PDs quantities, 13 parameters from statistical method and fractal method results, are inputted to Simplified Fuzzy ARTMAP to train system for pattern recognition and classification. The results confirm the effectiveness of purpose technique.

Keywords: Partial discharges, PD Pattern recognition, PDClassification, Artificial intelligent, Simplified Fuzzy ARTMAP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3083
1047 Development of Fake News Model Using Machine Learning through Natural Language Processing

Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini

Abstract:

Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.

Keywords: Fake news detection, types of fake news, machine learning, natural language processing, classification techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
1046 Decomposition Method for Neural Multiclass Classification Problem

Authors: H. El Ayech, A. Trabelsi

Abstract:

In this article we are going to discuss the improvement of the multi classes- classification problem using multi layer Perceptron. The considered approach consists in breaking down the n-class problem into two-classes- subproblems. The training of each two-class subproblem is made independently; as for the phase of test, we are going to confront a vector that we want to classify to all two classes- models, the elected class will be the strongest one that won-t lose any competition with the other classes. Rates of recognition gotten with the multi class-s approach by two-class-s decomposition are clearly better that those gotten by the simple multi class-s approach.

Keywords: Artificial neural network, letter-recognition, Multi class Classification, Multi Layer Perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
1045 Pattern Classification of Back-Propagation Algorithm Using Exclusive Connecting Network

Authors: Insung Jung, Gi-Nam Wang

Abstract:

The objective of this paper is to a design of pattern classification model based on the back-propagation (BP) algorithm for decision support system. Standard BP model has done full connection of each node in the layers from input to output layers. Therefore, it takes a lot of computing time and iteration computing for good performance and less accepted error rate when we are doing some pattern generation or training the network. However, this model is using exclusive connection in between hidden layer nodes and output nodes. The advantage of this model is less number of iteration and better performance compare with standard back-propagation model. We simulated some cases of classification data and different setting of network factors (e.g. hidden layer number and nodes, number of classification and iteration). During our simulation, we found that most of simulations cases were satisfied by BP based using exclusive connection network model compared to standard BP. We expect that this algorithm can be available to identification of user face, analysis of data, mapping data in between environment data and information.

Keywords: Neural network, Back-propagation, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
1044 Feature Subset Selection Using Ant Colony Optimization

Authors: Ahmed Al-Ani

Abstract:

Feature selection is an important step in many pattern classification problems. It is applied to select a subset of features, from a much larger set, such that the selected subset is sufficient to perform the classification task. Due to its importance, the problem of feature selection has been investigated by many researchers. In this paper, a novel feature subset search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.

Keywords: Ant Colony Optimization, ant systems, feature selection, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
1043 Drying of Papaya (Carica papaya L.) Using a Microwave-vacuum Dryer

Authors: Kraipat Cheenkachorn, Piyawat Jintanatham, Sarun Rattanaprapa

Abstract:

In present work, drying characteristics of fresh papaya (Carica papaya L.) was studied to understand the dehydration process and its behavior. Drying experiments were carried out by a laboratory scaled microwave-vacuum oven. The parameters affecting drying characteristics including operating modes (continuous, pulsed), microwave power (400 and 800 W), and vacuum pressure (20, 30, and 40 cmHg) were investigated. For pulsed mode, two levels of power-off time (60 and 120 s) were used while the power-on time was fixed at 60 s and the vacuum pressure was fixed at 40 cmHg. For both operating modes, the effects of drying conditions on drying time, drying rate, and effective diffusivity were investigated. The results showed high microwave power, high vacuum, and pulsed mode of 60 s-on/60 s-off favored drying rate as shown by the shorten drying time and increased effective diffusivity. The drying characteristics were then described by Page-s model, which showed a good agreement with experimental data.

Keywords: papaya, microwave-vacuum drying, effective diffusivity, Page's model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2864
1042 Classification and Resolving Urban Problems by Means of Fuzzy Approach

Authors: F. Habib, A. Shokoohi

Abstract:

Urban problems are problems of organized complexity. Thus, many models and scientific methods to resolve urban problems are failed. This study is concerned with proposing of a fuzzy system driven approach for classification and solving urban problems. The proposed study investigated mainly the selection of the inputs and outputs of urban systems for classification of urban problems. In this research, five categories of urban problems, respect to fuzzy system approach had been recognized: control, polytely, optimizing, open and decision making problems. Grounded Theory techniques were then applied to analyze the data and develop new solving method for each category. The findings indicate that the fuzzy system methods are powerful processes and analytic tools for helping planners to resolve urban complex problems. These tools can be successful where as others have failed because both incorporate or address uncertainty and risk; complexity and systems interacting with other systems.

