Search results for: InverseKinematics Error Model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8240

Search results for: InverseKinematics Error Model

8090 A Comparison of Artificial Neural Networks for Prediction of Suspended Sediment Discharge in River- A Case Study in Malaysia

Authors: M.R. Mustafa, M.H. Isa, R.B. Rezaur

Abstract:

Prediction of highly non linear behavior of suspended sediment flow in rivers has prime importance in the field of water resources engineering. In this study the predictive performance of two Artificial Neural Networks (ANNs) namely, the Radial Basis Function (RBF) Network and the Multi Layer Feed Forward (MLFF) Network have been compared. Time series data of daily suspended sediment discharge and water discharge at Pari River was used for training and testing the networks. A number of statistical parameters i.e. root mean square error (RMSE), mean absolute error (MAE), coefficient of efficiency (CE) and coefficient of determination (R2) were used for performance evaluation of the models. Both the models produced satisfactory results and showed a good agreement between the predicted and observed data. The RBF network model provided slightly better results than the MLFF network model in predicting suspended sediment discharge.

Keywords: ANN, discharge, modeling, prediction, suspendedsediment,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
8089 A Proposed Trust Model for the Semantic Web

Authors: Hoda Waguih

Abstract:

A serious problem on the WWW is finding reliable information. Not everything found on the Web is true and the Semantic Web does not change that in any way. The problem will be even more crucial for the Semantic Web, where agents will be integrating and using information from multiple sources. Thus, if an incorrect premise is used due to a single faulty source, then any conclusions drawn may be in error. Thus, statements published on the Semantic Web have to be seen as claims rather than as facts, and there should be a way to decide which among many possibly inconsistent sources is most reliable. In this work, we propose a trust model for the Semantic Web. The proposed model is inspired by the use trust in human society. Trust is a type of social knowledge and encodes evaluations about which agents can be taken as reliable sources of information or services. Our proposed model allows agents to decide which among different sources of information to trust and thus act rationally on the semantic web.

Keywords: Semantic Web, Trust, Web of Trust, WWW.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
8088 An Enhanced AODV Routing Protocol for Wireless Sensor and Actuator Networks

Authors: Apidet Booranawong, Wiklom Teerapabkajorndet

Abstract:

An enhanced ad-hoc on-demand distance vector routing (E-AODV) protocol for control system applications in wireless sensor and actuator networks (WSANs) is proposed. Our routing algorithm is designed by considering both wireless network communication and the control system aspects. Control system error and network delay are the main selection criteria in our routing protocol. The control and communication performance is evaluated on multi-hop IEEE 802.15.4 networks for building-temperature control systems. The Gilbert-Elliott error model is employed to simulate packet loss in wireless networks. The simulation results demonstrate that the E-AODV routing approach can significantly improve the communication performance better than an original AODV routing under various packet loss rates. However, the control performance result by our approach is not much improved compared with the AODV routing solution.

Keywords: WSANs, building temperature control, AODV routing protocol, control system error, settling time, delay, delivery ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253
8087 Novelist Calls Out Poemist: A Psycholinguistic and Contrastive Analysis of the Errors in Turkish EFL Learners- Interlanguage

Authors: Mehmet Ozcan

Abstract:

This study is designed to investigate errors emerged in written texts produced by 30 Turkish EFL learners with an explanatory, and thus, qualitative perspective. Erroneous language elements were identified by the researcher first and then their grammaticality and intelligibility were checked by five native speakers of English. The analysis of the data showed that it is difficult to claim that an error stems from only one single factor since different features of an error are triggered by different factors. Our findings revealed two different types of errors: those which stem from the interference of L1 with L2 and those which are developmental ones. The former type contains more global errors whereas the errors in latter type are more intelligible.

Keywords: Contrastive analysis, Error analysis, Language acquisition, Language transfer, Turkish

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106
8086 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: Computational social science, movie preference, machine learning, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
8085 Stepsize Control of the Finite Difference Method for Solving Ordinary Differential Equations

Authors: Davod Khojasteh Salkuyeh

Abstract:

An important task in solving second order linear ordinary differential equations by the finite difference is to choose a suitable stepsize h. In this paper, by using the stochastic arithmetic, the CESTAC method and the CADNA library we present a procedure to estimate the optimal stepsize hopt, the stepsize which minimizes the global error consisting of truncation and round-off error.

