Search results for: Neural network controller.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3784

Search results for: Neural network controller.

3634 Intelligent Earthquake Prediction System Based On Neural Network

Authors: Emad Amar, Tawfik Khattab, Fatma Zada

Abstract:

Predicting earthquakes is an important issue in the study of geography. Accurate prediction of earthquakes can help people to take effective measures to minimize the loss of personal and economic damage, such as large casualties, destruction of buildings and broken of traffic, occurred within a few seconds. United States Geological Survey (USGS) science organization provides reliable scientific information about Earthquake Existed throughout history & the Preliminary database from the National Center Earthquake Information (NEIC) show some useful factors to predict an earthquake in a seismic area like Aleutian Arc in the U.S. state of Alaska. The main advantage of this prediction method that it does not require any assumption, it makes prediction according to the future evolution of the object's time series. The article compares between simulation data result from trained BP and RBF neural network versus actual output result from the system calculations. Therefore, this article focuses on analysis of data relating to real earthquakes. Evaluation results show better accuracy and higher speed by using radial basis functions (RBF) neural network.

Keywords: BP neural network, Prediction, RBF neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3219
3633 Applications of Artificial Neural Network to Building Statistical Models for Qualifying and Indexing Radiation Treatment Plans

Authors: Pei-Ju Chao, Tsair-Fwu Lee, Wei-Luen Huang, Long-Chang Chen, Te-Jen Su, Wen-Ping Chen

Abstract:

The main goal in this paper is to quantify the quality of different techniques for radiation treatment plans, a back-propagation artificial neural network (ANN) combined with biomedicine theory was used to model thirteen dosimetric parameters and to calculate two dosimetric indices. The correlations between dosimetric indices and quality of life were extracted as the features and used in the ANN model to make decisions in the clinic. The simulation results show that a trained multilayer back-propagation neural network model can help a doctor accept or reject a plan efficiently. In addition, the models are flexible and whenever a new treatment technique enters the market, the feature variables simply need to be imported and the model re-trained for it to be ready for use.

Keywords: neural network, dosimetric index, radiation treatment, tumor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
3632 System Identification with General Dynamic Neural Networks and Network Pruning

Authors: Christian Endisch, Christoph Hackl, Dierk Schröder

Abstract:

This paper presents an exact pruning algorithm with adaptive pruning interval for general dynamic neural networks (GDNN). GDNNs are artificial neural networks with internal dynamics. All layers have feedback connections with time delays to the same and to all other layers. The structure of the plant is unknown, so the identification process is started with a larger network architecture than necessary. During parameter optimization with the Levenberg- Marquardt (LM) algorithm irrelevant weights of the dynamic neural network are deleted in order to find a model for the plant as simple as possible. The weights to be pruned are found by direct evaluation of the training data within a sliding time window. The influence of pruning on the identification system depends on the network architecture at pruning time and the selected weight to be deleted. As the architecture of the model is changed drastically during the identification and pruning process, it is suggested to adapt the pruning interval online. Two system identification examples show the architecture selection ability of the proposed pruning approach.

Keywords: System identification, dynamic neural network, recurrentneural network, GDNN, optimization, Levenberg Marquardt, realtime recurrent learning, network pruning, quasi-online learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
3631 Research on Hybrid Neural Network in Intrusion Detection System

Authors: Jianhua Wang, Yan Yu

Abstract:

This paper presents an intrusion detection system of hybrid neural network model based on RBF and Elman. It is used for anomaly detection and misuse detection. This model has the memory function .It can detect discrete and related aggressive behavior effectively. RBF network is a real-time pattern classifier, and Elman network achieves the memory ability for former event. Based on the hybrid model intrusion detection system uses DARPA data set to do test evaluation. It uses ROC curve to display the test result intuitively. After the experiment it proves this hybrid model intrusion detection system can effectively improve the detection rate, and reduce the rate of false alarm and fail.