Keywords: Classification, complexity, Fuzzy theory, urban problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111
1041 Bone Proteome Study in Ovariectomised Rats Supplemented with Palm Vitamin E

Authors: Patrick Nwabueze Okechukwu, Ima Nirwana Soelaiman, Gabriele Anisah Ruth Froemming, Mohd Yusri Idorus, Norazlina Mohamed

Abstract:

Supplementation of palm vitamin E has been reported to prevent loss of bone density in ovariectomised female rats. The mechanism by which palm vitamin E exerts these effects is still unknown. We hypothesized that palm vitamin E may act by preventing the protein expression changes. Two dimensional poly acyrilamide gel electrophoresis (2-D PAGE) and PD Quest software genomic solutions Investigator (proteomics) was used to analyze the differential protein expression profile in femoral and humeri bones harvested from three groups of rats; sham-operated rats (SO), ovariectomised rats (Ovx) and ovariectomised rats supplemented for 2 months with palm vitamin E. The results showed that there were over 300 valued spot on each of the groups PVE and OVX as compared to about 200 in SO. Comparison between the differential protein expression between OVX and PVE groups showed that ten spots were down –regulated in OVX but up-regulated in PVE. The ten differential spots were separately named P1-P10. The identification and understanding of the pathway of the differential protein expression among the groups is ongoing and may account for the molecular mechanism through which palm vitamin E exert its anti-osteoporotic effect.

Keywords: Palm vitamin E, ovariectomised, osteoporosis protein expression, 2-d-page.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
1040 Advanced Geolocation of IP Addresses

Authors: Robert Koch, Mario Golling, Gabi Dreo Rodosek

Abstract:

Tracing and locating the geographical location of users (Geolocation) is used extensively in todays Internet. Whenever we, e.g., request a page from google we are - unless there was a specific configuration made - automatically forwarded to the page with the relevant language and amongst others, dependent on our location identified, specific commercials are presented. Especially within the area of Network Security, Geolocation has a significant impact. Because of the way the Internet works, attacks can be executed from almost everywhere. Therefore, for an attribution, knowledge of the origination of an attack - and thus Geolocation - is mandatory in order to be able to trace back an attacker. In addition, Geolocation can also be used very successfully to increase the security of a network during operation (i.e. before an intrusion actually has taken place). Similar to greylisting in emails, Geolocation allows to (i) correlate attacks detected with new connections and (ii) as a consequence to classify traffic a priori as more suspicious (thus particularly allowing to inspect this traffic in more detail). Although numerous techniques for Geolocation are existing, each strategy is subject to certain restrictions. Following the ideas of Endo et al., this publication tries to overcome these shortcomings with a combined solution of different methods to allow improved and optimized Geolocation. Thus, we present our architecture for improved Geolocation, by designing a new algorithm, which combines several Geolocation techniques to increase the accuracy.

Keywords: IP geolocation, prosecution of computer fraud, attack attribution, target-analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4725
1039 Performance Analysis of Genetic Algorithm with kNN and SVM for Feature Selection in Tumor Classification

Authors: C. Gunavathi, K. Premalatha

Abstract:

Tumor classification is a key area of research in the field of bioinformatics. Microarray technology is commonly used in the study of disease diagnosis using gene expression levels. The main drawback of gene expression data is that it contains thousands of genes and a very few samples. Feature selection methods are used to select the informative genes from the microarray. These methods considerably improve the classification accuracy. In the proposed method, Genetic Algorithm (GA) is used for effective feature selection. Informative genes are identified based on the T-Statistics, Signal-to-Noise Ratio (SNR) and F-Test values. The initial candidate solutions of GA are obtained from top-m informative genes. The classification accuracy of k-Nearest Neighbor (kNN) method is used as the fitness function for GA. In this work, kNN and Support Vector Machine (SVM) are used as the classifiers. The experimental results show that the proposed work is suitable for effective feature selection. With the help of the selected genes, GA-kNN method achieves 100% accuracy in 4 datasets and GA-SVM method achieves in 5 out of 10 datasets. The GA with kNN and SVM methods are demonstrated to be an accurate method for microarray based tumor classification.