Keywords: Ordinary differential equations, optimal stepsize, error, stochastic arithmetic, CESTAC, CADNA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363
8084 Comparison of Methods of Estimation for Use in Goodness of Fit Tests for Binary Multilevel Models

Authors: I. V. Pinto, M. R. Sooriyarachchi

Abstract:

It can be frequently observed that the data arising in our environment have a hierarchical or a nested structure attached with the data. Multilevel modelling is a modern approach to handle this kind of data. When multilevel modelling is combined with a binary response, the estimation methods get complex in nature and the usual techniques are derived from quasi-likelihood method. The estimation methods which are compared in this study are, marginal quasi-likelihood (order 1 & order 2) (MQL1, MQL2) and penalized quasi-likelihood (order 1 & order 2) (PQL1, PQL2). A statistical model is of no use if it does not reflect the given dataset. Therefore, checking the adequacy of the fitted model through a goodness-of-fit (GOF) test is an essential stage in any modelling procedure. However, prior to usage, it is also equally important to confirm that the GOF test performs well and is suitable for the given model. This study assesses the suitability of the GOF test developed for binary response multilevel models with respect to the method used in model estimation. An extensive set of simulations was conducted using MLwiN (v 2.19) with varying number of clusters, cluster sizes and intra cluster correlations. The test maintained the desirable Type-I error for models estimated using PQL2 and it failed for almost all the combinations of MQL. Power of the test was adequate for most of the combinations in all estimation methods except MQL1. Moreover, models were fitted using the four methods to a real-life dataset and performance of the test was compared for each model.

Keywords: Goodness-of-fit test, marginal quasi-likelihood, multilevel modelling, type-I error, penalized quasi-likelihood, power, quasi-likelihood.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
8083 An Adaptive ARQ – HARQ Method with Two RS Codes

Authors: Michal Martinovič, Jaroslav Polec, Kvetoslava Kotuliaková

Abstract:

In this paper we proposed multistage adaptive ARQ/HARQ/HARQ scheme. This method combines pure ARQ (Automatic Repeat reQuest) mode in low channel bit error rate and hybrid ARQ method using two different Reed-Solomon codes in middle and high error rate conditions. It follows, that our scheme has three stages. The main goal is to increase number of states in adaptive HARQ methods and be able to achieve maximum throughput for every channel bit error rate. We will prove the proposal by calculation and then with simulations in land mobile satellite channel environment. Optimization of scheme system parameters is described in order to maximize the throughput in the whole defined Signal-to- Noise Ratio (SNR) range in selected channel environment.

Keywords: Signal-to-noise ratio, throughput, forward error correction (FEC), pure and hybrid automatic repeat request (ARQ).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
8082 Studies on Affecting Factors of Wheel Slip and Odometry Error on Real-Time of Wheeled Mobile Robots: A Review

Authors: D. Vidhyaprakash, A. Elango

Abstract:

In real-time applications, wheeled mobile robots are increasingly used and operated in extreme and diverse conditions traversing challenging surfaces such as a pitted, uneven terrain, natural flat, smooth terrain, as well as wet and dry surfaces. In order to accomplish such tasks, it is critical that the motion control functions without wheel slip and odometry error during the navigation of the two-wheeled mobile robot (WMR). Wheel slip and odometry error are disrupting factors on overall WMR performance in the form of deviation from desired trajectory, navigation, travel time and budgeted energy consumption. The wheeled mobile robot’s ability to operate at peak performance on various work surfaces without wheel slippage and odometry error is directly connected to four main parameters, which are the range of payload distribution, speed, wheel diameter, and wheel width. This paper analyses the effects of those parameters on overall performance and is concerned with determining the ideal range of parameters for optimum performance.

