Search results for: Path loss exponent
1354 Improved Rare Species Identification Using Focal Loss Based Deep Learning Models
Authors: Chad Goldsworthy, B. Rajeswari Matam
Abstract:
The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.
Keywords: Convolutional neural networks, data imbalance, deep learning, focal loss, species classification, wildlife conservation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14191353 Simulation and Statistical Analysis of Motion Behavior of a Single Rockfall
Authors: Iau-Teh Wang, Chin-Yu Lee
Abstract:
The impact force of a rockfall is mainly determined by its moving behavior and velocity, which are contingent on the rock shape, slope gradient, height, and surface roughness of the moving path. It is essential to precisely calculate the moving path of the rockfall in order to effectively minimize and prevent damages caused by the rockfall. By applying the Colorado Rockfall Simulation Program (CRSP) program as the analysis tool, this research studies the influence of three shapes of rock (spherical, cylindrical and discoidal) and surface roughness on the moving path of a single rockfall. As revealed in the analysis, in addition to the slope gradient, the geometry of the falling rock and joint roughness coefficient ( JRC ) of the slope are the main factors affecting the moving behavior of a rockfall. On a single flat slope, both the rock-s bounce height and moving velocity increase as the surface gradient increases, with a critical gradient value of 1:m = 1 . Bouncing behavior and faster moving velocity occur more easily when the rock geometry is more oval. A flat piece tends to cause sliding behavior and is easily influenced by the change of surface undulation. When JRC <1.4 the moving velocity decreases and the bounce height increases as JRC increases. If the gradient is fixed, when JRC is greater, the bounce height will be higher, while the moving velocity will experience a downward trend. Therefore, the best protecting point and facilities can be chosen if the moving paths of rockfalls are precisely estimated.Keywords: rock shape, surface roughness, moving path.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19511352 Pipelined Control-Path Effects on Area and Performance of a Wormhole-Switched Network-on-Chip
Authors: Faizal A. Samman, Thomas Hollstein, Manfred Glesner
Abstract:
This paper presents design trade-off and performance impacts of the amount of pipeline phase of control path signals in a wormhole-switched network-on-chip (NoC). The numbers of the pipeline phase of the control path vary between two- and one-cycle pipeline phase. The control paths consist of the routing request paths for output selection and the arbitration paths for input selection. Data communications between on-chip routers are implemented synchronously and for quality of service, the inter-router data transports are controlled by using a link-level congestion control to avoid lose of data because of an overflow. The trade-off between the area (logic cell area) and the performance (bandwidth gain) of two proposed NoC router microarchitectures are presented in this paper. The performance evaluation is made by using a traffic scenario with different number of workloads under 2D mesh NoC topology using a static routing algorithm. By using a 130-nm CMOS standard-cell technology, our NoC routers can be clocked at 1 GHz, resulting in a high speed network link and high router bandwidth capacity of about 320 Gbit/s. Based on our experiments, the amount of control path pipeline stages gives more significant impact on the NoC performance than the impact on the logic area of the NoC router.Keywords: Network-on-Chip, Synchronous Parallel Pipeline, Router Architecture, Wormhole Switching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14831351 A Control Model for Improving Safety and Efficiency of Navigation System Based on Reinforcement Learning
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Artificial Intelligence (AI), specifically Reinforcement Learning (RL), has proven helpful in many control path planning technologies by maximizing and enhancing their performance, such as navigation systems. Since it learns from experience by interacting with the environment to determine the optimal policy, the optimal policy takes the best action in a particular state, accounting for the long-term rewards. Most navigation systems focus primarily on "arriving faster," overlooking safety and efficiency while estimating the optimum path, as safety and efficiency are essential factors when planning for a long-distance journey. This paper represents an RL control model that proposes a control mechanism for improving navigation systems. Also, the model could be applied to other control path planning applications because it is adjustable and can accept different properties and parameters. However, the navigation system application has been taken as a case and evaluation study for the proposed model. The model utilized a Q-learning algorithm for training and updating the policy. It allows the agent to analyze the quality of an action made in the environment to maximize rewards. The model gives the ability to update rewards regularly based on safety and efficiency assessments, allowing the policy to consider the desired safety and efficiency benefits while making decisions, which improves the quality of the decisions taken for path planning compared to the conventional RL approaches.