Keywords: RBF, Elman, anomaly detection, misuse detection, hybrid neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327
3630 Performance Evaluation of Hybrid Intelligent Controllers in Load Frequency Control of Multi Area Interconnected Power Systems

Authors: Surya Prakash, Sunil Kumar Sinha

Abstract:

This paper deals with the application of artificial neural network (ANN) and fuzzy based Adaptive Neuro Fuzzy Inference System(ANFIS) approach to Load Frequency Control (LFC) of multi unequal area hydro-thermal interconnected power system. The proposed ANFIS controller combines the advantages of fuzzy controller as well as quick response and adaptability nature of ANN. Area-1 and area-2 consists of thermal reheat power plant whereas area-3 and area-4 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent controller like ANFIS, ANN and Fuzzy controllers and conventional PI and PID control approaches. To enhance the performance of intelligent and conventional controller sliding surface is included. The performances of the controllers are simulated using MATLAB/SIMULINK package. A comparison of ANFIS, ANN, Fuzzy, PI and PID based approaches shows the superiority of proposed ANFIS over ANN & fuzzy, PI and PID controller for 1% step load variation.

Keywords: Load Frequency Control (LFC), ANFIS, ANN & Fuzzy, PI, PID Controllers, Area Control Error (ACE), Tie-line, MATLAB / SIMULINK.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3660
3629 A Neural-Network-Based Fault Diagnosis Approach for Analog Circuits by Using Wavelet Transformation and Fractal Dimension as a Preprocessor

Authors: Wenji Zhu, Yigang He

Abstract:

This paper presents a new method of analog fault diagnosis based on back-propagation neural networks (BPNNs) using wavelet decomposition and fractal dimension as preprocessors. The proposed method has the capability to detect and identify faulty components in an analog electronic circuit with tolerance by analyzing its impulse response. Using wavelet decomposition to preprocess the impulse response drastically de-noises the inputs to the neural network. The second preprocessing by fractal dimension can extract unique features, which are the fed to a neural network as inputs for further classification. A comparison of our work with [1] and [6], which also employs back-propagation (BP) neural networks, reveals that our system requires a much smaller network and performs significantly better in fault diagnosis of analog circuits due to our proposed preprocessing techniques.

Keywords: Analog circuits, fault diagnosis, tolerance, wavelettransform, fractal dimension, box dimension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
3628 Maximum Power Point Tracking by ANN Controller for a Standalone Photovoltaic System

Authors: K. Ranjani, M. Raja, B. Anitha

Abstract:

In this paper, ANN controller for maximum power point tracking of photovoltaic (PV) systems is proposed and PV modeling is discussed. Maximum power point tracking (MPPT) methods are used to maximize the PV array output power by tracking continuously the maximum power point. ANN controller with hill-climbing algorithm offers fast and accurate converging to the maximum operating point during steady-state and varying weather conditions compared to conventional hill-climbing. The proposed algorithm gives a good maximum power operation of the PV system. Simulation results obtained are presented and compared with the conventional hill-climbing algorithm. Simulation results show the effectiveness of the proposed technique.

Keywords: Artificial neural network (ANN), hill-climbing, maximum power-point tracking (MPPT), photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3155
3627 Performance Evaluation of Neural Network Prediction for Data Prefetching in Embedded Applications

Authors: Sofien Chtourou, Mohamed Chtourou, Omar Hammami

Abstract:

Embedded systems need to respect stringent real time constraints. Various hardware components included in such systems such as cache memories exhibit variability and therefore affect execution time. Indeed, a cache memory access from an embedded microprocessor might result in a cache hit where the data is available or a cache miss and the data need to be fetched with an additional delay from an external memory. It is therefore highly desirable to predict future memory accesses during execution in order to appropriately prefetch data without incurring delays. In this paper, we evaluate the potential of several artificial neural networks for the prediction of instruction memory addresses. Neural network have the potential to tackle the nonlinear behavior observed in memory accesses during program execution and their demonstrated numerous hardware implementation emphasize this choice over traditional forecasting techniques for their inclusion in embedded systems. However, embedded applications execute millions of instructions and therefore millions of addresses to be predicted. This very challenging problem of neural network based prediction of large time series is approached in this paper by evaluating various neural network architectures based on the recurrent neural network paradigm with pre-processing based on the Self Organizing Map (SOM) classification technique.