Keywords: F-Test, Gene Expression, Genetic Algorithm, k- Nearest-Neighbor, Microarray, Signal-to-Noise Ratio, Support Vector Machine, T-statistics, Tumor Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4538
1038 Combined Feature Based Hyperspectral Image Classification Technique Using Support Vector Machines

Authors: Mrs.K.Kavitha, S.Arivazhagan

Abstract:

A spatial classification technique incorporating a State of Art Feature Extraction algorithm is proposed in this paper for classifying a heterogeneous classes present in hyper spectral images. The classification accuracy can be improved if and only if both the feature extraction and classifier selection are proper. As the classes in the hyper spectral images are assumed to have different textures, textural classification is entertained. Run Length feature extraction is entailed along with the Principal Components and Independent Components. A Hyperspectral Image of Indiana Site taken by AVIRIS is inducted for the experiment. Among the original 220 bands, a subset of 120 bands is selected. Gray Level Run Length Matrix (GLRLM) is calculated for the selected forty bands. From GLRLMs the Run Length features for individual pixels are calculated. The Principle Components are calculated for other forty bands. Independent Components are calculated for next forty bands. As Principal & Independent Components have the ability to represent the textural content of pixels, they are treated as features. The summation of Run Length features, Principal Components, and Independent Components forms the Combined Features which are used for classification. SVM with Binary Hierarchical Tree is used to classify the hyper spectral image. Results are validated with ground truth and accuracies are calculated.

Keywords: Multi-class, Run Length features, PCA, ICA, classification and Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
1037 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System

Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García

Abstract:

In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.

Keywords: Intelligent transportation systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
1036 Air Classification of Dust from Steel Converter Secondary De-dusting for Zinc Enrichment

Authors: C. Lanzerstorfer

Abstract:

The off-gas from the basic oxygen furnace (BOF), where pig iron is converted into steel, is treated in the primary ventilation system. This system is in full operation only during oxygen-blowing when the BOF converter vessel is in a vertical position. When pig iron and scrap are charged into the BOF and when slag or steel are tapped, the vessel is tilted. The generated emissions during charging and tapping cannot be captured by the primary off-gas system. To capture these emissions, a secondary ventilation system is usually installed. The emissions are captured by a canopy hood installed just above the converter mouth in tilted position. The aim of this study was to investigate the dependence of Zn and other components on the particle size of BOF secondary ventilation dust. Because of the high temperature of the BOF process it can be expected that Zn will be enriched in the fine dust fractions. If Zn is enriched in the fine fractions, classification could be applied to split the dust into two size fractions with a different content of Zn. For this air classification experiments with dust from the secondary ventilation system of a BOF were performed. The results show that Zn and Pb are highly enriched in the finest dust fraction. For Cd, Cu and Sb the enrichment is less. In contrast, the non-volatile metals Al, Fe, Mn and Ti were depleted in the fine fractions. Thus, air classification could be considered for the treatment of dust from secondary BOF off-gas cleaning.

Keywords: Air classification, converter dust, recycling, zinc.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
1035 Satellite Imagery Classification Based on Deep Convolution Network

Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu

Abstract:

Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.

Keywords: Satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2346
1034 Brainwave Classification for Brain Balancing Index (BBI) via 3D EEG Model Using k-NN Technique

Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan

Abstract:

In this paper, the comparison between k-Nearest Neighbor (kNN) algorithms for classifying the 3D EEG model in brain balancing is presented. The EEG signal recording was conducted on 51 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, maximum PSD values were extracted as features from the model. There are three indexes for balanced brain; index 3, index 4 and index 5. There are significant different of the EEG signals due to the brain balancing index (BBI). Alpha-α (8–13 Hz) and beta-β (13–30 Hz) were used as input signals for the classification model. The k-NN classification result is 88.46% accuracy. These results proved that k-NN can be used in order to predict the brain balancing application.

Keywords: Brain balancing, kNN, power spectral density, 3D EEG model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2627
1033 Classification of Right and Left-Hand Movement Using Multi-Resolution Analysis Method

Authors: Nebi Gedik

Abstract:

The aim of the brain-computer interface studies on electroencephalogram (EEG) signals containing motor imagery is to extract the effective features that will provide the highest possible classification accuracy for the detection of the desired motor movement. However, achieving this goal is difficult as the most suitable frequency band and time frame vary from subject to subject. In this study, the classification success of the two-feature data obtained from raw EEG signals and the coefficients of the multi-resolution analysis method applied to the EEG signals were analyzed comparatively. The method was applied to several EEG channels (C3, Cz and C4) signals obtained from the EEG data set belonging to the publicly available BCI competition III.

Keywords: Motor imagery, EEG, wave atom transform, k-NN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 589
1032 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values

Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi

Abstract:

A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.