Keywords: Artificial intelligence, control system, navigation systems, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011350 CFD Prediction of the Round Elbow Fitting Loss Coefficient
Authors: Ana Paula P. dos Santos, Claudia R. Andrade, Edson L. Zaparoli
Abstract:
Pressure loss in ductworks is an important factor to be considered in design of engineering systems such as power-plants, refineries, HVAC systems to reduce energy costs. Ductwork can be composed by straight ducts and different types of fittings (elbows, transitions, converging and diverging tees and wyes). Duct fittings are significant sources of pressure loss in fluid distribution systems. Fitting losses can be even more significant than equipment components such as coils, filters, and dampers. At the present work, a conventional 90o round elbow under turbulent incompressible airflow is studied. Mass, momentum, and k-e turbulence model equations are solved employing the finite volume method. The SIMPLE algorithm is used for the pressure-velocity coupling. In order to validate the numerical tool, the elbow pressure loss coefficient is determined using the same conditions to compare with ASHRAE database. Furthermore, the effect of Reynolds number variation on the elbow pressure loss coefficient is investigated. These results can be useful to perform better preliminary design of air distribution ductworks in air conditioning systems.
Keywords: Duct fitting, Pressure loss, Elbow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48511349 Loss Reduction and Reliability Improvement of Industrial Distribution System through Network Reconfiguration
Authors: Ei Ei Phyu, Kyaw Myo Lin, Thin Thin Moe
Abstract:
The paper presents an approach to improve the reliability and reduce line losses of practical distribution system applying network reconfiguration. The change of the topology redirects the power flow within the distribution network to obtain better performance of the system. Practical distribution network (Pyigyitagon Industrial Zone (I)) is used as the case study network. The detailed calculations of the reliability indices are done by using analytical method and power flow calculation is performed by Newton-Rephason solver. The comparison of various network reconfiguration techniques are described with respect to power loss and reliability index levels. Finally, the optimal reconfigured network is selected among difference cases based on the two factors: the most reliable network and the least loss minimization.
Keywords: Distribution system reliability, loss reduction, network reconfiguration, reliability enhancement, reliability indices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8871348 Plasma Properties Effect on Fluorescent Tube Plasma Antenna Performance
Authors: A. N. Dagang, E. I. Ismail, Z. Zakaria
Abstract:
This paper presents the analysis on the performance of monopole antenna with fluorescent tubes. In this research, the simulation and experimental approach is conducted. The fluorescent tube with different length and size is designed using Computer Simulation Technology (CST) software and the characteristics of antenna parameter are simulated throughout the software. CST was used to simulate antenna parameters such as return loss, resonant frequency, gain and directivity. Vector Network Analyzer (VNA) was used to measure the return loss of plasma antenna in order to validate the simulation results. In the simulation and experiment, the supply frequency is set starting from 1 GHz to 10 GHz. The results show that the return loss of plasma antenna changes when size of fluorescent tubes is varied, correspond to the different plasma properties. It shows that different values of plasma properties such as plasma frequency and collision frequency gives difference result of return loss, gain and directivity. For the gain, the values range from 2.14 dB to 2.36 dB. The return loss of plasma antenna offers higher value range from -22.187 dB to -32.903 dB. The higher the values of plasma frequency and collision frequency, the higher return loss can be obtained. The values obtained are comparative to the conventional type of metal antenna.
Keywords: Plasma antenna, fluorescent tube, computer simulation technology, plasma parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16661347 Trust and Reputation Mechanism with Path Optimization in Multipath Routing
Authors: Ramya Dorai, M. Rajaram
Abstract:
A Mobile Adhoc Network (MANET) is a collection of mobile nodes that communicate with each other with wireless links and without pre-existing communication infrastructure. Routing is an important issue which impacts network performance. As MANETs lack central administration and prior organization, their security concerns are different from those of conventional networks. Wireless links make MANETs susceptible to attacks. This study proposes a new trust mechanism to mitigate wormhole attack in MANETs. Different optimization techniques find available optimal path from source to destination. This study extends trust and reputation to an improved link quality and channel utilization based Adhoc Ondemand Multipath Distance Vector (AOMDV). Differential Evolution (DE) is used for optimization.