Keywords: Address, data set, memory, prediction, recurrentneural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
3626 A Video Watermarking Algorithm Based on Chaotic and Wavelet Neural Network

Authors: Jiadong Liang

Abstract:

This paper presented a video watermarking algorithm based on wavelet chaotic neural network. First, to enhance binary image’s security, the algorithm encrypted it with double chaotic based on Arnold and Logistic map, Then, the host video was divided into some equal frames and distilled the key frame through chaotic sequence which generated by Logistic. Meanwhile, we distilled the low frequency coefficients of luminance component and self-adaptively embedded the processed image watermark into the low frequency coefficients of the wavelet transformed luminance component with the wavelet neural network. The experimental result suggested that the presented algorithm has better invisibility and robustness against noise, Gaussian filter, rotation, frame loss and other attacks.

Keywords: Video watermark, double chaotic encryption, wavelet neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052
3625 Application of the Neural Network to the Synthesis of Vertical Dipole Antenna over Imperfect Ground

Authors: Kais Hafsaoui

Abstract:

In this paper, we propose to study the synthesis of the vertical dipole antenna over imperfect ground. The synthesis implementation-s method for this type of antenna permits to approach the appropriated radiance-s diagram. The used approach is based on neural network. Our main contribution in this paper is the extension of a synthesis model of this vertical dipole antenna over imperfect ground.

Keywords: Vertical dipole antenna, imperfect ground, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206
3624 Persian Printed Numeral Characters Recognition Using Geometrical Central Moments and Fuzzy Min-Max Neural Network

Authors: Hamid Reza Boveiri

Abstract:

In this paper, a new proposed system for Persian printed numeral characters recognition with emphasis on representation and recognition stages is introduced. For the first time, in Persian optical character recognition, geometrical central moments as character image descriptor and fuzzy min-max neural network for Persian numeral character recognition has been used. Set of different experiments on binary images of regular, translated, rotated and scaled Persian numeral characters has been done and variety of results has been presented. The best result was 99.16% correct recognition demonstrating geometrical central moments and fuzzy min-max neural network are adequate for Persian printed numeral character recognition.

Keywords: Fuzzy min-max neural network, geometrical centralmoments, optical character recognition, Persian digits recognition, Persian printed numeral characters recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
3623 Morphometric Analysis of Tor tambroides by Stepwise Discriminant and Neural Network Analysis

Authors: M. Pollar, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

The population structure of the Tor tambroides was investigated with morphometric data (i.e. morphormetric measurement and truss measurement). A morphometric analysis was conducted to compare specimens from three waterfalls: Sunanta, Nan Chong Fa and Wang Muang waterfalls at Khao Nan National Park, Nakhon Si Thammarat, Southern Thailand. The results of stepwise discriminant analysis on seven morphometric variables and 21 truss variables per individual were the same as from a neural network. Fish from three waterfalls were separated into three groups based on their morphometric measurements. The morphometric data shows that the nerual network model performed better than the stepwise discriminant analysis.

Keywords: Morphometric, Tor tambroides, Stepwise Discriminant Analysis , Neural Network Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150
3622 Effective Sonar Target Classification via Parallel Structure of Minimal Resource Allocation Network

Authors: W.S. Lim, M.V.C. Rao

Abstract:

In this paper, the processing of sonar signals has been carried out using Minimal Resource Allocation Network (MRAN) and a Probabilistic Neural Network (PNN) in differentiation of commonly encountered features in indoor environments. The stability-plasticity behaviors of both networks have been investigated. The experimental result shows that MRAN possesses lower network complexity but experiences higher plasticity than PNN. An enhanced version called parallel MRAN (pMRAN) is proposed to solve this problem and is proven to be stable in prediction and also outperformed the original MRAN.

Keywords: Ultrasonic sensing, target classification, minimalresource allocation network (MRAN), probabilistic neural network(PNN), stability-plasticity dilemma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
3621 Detection of Actuator Faults for an Attitude Control System using Neural Network

Authors: S. Montenegro, W. Hu

Abstract:

The objective of this paper is to develop a neural network-based residual generator to detect the fault in the actuators for a specific communication satellite in its attitude control system (ACS). First, a dynamic multilayer perceptron network with dynamic neurons is used, those neurons correspond a second order linear Infinite Impulse Response (IIR) filter and a nonlinear activation function with adjustable parameters. Second, the parameters from the network are adjusted to minimize a performance index specified by the output estimated error, with the given input-output data collected from the specific ACS. Then, the proposed dynamic neural network is trained and applied for detecting the faults injected to the wheel, which is the main actuator in the normal mode for the communication satellite. Then the performance and capabilities of the proposed network were tested and compared with a conventional model-based observer residual, showing the differences between these two methods, and indicating the benefit of the proposed algorithm to know the real status of the momentum wheel. Finally, the application of the methods in a satellite ground station is discussed.