Keywords: Wheeled mobile robot (WMR), terrain, wheel slippage, odometry error, navigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251
8081 When Explanations “Cause“ Error: A Look at Representations and Compressions

Authors: Michael Lissack

Abstract:

We depend upon explanation in order to “make sense" out of our world. And, making sense is all the more important when dealing with change. But, what happens if our explanations are wrong? This question is examined with respect to two types of explanatory model. Models based on labels and categories we shall refer to as “representations." More complex models involving stories, multiple algorithms, rules of thumb, questions, ambiguity we shall refer to as “compressions." Both compressions and representations are reductions. But representations are far more reductive than compressions. Representations can be treated as a set of defined meanings – coherence with regard to a representation is the degree of fidelity between the item in question and the definition of the representation, of the label. By contrast, compressions contain enough degrees of freedom and ambiguity to allow us to make internal predictions so that we may determine our potential actions in the possibility space. Compressions are explanatory via mechanism. Representations are explanatory via category. Managers are often confusing their evocation of a representation (category inclusion) as the creation of a context of compression (description of mechanism). When this type of explanatory error occurs, more errors follow. In the drive for efficiency such substitutions are all too often proclaimed – at the manager-s peril..

Keywords: Coherence, Emergence, Reduction, Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239
8080 Evaluation of the ANN Based Nonlinear System Models in the MSE and CRLB Senses

Authors: M.V Rajesh, Archana R, A Unnikrishnan, R Gopikakumari, Jeevamma Jacob

Abstract:

The System Identification problem looks for a suitably parameterized model, representing a given process. The parameters of the model are adjusted to optimize a performance function based on error between the given process output and identified process output. The linear system identification field is well established with many classical approaches whereas most of those methods cannot be applied for nonlinear systems. The problem becomes tougher if the system is completely unknown with only the output time series is available. It has been reported that the capability of Artificial Neural Network to approximate all linear and nonlinear input-output maps makes it predominantly suitable for the identification of nonlinear systems, where only the output time series is available. [1][2][4][5]. The work reported here is an attempt to implement few of the well known algorithms in the context of modeling of nonlinear systems, and to make a performance comparison to establish the relative merits and demerits.

Keywords: Multilayer neural networks, Radial Basis Functions, Clustering algorithm, Back Propagation training, Extended Kalmanfiltering, Mean Square Error, Nonlinear Modeling, Cramer RaoLower Bound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
8079 Modeling of a UAV Longitudinal Dynamics through System Identification Technique

Authors: Asadullah I. Qazi, Mansoor Ahsan, Zahir Ashraf, Uzair Ahmad

Abstract:

System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc.  This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error   technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response.

Keywords: Black box modeling, fixed wing aircraft, least square error, longitudinal dynamics, system identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1138
8078 Modified Hankel Matrix Approach for Model Order Reduction in Time Domain

Authors: C. B. Vishwakarma

Abstract:

The author presented a method for model order reduction of large-scale time-invariant systems in time domain. In this approach, two modified Hankel matrices are suggested for getting reduced order models. The proposed method is simple, efficient and retains stability feature of the original high order system. The viability of the method is illustrated through the examples taken from literature.

Keywords: Model Order Reduction, Stability, Hankel Matrix, Time-Domain, Integral Square Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
8077 Enhancing the Error-Correcting Performance of LDPC Codes through an Efficient Use of Decoding Iterations

Authors: Insah Bhurtah, P. Clarel Catherine, K. M. Sunjiv Soyjaudah

Abstract:

The decoding of Low-Density Parity-Check (LDPC) codes is operated over a redundant structure known as the bipartite graph, meaning that the full set of bit nodes is not absolutely necessary for decoder convergence. In 2008, Soyjaudah and Catherine designed a recovery algorithm for LDPC codes based on this assumption and showed that the error-correcting performance of their codes outperformed conventional LDPC Codes. In this work, the use of the recovery algorithm is further explored to test the performance of LDPC codes while the number of iterations is progressively increased. For experiments conducted with small blocklengths of up to 800 bits and number of iterations of up to 2000, the results interestingly demonstrate that contrary to conventional wisdom, the error-correcting performance keeps increasing with increasing number of iterations.

Keywords: Error-correcting codes, information theory, low-density parity-check codes, sum-product algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
8076 Determine of Constant Coefficients to RelateTotal Dissolved Solids to Electrical Conductivity

Authors: M. Siosemarde, F. Kave, E. Pazira, H. Sedghi, S. J. Ghaderi

Abstract:

Salinity is a measure of the amount of salts in the water. Total Dissolved Solids (TDS) as salinity parameter are often determined using laborious and time consuming laboratory tests, but it may be more appropriate and economical to develop a method which uses a more simple soil salinity index. Because dissolved ions increase salinity as well as conductivity, the two measures are related. The aim of this research was determine of constant coefficients for predicting of Total Dissolved Solids (TDS) based on Electrical Conductivity (EC) with Statistics of Correlation coefficient, Root mean square error, Maximum error, Mean Bias error, Mean absolute error, Relative error and Coefficient of residual mass. For this purpose, two experimental areas (S1, S2) of Khuzestan province-IRAN were selected and four treatments with three replications by series of double rings were applied. The treatments were included 25cm, 50cm, 75cm and 100cm water application. The results showed the values 16.3 & 12.4 were the best constant coefficients for predicting of Total Dissolved Solids (TDS) based on EC in Pilot S1 and S2 with correlation coefficient 0.977 & 0.997 and 191.1 & 106.1 Root mean square errors (RMSE) respectively.

Keywords: constant coefficients, electrical conductivity, Khuzestan plain and total dissolved solids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3904
8075 The Mechanistic Deconvolutive Image Sensor Model for an Arbitrary Pan–Tilt Plane of View

Authors: S. H. Lim, T. Furukawa

Abstract:

This paper presents a generalized form of the mechanistic deconvolution technique (GMD) to modeling image sensors applicable in various pan–tilt planes of view. The mechanistic deconvolution technique (UMD) is modified with the given angles of a pan–tilt plane of view to formulate constraint parameters and characterize distortion effects, and thereby, determine the corrected image data. This, as a result, does not require experimental setup or calibration. Due to the mechanistic nature of the sensor model, the necessity for the sensor image plane to be orthogonal to its z-axis is eliminated, and it reduces the dependency on image data. An experiment was constructed to evaluate the accuracy of a model created by GMD and its insensitivity to changes in sensor properties and in pan and tilt angles. This was compared with a pre-calibrated model and a model created by UMD using two sensors with different specifications. It achieved similar accuracy with one-seventh the number of iterations and attained lower mean error by a factor of 2.4 when compared to the pre-calibrated and UMD model respectively. The model has also shown itself to be robust and, in comparison to pre-calibrated and UMD model, improved the accuracy significantly.

Keywords: Image sensor modeling, mechanistic deconvolution, calibration, lens distortion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
8074 Performance of Block Codes Using the Eigenstructure of the Code Correlation Matrixand Soft-Decision Decoding of BPSK

Authors: Vitalice K. Oduol, C. Ardil

Abstract:

A method is presented for obtaining the error probability for block codes. The method is based on the eigenvalueeigenvector properties of the code correlation matrix. It is found that under a unary transformation and for an additive white Gaussian noise environment, the performance evaluation of a block code becomes a one-dimensional problem in which only one eigenvalue and its corresponding eigenvector are needed in the computation. The obtained error rate results show remarkable agreement between simulations and analysis.

Keywords: bit error rate, block codes, code correlation matrix, eigenstructure, soft-decision decoding, weight vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
8073 Generalization of SGIP Surface Tension Force Model in Three-Dimensional Flows and Compare to Other Models in Interfacial Flows

Authors: Afshin Ahmadi Nadooshan, Ebrahim Shirani

Abstract:

In this paper, the two-dimensional stagger grid interface pressure (SGIP) model has been generalized and presented into three-dimensional form. For this purpose, various models of surface tension force for interfacial flows have been investigated and compared with each other. The VOF method has been used for tracking the interface. To show the ability of the SGIP model for three-dimensional flows in comparison with other models, pressure contours, maximum spurious velocities, norm spurious flow velocities and pressure jump error for motionless drop of liquid and bubble of gas are calculated using different models. It has been pointed out that SGIP model in comparison with the CSF, CSS and PCIL models produces the least maximum and norm spurious velocities. Additionally, the new model produces more accurate results in calculating the pressure jumps across the interface for motionless drop of liquid and bubble of gas which is generated in surface tension force.

Keywords: Volume-of-Fluid; SGIP model; CSS model; CSF model; PCIL model; surface tension force; spurious currents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
8072 Predicting DHF Incidence in Northern Thailand using Time Series Analysis Technique

Authors: S. Wongkoon, M. Pollar, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

This study aimed at developing a forecasting model on the number of Dengue Haemorrhagic Fever (DHF) incidence in Northern Thailand using time series analysis. We developed Seasonal Autoregressive Integrated Moving Average (SARIMA) models on the data collected between 2003-2006 and then validated the models using the data collected between January-September 2007. The results showed that the regressive forecast curves were consistent with the pattern of actual values. The most suitable model was the SARIMA(2,0,1)(0,2,0)12 model with a Akaike Information Criterion (AIC) of 12.2931 and a Mean Absolute Percent Error (MAPE) of 8.91713. The SARIMA(2,0,1)(0,2,0)12 model fitting was adequate for the data with the Portmanteau statistic Q20 = 8.98644 ( x20,95= 27.5871, P>0.05). This indicated that there was no significant autocorrelation between residuals at different lag times in the SARIMA(2,0,1)(0,2,0)12 model.