Keywords: Mobile Adhoc Network (MANET), Adhoc Ondemand Multi-Path Distance Vector (AOMDV), Trust and Reputation, Differential Evolution (DE), Link Quality, Channel Utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16591346 Minimization of Power Loss in Distribution Networks by Different Techniques
Authors: L.Ramesh, S.P.Chowdhury, S.Chowdhury, A.A.Natarajan, C.T.Gaunt
Abstract:
Accurate loss minimization is the critical component for efficient electrical distribution power flow .The contribution of this work presents loss minimization in power distribution system through feeder restructuring, incorporating DG and placement of capacitor. The study of this work was conducted on IEEE distribution network and India Electricity Board benchmark distribution system. The executed experimental result of Indian system is recommended to board and implement practically for regulated stable output.Keywords: Distribution system, Distributed Generation LossMinimization, Network Restructuring
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62331345 Minimizing Fish-feed Loss due to Sea Currents: An Economic Methodology
Authors: V. Vassiliou, M. Charalambides, M. Menicou
Abstract:
Fish-feed is a major cost component of operating expenses for any aquaculture farm. Due to soaring prices of fish-feed ingredients, the need for better feeding schedule management has become imperative. On such factor that influences the utilization rate of fish-feed are sea currents. Up to now, practical monitoring of fishfeed loss due to sea currents is not exercised. This paper gives a description of an economic methodology that aims at quantifying the amount of fish-feed lost due to sea currents and draws on data from a Mediterranean aquaculture farm to formulate the associated model.
Keywords: Aquaculture, economic model, fish-feed loss, sea currents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18251344 Characteristics of Maximum Gliding Endurance Path for High-Altitude Solar UAVs
Authors: Gao Xian-Zhong, Hou Zhong-xi, Guo Zheng, Liu Jian-xia
Abstract:
Gliding during night without electric power is an efficient method to enhance endurance performance of solar aircrafts. The properties of maximum gliding endurance path are studied in this paper. The problem is formulated as an optimization problem about maximum endurance can be sustained by certain potential energy storage with dynamic equations and aerodynamic parameter constrains. The optimal gliding path is generated based on gauss pseudo-spectral method. In order to analyse relationship between altitude, velocity of solar UAVs and its endurance performance, the lift coefficient in interval of [0.4, 1.2] and flight envelopes between 0~30km are investigated. Results show that broad range of lift coefficient can improve solar aircrafts- long endurance performance, and it is possible for a solar aircraft to achieve the aim of long endurance during whole night just by potential energy storage.
Keywords: Solar UAVs, Gliding Endurance, gauss pseudo-spectral method, optimization problem
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29251343 Drone On-time Obstacle Avoidance for Static and Dynamic Obstacles
Authors: Herath MPC Jayaweera, Samer Hanoun
Abstract:
Path planning for on-time obstacle avoidance is an essential and challenging task that enables drones to achieve safe operation in any application domain. The level of challenge increases significantly on the obstacle avoidance technique when the drone is following a ground mobile entity (GME). This is mainly due to the change in direction and magnitude of the GMEs velocity in dynamic and unstructured environments. Force field techniques are the most widely used obstacle avoidance methods due to their simplicity, ease of use and potential to be adopted for three-dimensional dynamic environments. However, the existing force field obstacle avoidance techniques suffer many drawbacks including their tendency to generate longer routes when the obstacles are sideways of the drones route, poor ability to find the shortest flyable path, propensity to fall into local minima, producing a non-smooth path, and high failure rate in the presence of symmetrical obstacles. To overcome these shortcomings, this paper proposes an on-time three-dimensional obstacle avoidance method for drones to effectively and efficiently avoid dynamic and static obstacles in unknown environments while pursuing a GME. This on-time obstacle avoidance technique generates velocity waypoints for its obstacle-free and efficient path based on the shape of the encountered obstacles. This method can be utilize on most types of drones that have basic distance measurement sensors and autopilot supported flight controllers. The proposed obstacle avoidance technique is validated and evaluated against existing force field methods for different simulation scenarios in Gazebo and ROS supported PX4-SITL. The simulation results show that the proposed obstacle avoidance technique outperforms the existing force field techniques and is better suited for real-world applications.