Keywords: Satellite, Attitude Control, Momentum Wheel, Neural Network, Fault Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992
3620 Application of the Neural Network to the Synthesis of Multibeam Antennas Arrays

Authors: Ridha Ghayoula, Mbarek Traii, Ali Gharsallah

Abstract:

In this paper, we intend to study the synthesis of the multibeam arrays. The synthesis implementation-s method for this type of arrays permits to approach the appropriated radiance-s diagram. The used approach is based on neural network that are capable to model the multibeam arrays, consider predetermined general criteria-s, and finally it permits to predict the appropriated diagram from the neural model. Our main contribution in this paper is the extension of a synthesis model of these multibeam arrays.

Keywords: Multibeam, modelling, neural networks, synthesis, antennas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1228
3619 Use of Radial Basis Function Neural Network for Bearing Pressure Prediction of Strip Footing on Reinforced Granular Bed Overlying Weak Soil

Authors: Srinath Shetty K., Shivashankar R., Rashmi P. Shetty

Abstract:

Earth reinforcing techniques have become useful and economical to solve problems related to difficult grounds and provide satisfactory foundation performance. In this context, this paper uses radial basis function neural network (RBFNN) for predicting the bearing pressure of strip footing on reinforced granular bed overlying weak soil. The inputs for the neural network models included plate width, thickness of granular bed and number of layers of reinforcements, settlement ratio, water content, dry density, cohesion and angle of friction. The results indicated that RBFNN model exhibited more than 84 % prediction accuracy, thereby demonstrating its application in a geotechnical problem.

Keywords: Bearing pressure, granular bed, radial basis function neural network, strip footing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
3618 Support Vector Fuzzy Based Neural Networks For Exchange Rate Modeling

Authors: Prof. Chokri SLIM

Abstract:

A Novel fuzzy neural network combining with support vector learning mechanism called support-vector-based fuzzy neural networks (SVBFNN) is proposed. The SVBFNN combine the capability of minimizing the empirical risk (training error) and expected risk (testing error) of support vector learning in high dimensional data spaces and the efficient human-like reasoning of FNN.

Keywords: Neural network, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16687
3617 Antenna Array Beamforming Using Neural Network

Authors: Maja Sarevska, Abdel-Badeeh M. Salem

Abstract:

This paper considers the problem of Null-Steering beamforming using Neural Network (NN) approach for antenna array system. Two cases are presented. First, unlike the other authors, the estimated Direction Of Arrivals (DOAs) are used for antenna array weights NN-based determination and the imprecise DOAs estimations are taken into account. Second, the blind null-steering beamforming is presented. In this case the antenna array outputs are presented at the input of the NN without DOAs estimation. The results of computer simulations will show much better relative mean error performances of the first NN approach compared to the NNbased blind beamforming.

Keywords: Beamforming, DOAs, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
3616 Forecast of Polyethylene Properties in the Gas Phase Polymerization Aided by Neural Network

Authors: Nasrin Bakhshizadeh, Ashkan Forootan

Abstract:

A major problem that affects the quality control of polymer in the industrial polymerization is the lack of suitable on-line measurement tools to evaluate the properties of the polymer such as melt and density indices. Controlling the polymerization in ordinary method is performed manually by taking samples, measuring the quality of polymer in the lab and registry of results. This method is highly time consuming and leads to producing large number of incompatible products. An online application for estimating melt index and density proposed in this study is a neural network based on the input-output data of the polyethylene production plant. Temperature, the level of reactors' bed, the intensity of ethylene mass flow, hydrogen and butene-1, the molar concentration of ethylene, hydrogen and butene-1 are used for the process to establish the neural model. The neural network is taught based on the actual operational data and back-propagation and Levenberg-Marquart techniques. The simulated results indicate that the neural network process model established with three layers (one hidden layer) for forecasting the density and the four layers for the melt index is able to successfully predict those quality properties.

Keywords: Polyethylene, polymerization, density, melt index, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 687
3615 Wavelet - Based Classification of Outdoor Natural Scenes by Resilient Neural Network

Authors: Amitabh Wahi, Sundaramurthy S.