Keywords: Dengue, SARIMA, Time Series Analysis, Northern Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
8071 Diesel Fault Prediction Based on Optimized Gray Neural Network

Authors: Han Bing, Yin Zhenjie

Abstract:

In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.

Keywords: Fault prediction, Neural network, GM (1.5), Genetic algorithm, GBPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
8070 The Performance Analysis of Error Saturation Nonlinearity LMS in Impulsive Noise based on Weighted-Energy Conservation

Authors: T Panigrahi, G Panda, Mulgrew

Abstract:

This paper introduces a new approach for the performance analysis of adaptive filter with error saturation nonlinearity in the presence of impulsive noise. The performance analysis of adaptive filters includes both transient analysis which shows that how fast a filter learns and the steady-state analysis gives how well a filter learns. The recursive expressions for mean-square deviation(MSD) and excess mean-square error(EMSE) are derived based on weighted energy conservation arguments which provide the transient behavior of the adaptive algorithm. The steady-state analysis for co-related input regressor data is analyzed, so this approach leads to a new performance results without restricting the input regression data to be white.

Keywords: Error saturation nonlinearity, transient analysis, impulsive noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
8069 Average Turbulent Pipe Flow with Heat Transfer Using a Three-Equation Model

Authors: Khalid Alammar

Abstract:

Aim of this study is to evaluate a new three-equation turbulence model applied to flow and heat transfer through a pipe. Uncertainty is approximated by comparing with published direct numerical simulation results for fully-developed flow. Error in the mean axial velocity, temperature, friction, and heat transfer is found to be negligible.

Keywords: Heat Transfer, Nusselt number, Skin friction, Turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
8068 On the Efficiency and Robustness of Commingle Wiener and Lévy Driven Processes for Vasciek Model

Authors: Rasaki O. Olanrewaju

Abstract:

The driven processes of Wiener and Lévy are known self-standing Gaussian-Markov processes for fitting non-linear dynamical Vasciek model. In this paper, a coincidental Gaussian density stationarity condition and autocorrelation function of the two driven processes were established. This led to the conflation of Wiener and Lévy processes so as to investigate the efficiency of estimates incorporated into the one-dimensional Vasciek model that was estimated via the Maximum Likelihood (ML) technique. The conditional laws of drift, diffusion and stationarity process was ascertained for the individual Wiener and Lévy processes as well as the commingle of the two processes for a fixed effect and Autoregressive like Vasciek model when subjected to financial series; exchange rate of Naira-CFA Franc. In addition, the model performance error of the sub-merged driven process was miniature compared to the self-standing driven process of Wiener and Lévy.

Keywords: Wiener process, Lévy process, Vasciek model, drift, diffusion, Gaussian density stationary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 666
8067 Electric Load Forecasting Using Genetic Based Algorithm, Optimal Filter Estimator and Least Error Squares Technique: Comparative Study

Authors: Khaled M. EL-Naggar, Khaled A. AL-Rumaih

Abstract:

This paper presents performance comparison of three estimation techniques used for peak load forecasting in power systems. The three optimum estimation techniques are, genetic algorithms (GA), least error squares (LS) and, least absolute value filtering (LAVF). The problem is formulated as an estimation problem. Different forecasting models are considered. Actual recorded data is used to perform the study. The performance of the above three optimal estimation techniques is examined. Advantages of each algorithms are reported and discussed.

Keywords: Forecasting, Least error squares, Least absolute Value, Genetic algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2723
8066 PID Parameter Optimization of an UAV Longitudinal Flight Control System

Authors: Kamran Turkoglu, Ugur Ozdemir, Melike Nikbay, Elbrous M. Jafarov

Abstract:

In this paper, an automatic control system design based on Integral Squared Error (ISE) parameter optimization technique has been implemented on longitudinal flight dynamics of an UAV. It has been aimed to minimize the error function between the reference signal and the output of the plant. In the following parts, objective function has been defined with respect to error dynamics. An unconstrained optimization problem has been solved analytically by using necessary and sufficient conditions of optimality, optimum PID parameters have been obtained and implemented in control system dynamics.