Keywords: Drones, force field methods, obstacle avoidance, path planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781342 Evolutionary Algorithms for the Multiobjective Shortest Path Problem
Authors: José Maria A. Pangilinan, Gerrit K. Janssens
Abstract:
This paper presents an overview of the multiobjective shortest path problem (MSPP) and a review of essential and recent issues regarding the methods to its solution. The paper further explores a multiobjective evolutionary algorithm as applied to the MSPP and describes its behavior in terms of diversity of solutions, computational complexity, and optimality of solutions. Results show that the evolutionary algorithm can find diverse solutions to the MSPP in polynomial time (based on several network instances) and can be an alternative when other methods are trapped by the tractability problem.Keywords: Multiobjective evolutionary optimization, geneticalgorithms, shortest paths.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27331341 Beyond Taguchi’s Concept of the Quality Loss Function
Authors: Atul Dev, Pankaj Jha
Abstract:
Dr. Genichi Taguchi looked at quality in a broader term and gave an excellent definition of quality in terms of loss to society. However the scope of this definition is limited to the losses imparted by a poor quality product to the customer only and are considered during the useful life of the product and further in a certain situation this loss can even be zero. In this paper, it has been proposed that the scope of quality of a product shall be further enhanced by considering the losses imparted by a poor quality product to society at large, due to associated environmental and safety related factors, over the complete life cycle of the product. Moreover, though these losses can be further minimized with the use of techno-safety interventions, the net losses to society however can never be made zero. This paper proposes an entirely new approach towards defining product quality and is based on Taguchi’s definition of quality.
Keywords: Existing concept, goal post philosophy, life cycle, proposed concept, quality loss function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20061340 Performance Characteristics of a Closed Circuit Cooling Tower with Multi Path
Authors: Gyu-Jin Shim, Seung-Moon Baek, Choon-Geun Moon, Ho-Saeng Lee, Jung-In Yoon
Abstract:
The experimental thermal performance of two heat exchangers in closed-wet cooling tower (CWCT) was investigated in this study. The test sections are heat exchangers which have multi path that is used as the entrance of cooling water and are consisting of bare-type copper tubes between 15.88mm and 19.05mm. The process fluids are the cooling water that flows from top part of heat exchanger to bottom side in the inner side of tube, and spray water that flows gravitational direction in the outer side of it. Air contacts its outer side of that as it counterflows. Heat and mass transfer coefficients and cooling capacity were calculated with variations of process fluids, multi path and different diameter tubes to figure out the performance of characteristics of CWCT. The main results were summarized as follows: The results show this experiment is reliable with values of heat and mass transfer coefficients comparing to values of correlations. Heat and mass transfer coefficients and cooling capacity of two paths are higher than these with one path using 15.88 and 19.05mm tubes. Cooling capacity per unit volume with 15.88mm tube using one and two paths are higher than 19.05mm tube due to increase of surface area per unit volume.Keywords: Closed–Wet Cooling Tower, Cooling Capacity, Heatand Mass Transfer Coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24401339 Trajectory Planning Design Equations and Control of a 4 - axes Stationary Robotic Arm
Authors: T.C. Manjunath,
Abstract:
This paper features the trajectory planning design of a indigenously developed 4-Axis SCARA robot which is used for doing successful robotic manipulation task in the laboratory. Once, a trajectory is being designed and given as input to the robot, the robot's gripper tip moves along that specified trajectory. Trajectories have to be designed in the work space only. The main idea of this paper is to design a continuous path trajectory model for the indigenously developed SCARA robot arm during its maneuvering from one point to another point (during pick and place operations) in a workspace avoiding all the obstacles in its path of motion.Keywords: SCARA, Trajectory, Planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42211338 Geometric Data Structures and Their Selected Applications
Authors: Miloš Šeda
Abstract:
Finding the shortest path between two positions is a fundamental problem in transportation, routing, and communications applications. In robot motion planning, the robot should pass around the obstacles touching none of them, i.e. the goal is to find a collision-free path from a starting to a target position. This task has many specific formulations depending on the shape of obstacles, allowable directions of movements, knowledge of the scene, etc. Research of path planning has yielded many fundamentally different approaches to its solution, mainly based on various decomposition and roadmap methods. In this paper, we show a possible use of visibility graphs in point-to-point motion planning in the Euclidean plane and an alternative approach using Voronoi diagrams that decreases the probability of collisions with obstacles. The second application area, investigated here, is focused on problems of finding minimal networks connecting a set of given points in the plane using either only straight connections between pairs of points (minimum spanning tree) or allowing the addition of auxiliary points to the set to obtain shorter spanning networks (minimum Steiner tree).Keywords: motion planning, spanning tree, Steiner tree, Delaunay triangulation, Voronoi diagram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15181337 Operational Risk – Scenario Analysis