Abstract:

Natural outdoor scene classification is active and promising research area around the globe. In this study, the classification is carried out in two phases. In the first phase, the features are extracted from the images by wavelet decomposition method and stored in a database as feature vectors. In the second phase, the neural classifiers such as back-propagation neural network (BPNN) and resilient back-propagation neural network (RPNN) are employed for the classification of scenes. Four hundred color images are considered from MIT database of two classes as forest and street. A comparative study has been carried out on the performance of the two neural classifiers BPNN and RPNN on the increasing number of test samples. RPNN showed better classification results compared to BPNN on the large test samples.

Keywords: BPNN, Classification, Feature extraction, RPNN, Wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
3614 Generator Damage Recognition Based on Artificial Neural Network

Authors: Chang-Hung Hsu, Chun-Yao Lee, Guan-Lin Liao, Yung-Tsan Jou, Jin-Maun Ho, Yu-Hua Hsieh, Yi-Xing Shen

Abstract:

This article simulates the wind generator set which has two fault bearing collar rail destruction and the gear box oil leak fault. The electric current signal which produced by the generator, We use Empirical Mode Decomposition (EMD) as well as Fast Fourier Transform (FFT) obtains the frequency range-s signal figure and characteristic value. The last step is use a kind of Artificial Neural Network (ANN) classifies which determination fault signal's type and reason. The ANN purpose of the automatic identification wind generator set fault..

Keywords: Wind-driven generator, Fast Fourier Transform, Neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
3613 Using Artificial Neural Network Algorithm for Voltage Stability Improvement

Authors: Omid Borazjani, Mahmoud Roosta, Khodakhast Isapour, Ali Reza Rajabi

Abstract:

This paper presents an application of Artificial Neural Network (ANN) algorithm for improving power system voltage stability. The training data is obtained by solving several normal and abnormal conditions using the Linear Programming technique. The selected objective function gives minimum deviation of the reactive power control variables, which leads to the maximization of minimum Eigen value of load flow Jacobian. The considered reactive power control variables are switchable VAR compensators, OLTC transformers and excitation of generators. The method has been implemented on a modified IEEE 30-bus test system. The results obtain from the test clearly show that the trained neural network is capable of improving the voltage stability in power system with a high level of precision and speed.

Keywords: Artificial Neural Network (ANN), Load Flow, Voltage Stability, Power Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
3612 Rock Textures Classification Based on Textural and Spectral Features

Authors: Tossaporn Kachanubal, Somkait Udomhunsakul

Abstract:

In this paper, we proposed a method to classify each type of natural rock texture. Our goal is to classify 26 classes of rock textures. First, we extract five features of each class by using principle component analysis combining with the use of applied spatial frequency measurement. Next, the effective node number of neural network was tested. We used the most effective neural network in classification process. The results from this system yield quite high in recognition rate. It is shown that high recognition rate can be achieved in separation of 26 stone classes.

Keywords: Texture classification, SFM, neural network, rock texture classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
3611 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation

Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez

Abstract:

Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.

Keywords: Network Intrusion Detection, Machine learning, Artificial Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
3610 Modified Levenberg-Marquardt Method for Neural Networks Training

Authors: Amir Abolfazl Suratgar, Mohammad Bagher Tavakoli, Abbas Hoseinabadi

Abstract:

In this paper a modification on Levenberg-Marquardt algorithm for MLP neural network learning is proposed. The proposed algorithm has good convergence. This method reduces the amount of oscillation in learning procedure. An example is given to show usefulness of this method. Finally a simulation verifies the results of proposed method.

Keywords: Levenberg-Marquardt, modification, neural network, variable learning rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5049
3609 Artificial Neural Network based Modeling of Evaporation Losses in Reservoirs

Authors: Surinder Deswal, Mahesh Pal

Abstract:

An Artificial Neural Network based modeling technique has been used to study the influence of different combinations of meteorological parameters on evaporation from a reservoir. The data set used is taken from an earlier reported study. Several input combination were tried so as to find out the importance of different input parameters in predicting the evaporation. The prediction accuracy of Artificial Neural Network has also been compared with the accuracy of linear regression for predicting evaporation. The comparison demonstrated superior performance of Artificial Neural Network over linear regression approach. The findings of the study also revealed the requirement of all input parameters considered together, instead of individual parameters taken one at a time as reported in earlier studies, in predicting the evaporation. The highest correlation coefficient (0.960) along with lowest root mean square error (0.865) was obtained with the input combination of air temperature, wind speed, sunshine hours and mean relative humidity. A graph between the actual and predicted values of evaporation suggests that most of the values lie within a scatter of ±15% with all input parameters. The findings of this study suggest the usefulness of ANN technique in predicting the evaporation losses from reservoirs.