Keywords: Optimum Design, KKT Conditions, UAV, Longitudinal Flight Dynamics, ISE Parameter Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3746
8065 Program Memories Error Detection and Correction On-Board Earth Observation Satellites

Authors: Y. Bentoutou

Abstract:

Memory Errors Detection and Correction aim to secure the transaction of data between the central processing unit of a satellite onboard computer and its local memory. In this paper, the application of a double-bit error detection and correction method is described and implemented in Field Programmable Gate Array (FPGA) technology. The performance of the proposed EDAC method is measured and compared with two different EDAC devices, using the same FPGA technology. Statistical analysis of single-event upset (SEU) and multiple-bit upset (MBU) activity in commercial memories onboard the first Algerian microsatellite Alsat-1 is given.

Keywords: Error Detection and Correction, On-board computer, small satellite missions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
8064 Specialized Reduced Models of Dynamic Flows in 2-Stroke Engines

Authors: S. Cagin, X. Fischer, E. Delacourt, N. Bourabaa, C. Morin, D. Coutellier, B. Carré, S. Loumé

Abstract:

The complexity of scavenging by ports and its impact on engine efficiency create the need to understand and to model it as realistically as possible. However, there are few empirical scavenging models and these are highly specialized. In a design optimization process, they appear very restricted and their field of use is limited. This paper presents a comparison of two methods to establish and reduce a model of the scavenging process in 2-stroke diesel engines. To solve the lack of scavenging models, a CFD model has been developed and is used as the referent case. However, its large size requires a reduction. Two techniques have been tested depending on their fields of application: The NTF method and neural networks. They both appear highly appropriate drastically reducing the model’s size (over 90% reduction) with a low relative error rate (under 10%). Furthermore, each method produces a reduced model which can be used in distinct specialized fields of application: the distribution of a quantity (mass fraction for example) in the cylinder at each time step (pseudo-dynamic model) or the qualification of scavenging at the end of the process (pseudo-static model).

Keywords: Diesel engine, Design optimization, Model reduction, Neural network, NTF algorithm, Scavenging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1330
8063 Combining Diverse Neural Classifiers for Complex Problem Solving: An ECOC Approach

Authors: R. Ebrahimpour, M. Abbasnezhad Arabi, H. Babamiri Moghaddam

Abstract:

Combining classifiers is a useful method for solving complex problems in machine learning. The ECOC (Error Correcting Output Codes) method has been widely used for designing combining classifiers with an emphasis on the diversity of classifiers. In this paper, in contrast to the standard ECOC approach in which individual classifiers are chosen homogeneously, classifiers are selected according to the complexity of the corresponding binary problem. We use SATIMAGE database (containing 6 classes) for our experiments. The recognition error rate in our proposed method is %10.37 which indicates a considerable improvement in comparison with the conventional ECOC and stack generalization methods.

Keywords: Error correcting output code, combining classifiers, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
8062 A Nano-Scaled SRAM Guard Band Design with Gaussian Mixtures Model of Complex Long Tail RTN Distributions

Authors: Worawit Somha, Hiroyuki Yamauchi

Abstract:

This paper proposes, for the first time, how the challenges facing the guard-band designs including the margin assist-circuits scheme for the screening-test in the coming process generations should be addressed. The increased screening error impacts are discussed based on the proposed statistical analysis models. It has been shown that the yield-loss caused by the misjudgment on the screening test would become 5-orders of magnitude larger than that for the conventional one when the amplitude of random telegraph noise (RTN) caused variations approaches to that of random dopant fluctuation. Three fitting methods to approximate the RTN caused complex Gamma mixtures distributions by the simple Gaussian mixtures model (GMM) are proposed and compared. It has been verified that the proposed methods can reduce the error of the fail-bit predictions by 4-orders of magnitude.

Keywords: Mixtures of Gaussian, Random telegraph noise, EM algorithm, Long-tail distribution, Fail-bit analysis, Static random access memory, Guard band design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
8061 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: Crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1174