Authors: Milan Rippel, Petr Teply
Abstract:
This paper focuses on operational risk measurement techniques and on economic capital estimation methods. A data sample of operational losses provided by an anonymous Central European bank is analyzed using several approaches. Loss Distribution Approach and scenario analysis method are considered. Custom plausible loss events defined in a particular scenario are merged with the original data sample and their impact on capital estimates and on the financial institution is evaluated. Two main questions are assessed – What is the most appropriate statistical method to measure and model operational loss data distribution? and What is the impact of hypothetical plausible events on the financial institution? The g&h distribution was evaluated to be the most suitable one for operational risk modeling. The method based on the combination of historical loss events modeling and scenario analysis provides reasonable capital estimates and allows for the measurement of the impact of extreme events on banking operations.Keywords: operational risk, scenario analysis, economic capital, loss distribution approach, extreme value theory, stress testing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24291336 Optimal Allocation of DG Units for Power Loss Reduction and Voltage Profile Improvement of Distribution Networks using PSO Algorithm
Authors: K. Varesi
Abstract:
This paper proposes a Particle Swarm Optimization (PSO) based technique for the optimal allocation of Distributed Generation (DG) units in the power systems. In this paper our aim is to decide optimal number, type, size and location of DG units for voltage profile improvement and power loss reduction in distribution network. Two types of DGs are considered and the distribution load flow is used to calculate exact loss. Load flow algorithm is combined appropriately with PSO till access to acceptable results of this operation. The suggested method is programmed under MATLAB software. Test results indicate that PSO method can obtain better results than the simple heuristic search method on the 30-bus and 33- bus radial distribution systems. It can obtain maximum loss reduction for each of two types of optimally placed multi-DGs. Moreover, voltage profile improvement is achieved.Keywords: Distributed Generation (DG), Optimal Allocation, Particle Swarm Optimization (PSO), Power Loss Minimization, Voltage Profile Improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31681335 Coverage Availability for the IEEE 802.16 System over the SUI Channels with Rayleigh Fading
Authors: Shiann-Shiun Jeng, Chen-Wan Tsung, Hong-You Liou, Chun-Chieh Chang, Jia-Ming Chen
Abstract:
The coverage probability and range of IEEE 802.16 systems depend on different wireless scenarios. Evaluating the performance of IEEE 802.16 systems over Stanford University Interim (SUI) channels is suggested by IEEE 802.16 specifications. In order to derive an effective method for forecasting the coverage probability and range, this study uses the SUI channel model to analyze the coverage probability with Rayleigh fading for an IEEE 802.16 system. The BER of the IEEE 802.16 system is shown in the simulation results. Then, the maximum allowed path loss can be calculated and substituted into the coverage analysis. Therefore, simulation results show the coverage range with and without Rayleigh fading.Keywords: OFDM, coverage, SUI channel, IEEE 802.16
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14771334 Visual Tag-based Location-Aware System for Household Robots
Authors: Yen-Chun Lin, Yen-Ting Chen, Szu-Yin Lin, Jen-Hua Wu
Abstract:
This paper proposes a location-aware system for household robots which allows users to paste predefined paper tags at different locations according to users- comprehension of the house. In this system a household robot may be aware of its location and the attributes thereof by visually recognizing the tags when the robot is moving. This paper also presents a novel user interface to define a moving path of the robot, which allows users to draw the path in the air with a finger so as to generate commands for following motions.Keywords: finger tip tracking, household robot, location awareness, tag recognition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13101333 A SAW-less Dual-Band CDMA Diversity and Simultaneous-GPS Zero-IF Receiver
Authors: Bassem Fahs, Philippe Barré, Patrick Ozenne, Eric Chartier, Guillaume Hérault, Sébastien Jacquet, Sébastien Clamagirand
Abstract:
We present a dual-band (Cellular & PCS) dual-path zero-IF receiver for CDMA2000 diversity, monitoring and simultaneous-GPS. The secondary path is a SAW-less diversity CDMA receiver which can be also used for advanced features like monitoring when supported with an additional external VCO. A GPS receiver is integrated with its dedicated VCO allowing simultaneous positioning during a cellular call. The circuit is implemented in a 0.25μm 40GHz-fT BiCMOS process and uses a HVQFN 56-pin package. It consumes a maximum 300mW from a 2.8V supply in dual-modes. The chip area is 12.8mm2.Keywords: CDMA, diversity, GPS, zero-IF, SAW-less
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18161332 Adaptive Few-Shot Deep Metric Learning
Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian
Abstract:
Currently the most prevalent deep learning methods require a large amount of data for training, whereas few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.