Keywords: eXtreme Gradient Boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impairment, multiclass classification, ADNI, support vector machine, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
1031 A Hybrid Data Mining Method for the Medical Classification of Chest Pain

Authors: Sung Ho Ha, Seong Hyeon Joo

Abstract:

Data mining techniques have been used in medical research for many years and have been known to be effective. In order to solve such problems as long-waiting time, congestion, and delayed patient care, faced by emergency departments, this study concentrates on building a hybrid methodology, combining data mining techniques such as association rules and classification trees. The methodology is applied to real-world emergency data collected from a hospital and is evaluated by comparing with other techniques. The methodology is expected to help physicians to make a faster and more accurate classification of chest pain diseases.

Keywords: Data mining, medical decisions, medical domainknowledge, chest pain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
1030 On the Network Packet Loss Tolerance of SVM Based Activity Recognition

Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir

Abstract:

In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces  high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.

Keywords: Activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2870
1029 Determination of the Bank's Customer Risk Profile: Data Mining Applications

Authors: Taner Ersoz, Filiz Ersoz, Seyma Ozbilge

Abstract:

In this study, the clients who applied to a bank branch for loan were analyzed through data mining. The study was composed of the information such as amounts of loans received by personal and SME clients working with the bank branch, installment numbers, number of delays in loan installments, payments available in other banks and number of banks to which they are in debt between 2010 and 2013. The client risk profile was examined through Classification and Regression Tree (CART) analysis, one of the decision tree classification methods. At the end of the study, 5 different types of customers have been determined on the decision tree. The classification of these types of customers has been created with the rating of those posing a risk for the bank branch and the customers have been classified according to the risk ratings.

Keywords: Client classification, loan suitability, risk rating, CART analysis, decision tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1072
1028 Developing a Coronavirus Academic Paper Sorting Application

Authors: Christina A. van Hal, Xiaoqian Jiang, Luyao Chen, Yan Chu, Robert D. Jolly, Yaobin Lin, Jitian Zhao, Kang Lin Hsieh

Abstract:

The COVID-19 Literature Summary App, now live on the university website, was created for the primary purpose of enabling academicians and clinicians to quickly sort through the vast array of recent coronavirus publications by topics of interest. Multiple methods of summarizing and sorting the manuscripts were created. A summary page introduces the application function and capabilities, while an interactive map provides daily updates on infection, death, and recovery rates. A page with a pivot table allows publication sorting by topic, with an interactive data table that allows sorting topics by columns, as wells as the capability to view abstracts. Additionally, publications may be sorted by the medical topics they cover. We used the CORD-19 database to compile lists of publications. The data table can sort binary variables, allowing the user to pick desired publication topics, such as papers that describe COVID-19 symptoms. The application is primarily designed for use by researchers but can be used by anybody who wants a faster and more efficient means of locating papers of interest. 

Keywords: COVID-19, literature summary, information retrieval, snorkel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 469
1027 Neural Network Based Speech to Text in Malay Language

Authors: H. F. A. Abdul Ghani, R. R. Porle

Abstract:

Speech to text in Malay language is a system that converts Malay speech into text. The Malay language recognition system is still limited, thus, this paper aims to investigate the performance of ten Malay words obtained from the online Malay news. The methodology consists of three stages, which are preprocessing, feature extraction, and speech classification. In preprocessing stage, the speech samples are filtered using pre emphasis. After that, feature extraction method is applied to the samples using Mel Frequency Cepstrum Coefficient (MFCC). Lastly, speech classification is performed using Feedforward Neural Network (FFNN). The accuracy of the classification is further investigated based on the hidden layer size. From experimentation, the classifier with 40 hidden neurons shows the highest classification rate which is 94%.  

Keywords: Feed-Forward Neural Network, FFNN, Malay speech recognition, Mel Frequency Cepstrum Coefficient, MFCC, speech-to-text.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 745
1026 An Automation of Check Focusing on CRUD for Requirements Analysis Model in UML

Authors: Shinpei Ogata, Yoshitaka Aoki, Hirotaka Okuda, Saeko Matsuura

Abstract:

A key to success of high quality software development is to define valid and feasible requirements specification. We have proposed a method of model-driven requirements analysis using Unified Modeling Language (UML). The main feature of our method is to automatically generate a Web user interface mock-up from UML requirements analysis model so that we can confirm validity of input/output data for each page and page transition on the system by directly operating the mock-up. This paper proposes a support method to check the validity of a data life cycle by using a model checking tool “UPPAAL" focusing on CRUD (Create, Read, Update and Delete). Exhaustive checking improves the quality of requirements analysis model which are validated by the customers through automatically generated mock-up. The effectiveness of our method is discussed by a case study of requirements modeling of two small projects which are a library management system and a supportive sales system for text books in a university.

Keywords: CRUD, Model Checking, Model Driven Development, Requirements Analysis, Unified Modeling Language, UPPAAL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673