Keywords: Artificial neural network, evaporation losses, multiple linear regression, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
3608 Optimum Surface Roughness Prediction in Face Milling of High Silicon Stainless Steel

Authors: M. Farahnakian, M.R. Razfar, S. Elhami-Joosheghan

Abstract:

This paper presents an approach for the determination of the optimal cutting parameters (spindle speed, feed rate, depth of cut and engagement) leading to minimum surface roughness in face milling of high silicon stainless steel by coupling neural network (NN) and Electromagnetism-like Algorithm (EM). In this regard, the advantages of statistical experimental design technique, experimental measurements, artificial neural network, and Electromagnetism-like optimization method are exploited in an integrated manner. To this end, numerous experiments on this stainless steel were conducted to obtain surface roughness values. A predictive model for surface roughness is created by using a back propogation neural network, then the optimization problem was solved by using EM optimization. Additional experiments were performed to validate optimum surface roughness value predicted by EM algorithm. It is clearly seen that a good agreement is observed between the predicted values by EM coupled with feed forward neural network and experimental measurements. The obtained results show that the EM algorithm coupled with back propogation neural network is an efficient and accurate method in approaching the global minimum of surface roughness in face milling.

Keywords: cutting parameters, face milling, surface roughness, artificial neural network, Electromagnetism-like algorithm,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586
3607 A Neural Network Approach in Predicting the Blood Glucose Level for Diabetic Patients

Authors: Zarita Zainuddin, Ong Pauline, C. Ardil

Abstract:

Diabetes Mellitus is a chronic metabolic disorder, where the improper management of the blood glucose level in the diabetic patients will lead to the risk of heart attack, kidney disease and renal failure. This paper attempts to enhance the diagnostic accuracy of the advancing blood glucose levels of the diabetic patients, by combining principal component analysis and wavelet neural network. The proposed system makes separate blood glucose prediction in the morning, afternoon, evening and night intervals, using dataset from one patient covering a period of 77 days. Comparisons of the diagnostic accuracy with other neural network models, which use the same dataset are made. The comparison results showed overall improved accuracy, which indicates the effectiveness of this proposed system.

Keywords: Diabetes Mellitus, principal component analysis, time-series, wavelet neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2989
3606 A New Face Recognition Method using PCA, LDA and Neural Network

Authors: A. Hossein Sahoolizadeh, B. Zargham Heidari, C. Hamid Dehghani

Abstract:

In this paper, a new face recognition method based on PCA (principal Component Analysis), LDA (Linear Discriminant Analysis) and neural networks is proposed. This method consists of four steps: i) Preprocessing, ii) Dimension reduction using PCA, iii) feature extraction using LDA and iv) classification using neural network. Combination of PCA and LDA is used for improving the capability of LDA when a few samples of images are available and neural classifier is used to reduce number misclassification caused by not-linearly separable classes. The proposed method was tested on Yale face database. Experimental results on this database demonstrated the effectiveness of the proposed method for face recognition with less misclassification in comparison with previous methods.

Keywords: Face recognition Principal component analysis, Linear discriminant analysis, Neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3213
3605 A New Approach for Controlling Overhead Traveling Crane Using Rough Controller

Authors: Mazin Z. Othman

Abstract:

This paper presents the idea of a rough controller with application to control the overhead traveling crane system. The structure of such a controller is based on a suggested concept of a fuzzy logic controller. A measure of fuzziness in rough sets is introduced. A comparison between fuzzy logic controller and rough controller has been demonstrated. The results of a simulation comparing the performance of both controllers are shown. From these results we infer that the performance of the proposed rough controller is satisfactory.

Keywords: Accuracy measure, Fuzzy Logic Controller (FLC), Overhead Traveling Crane (OTC), Rough Set Theory (RST), Roughness measure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704