Keywords: Few-shot learning, triplet network, adaptive margin, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9081331 Performance Comparison of Prim’s and Ant Colony Optimization Algorithm to Select Shortest Path in Case of Link Failure
Authors: Rimmy Yadav, Avtar Singh
Abstract:
Ant Colony Optimization (ACO) is a promising modern approach to the unused combinatorial optimization. Here ACO is applied to finding the shortest during communication link failure. In this paper, the performances of the prim’s and ACO algorithm are made. By comparing the time complexity and program execution time as set of parameters, we demonstrate the pleasant performance of ACO in finding excellent solution to finding shortest path during communication link failure.Keywords: Ant colony optimization, link failure, prim’s algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21841330 Optimal and Critical Path Analysis of State Transportation Network Using Neo4J
Authors: Pallavi Bhogaram, Xiaolong Wu, Min He, Onyedikachi Okenwa
Abstract:
A transportation network is a realization of a spatial network, describing a structure which permits either vehicular movement or flow of some commodity. Examples include road networks, railways, air routes, pipelines, and many more. The transportation network plays a vital role in maintaining the vigor of the nation’s economy. Hence, ensuring the network stays resilient all the time, especially in the face of challenges such as heavy traffic loads and large scale natural disasters, is of utmost importance. In this paper, we used the Neo4j application to develop the graph. Neo4j is the world's leading open-source, NoSQL, a native graph database that implements an ACID-compliant transactional backend to applications. The Southern California network model is developed using the Neo4j application and obtained the most critical and optimal nodes and paths in the network using centrality algorithms. The edge betweenness centrality algorithm calculates the critical or optimal paths using Yen's k-shortest paths algorithm, and the node betweenness centrality algorithm calculates the amount of influence a node has over the network. The preliminary study results confirm that the Neo4j application can be a suitable tool to study the important nodes and the critical paths for the major congested metropolitan area.
Keywords: Transportation network, critical path, connectivity reliability, network model, Neo4J application, optimal path, critical path, edge betweenness centrality index, node betweenness centrality index, Yen’s k-shortest paths.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8531329 Ranking - Convex Risk Minimization
Authors: Wojciech Rejchel
Abstract:
The problem of ranking (rank regression) has become popular in the machine learning community. This theory relates to problems, in which one has to predict (guess) the order between objects on the basis of vectors describing their observed features. In many ranking algorithms a convex loss function is used instead of the 0-1 loss. It makes these procedures computationally efficient. Hence, convex risk minimizers and their statistical properties are investigated in this paper. Fast rates of convergence are obtained under conditions, that look similarly to the ones from the classification theory. Methods used in this paper come from the theory of U-processes as well as empirical processes.
Keywords: Convex loss function, empirical risk minimization, empirical process, U-process, boosting, euclidean family.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14141328 Low Nonlinear Effects Index-Guiding Nanostructured Photonic Crystal Fiber
Authors: S. Olyaee, M. Seifouri, A. Nikoosohbat, M. Shams Esfand Abadi
Abstract:
Photonic Crystal Fibers (PCFs) can be used in optical communications as transmission lines. For this reason, the PCFs with low confinement loss, low chromatic dispersion, and low nonlinear effects are highly suitable transmission media. In this paper, we introduce a new design of index-guiding nanostructured photonic crystal fiber (IG-NPCF) with ultra-low chromatic dispersion, low nonlinearity effects, and low confinement loss. Relatively low dispersion is achieved in the wavelength range of 1200 to 1600nm using the proposed design. According to the new structure of nanostructured PCF presented in this study, the chromatic dispersion slope is -30(ps/km.nm) and the confinement loss reaches below 10-7 dB/km. While in the wavelength range mentioned above at the same time an effective area of more than 50.2μm2 is obtained.
Keywords: Optical communication systems, nanostructured, index-guiding, dispersion, confinement loss, photonic crystal fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29541327 WDM-Based Storage Area Network (SAN) for Disaster Recovery Operations
Authors: Sandeep P. Abhang, Girish V. Chowdhay
Abstract:
This paper proposes a Wavelength Division Multiplexing (WDM) technology based Storage Area Network (SAN) for all type of Disaster recovery operation. It considers recovery when all paths failure in the network as well as the main SAN site failure also the all backup sites failure by the effect of natural disasters such as earthquakes, fires and floods, power outage, and terrorist attacks, as initially SAN were designed to work within distance limited environments[2]. Paper also presents a NEW PATH algorithm when path failure occurs. The simulation result and analysis is presented for the proposed architecture with performance consideration.Keywords: SAN, WDM, FC, Ring, IP, network load, iSCSI, miles, disaster.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19461326 Design and Performance Comparison of Metamaterial Based Antenna for 4G/5G Mobile Devices
Authors: Jalal Khan, Daniyal Ali Sehrai, Shakeel Ahmad
Abstract:
This paper presents the design and performance evaluation of multiband metamaterial based antenna operating in the 3.6 GHz (4G), 14.33 GHz, and 28.86 GHz (5G) frequency bands, for future mobile and handheld devices. The radiating element of the proposed design is made up of a conductive material supported by a 1.524 mm thicker Rogers-4003 substrate, having a relative dielectric constant and loss tangent of 3.55 and 0.0027, respectively. The substrate is backed by truncated ground plane. The future mobile communication system is based on higher frequencies, which are highly affected by the atmospheric conditions. Therefore, to overcome the path loss problem, essential enhancements and improvements must be made in the overall performance of the antenna. The traditional ground plane does not provide the in-phase reflection and surface wave suppression due to which side and back lobes are produced. This will affect the antenna performance in terms of gain and efficiency. To enhance the overall performance of the antenna, a metamaterial acting as a high impedance surface (HIS) is used as a reflector in the proposed design. The simulated gain of the metamaterial based antenna is enhanced from {2.76-6.47, 4.83-6.71 and 7.52-7.73} dB at 3.6, 14.33 and 28.89 GHz, respectively relative to the gain of the antenna backed by a traditional ground plane. The proposed antenna radiated efficiently with a radiated efficiency (>85 %) in all the three frequency bands with and without metamaterial surface. The total volume of the antenna is (L x W x h=45 x 40 x 1.524) mm3. The antenna can be potentially used for wireless handheld devices and mobile terminal. All the simulations have been performed using the Computer Simulation Technology (CST) software.
Keywords: Multiband, fourth generation (4G), fifth generation (5G), metamaterial, CST MWS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18871325 Parameter Selections of Fuzzy C-Means Based on Robust Analysis
Authors: Kuo-Lung Wu
Abstract:
The weighting exponent m is called the fuzzifier that can have influence on the clustering performance of fuzzy c-means (FCM) and mÎ[1.5,2.5] is suggested by Pal and Bezdek [13]. In this paper, we will discuss the robust properties of FCM and show that the parameter m will have influence on the robustness of FCM. According to our analysis, we find that a large m value will make FCM more robust to noise and outliers. However, if m is larger than the theoretical upper bound proposed by Yu et al. [14], the sample mean will become the unique optimizer. Here, we suggest to implement the FCM algorithm with mÎ[1.5,4] under the restriction when m is smaller than the theoretical upper bound.Keywords: Fuzzy c-means, robust, fuzzifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661