Search results for: Flow theory
3618 An Experimental Study on Evacuated Tube Solar Collector for Heating of Air in India
Authors: Avadhesh Yadav, V.K. Bajpai
Abstract:
A solar powered air heating system using one ended evacuated tubes is experimentally investigated. A solar air heater containing forty evacuated tubes is used for heating purpose. The collector surface area is about 4.44 m2. The length and outer diameters of the outer glass tube and absorber tube are 1500, 47 and 37 mm, respectively. In this experimental setup, we have a header (heat exchanger) of square shape (190 mm x 190 mm). The length of header is 1500 mm. The header consists of a hollow pipe in the center whose diameter is 60 mm through which the air is made to flow. The experimental setup contains approximately 108 liters of water. Water is working as heat collecting medium which collects the solar heat falling on the tubes. This heat is delivered to the air flowing through the header pipe. This heat flow is due to natural convection and conduction. The outlet air temperature depends upon several factors along with air flow rate and solar radiation intensity. The study has been done for both up-flow and down-flow of air in header in similar weather conditions, at different flow rates. In the present investigations the study has been made to find the effect of intensity of solar radiations and flow rate of air on the out let temperature of the air with time and which flow is more efficient. The obtained results show that the system is highly effective for the heating in this region. Moreover, it has been observed that system is highly efficient for the particular flow rate of air. It was also observed that downflow configuration is more effective than up-flow condition at all flow rates due to lesser losses in down-flow. The results show that temperature differences of upper head and lower head, both of water and surface of pipes on the respective ends is lower in down-flow.
Keywords: air flow direction, Evacuated tube solar collector, solar air heating, solar thermal utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51963617 Value from Environmental and Cultural Perspectives or Two Sides of the Same Coin
Authors: Vilém Pařil, Dominika Tóthová
Abstract:
This paper discusses the value theory in cultural heritage and the value theory in environmental economics. Two economic views of the value theory are compared, within the field of cultural heritage maintenance and within the field of the environment. The main aims are to find common features in these two differently structured theories under the layer of differently defined terms as well as really differing features of these two approaches; to clear the confusion which stems from different terminology as in fact these terms capture the same aspects of reality; and to show possible inspiration these two perspectives can offer one another. Another aim is to present these two value systems in one value framework. First, important moments of the value theory from the economic perspective are presented, leading to the marginal revolution of (not only) the Austrian School. Then the theory of value within cultural heritage and environmental economics are explored. Finally, individual approaches are compared and their potential mutual inspiration searched for.
Keywords: Cultural heritage, environmental economics, existence value, value theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18933616 An Investigation into Turbine Blade Tip Leakage Flows at High Speeds
Authors: Z. Saleh, E. J. Avital, T. Korakianitis
Abstract:
The effect of the blade tip geometry of a high pressure gas turbine is studied experimentally and computationally for high speed leakage flows. For this purpose two simplified models are constructed, one models a flat tip of the blade and the second models a cavity tip of the blade. Experimental results are obtained from a transonic wind tunnel to show the static pressure distribution along the tip wall and provide flow visualization. RANS computations were carried to provide further insight into the mean flow behavior and to calculate the discharge coefficient which is a measure of the flow leaking over the tip. It is shown that in both geometries of tip the flow separates over the tip to form a separation bubble. The bubble is higher for the cavity tip while a complete shock wave system of oblique waves ending with a normal wave can be seen for the flat tip. The discharge coefficient for the flat tip shows less dependence on the pressure ratio over the blade tip than the cavity tip. However, the discharge coefficient for the cavity tip is lower than that of the flat tip, showing a better ability to reduce the leakage flow and thus increase the turbine efficiency.Keywords: Gas turbine, blade tip leakage flow, transonic flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23353615 Study of Low Loading Heavier Phase in Horizontal Oil-Water Liquid-Liquid Pipe Flow
Authors: Aminu J. A. Koguna, Aliyu M. Aliyu, Olawale T. Fajemidupe, Yahaya D. Baba
Abstract:
Production fluids are transported from the platform to tankers or process facilities through transfer pipelines. Water being one of the heavier phases tends to settle at the bottom of pipelines especially at low flow velocities and this has adverse consequences for pipeline integrity. On restart after a shutdown, this could result in corrosion and issues for process equipment, thus the need to have the heavier liquid dispersed into the flowing lighter fluid. This study looked at the flow regime of low water cut and low flow velocity oil and water flow using conductive film thickness probes in a large diameter 4-inch pipe to obtain oil and water interface height and the interface structural velocity. A wide range of 0.1–1.0 m/s oil and water mixture velocities was investigated for 0.5–5% water cut. Two fluid model predictions were used to compare with the experimental results.Keywords: Interface height, liquid-liquid flow, two-fluid model, water cut.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17903614 A Computational Study on Flow Separation Control of Humpback Whale Inspired Sinusoidal Hydrofoils
Authors: J. Joy, T. H. New, I. H. Ibrahim
Abstract:
A computational study on bio-inspired NACA634-021 hydrofoils with leading-edge protuberances has been carried out to investigate their hydrodynamic flow control characteristics at a Reynolds number of 14,000 and different angles-of-attack. The numerical simulations were performed using ANSYS FLUENT and based on Reynolds-Averaged Navier-Stokes (RANS) solver mode incorporated with k-ω Shear Stress Transport (SST) turbulence model. The results obtained indicate varying flow phenomenon along the peaks and troughs over the span of the hydrofoils. Compared to the baseline hydrofoil with no leading-edge protuberances, the leading-edge modified hydrofoils tend to reduce flow separation extents along the peak regions. In contrast, there are increased flow separations in the trough regions of the hydrofoil with leading-edge protuberances. Interestingly, it was observed that dissimilar flow separation behaviour is produced along different peak- or trough-planes along the hydrofoil span, even though the troughs or peaks are physically similar at each interval for a particular hydrofoil. Significant interactions between adjacent flow structures produced by the leading-edge protuberances have also been observed. These flow interactions are believed to be responsible for the dissimilar flow separation behaviour along physically similar peak- or trough-planes.Keywords: Computational Fluid Dynamics, Flow separation control, Hydrofoils, Leading-edge protuberances.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20163613 Effect of Thermal Radiation on Temperature Variation in 2-D Stagnation-Point flow
Authors: Vai Kuong Sin
Abstract:
Non-isothermal stagnation-point flow with consideration of thermal radiation is studied numerically. A set of partial differential equations that governing the fluid flow and energy is converted into a set of ordinary differential equations which is solved by Runge-Kutta method with shooting algorithm. Dimensionless wall temperature gradient and temperature boundary layer thickness for different combinaton of values of Prandtl number Pr and radiation parameter NR are presented graphically. Analyses of results show that the presence of thermal radiation in the stagnation-point flow is to increase the temperature boundary layer thickness and decrease the dimensionless wall temperature gradient.
Keywords: Stagnation-point flow, Similarity solution, Thermal radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15343612 Impact of Personality and Loneliness on Life: Role of Online Flow Experiences
Authors: Asmita Shukla, Soma Parija
Abstract:
The present study examines the mediating effect of online flow experience on the relationship between extraversionintroversion, locus of control and loneliness, and depression and satisfaction with life. The data was obtained using a structured questionnaire prepared by adapting standardized scales available from a sample of 102 engineering students from different technical institutions at Bhubaneswar, India. The results indicate that there is a positive significant relationship between introversion, external locus of control, loneliness, depression and online flow experience, and extraversion, internal locus of control and satisfaction with life. The results also suggest that online flow experience mediates the relationship between the aforementioned variables.Keywords: Life satisfaction and depression, loneliness, online flow experience, personality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21013611 Reconstruction of the Most Energetic Modes in a Fully Developed Turbulent Channel Flow with Density Variation
Authors: Elteyeb Eljack, Takashi Ohta
Abstract:
Proper orthogonal decomposition (POD) is used to reconstruct spatio-temporal data of a fully developed turbulent channel flow with density variation at Reynolds number of 150, based on the friction velocity and the channel half-width, and Prandtl number of 0.71. To apply POD to the fully developed turbulent channel flow with density variation, the flow field (velocities, density, and temperature) is scaled by the corresponding root mean square values (rms) so that the flow field becomes dimensionless. A five-vector POD problem is solved numerically. The reconstructed second-order moments of velocity, temperature, and density from POD eigenfunctions compare favorably to the original Direct Numerical Simulation (DNS) data.
Keywords: Pattern Recognition, POD, Coherent Structures, Low dimensional modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13733610 Learning Paradigms for Educating a New Generation of Computer Science Students
Authors: J. M. Breed, E. Taylor
Abstract:
In this paper challenges associated with a new generation of Computer Science students are examined. The mode of education in tertiary institutes has progressed slowly while the needs of students have changed rapidly in an increasingly technological world. The major learning paradigms and learning theories within these paradigms are studied to find a suitable strategy for educating modern students. These paradigms include Behaviourism, Constructivism, Humanism and Cogntivism. Social Learning theory and Elaboration theory are two theories that are further examined and a survey is done to determine how these strategies will be received by students. The results and findings are evaluated and indicate that students are fairly receptive to a method that incorporates both Social Learning theory and Elaboration theory, but that some aspects of all paradigms need to be implemented to create a balanced and effective strategy with technology as foundation.Keywords: Computer Science, Education, Elaboration Theory, Learning Paradigms, Social Learning Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21653609 Unsteady Flow between Two Concentric Rotating Spheres along with Uniform Transpiration
Authors: O. Mahian, A. B. Rahimi, A. Kianifar, A. Jabari Moghadam
Abstract:
In this study, the numerical solution of unsteady flow between two concentric rotating spheres with suction and blowing at their boundaries is presented. The spheres are rotating about a common axis of rotation while their angular velocities are constant. The Navier-Stokes equations are solved by employing the finite difference method and implicit scheme. The resulting flow patterns are presented for various values of the flow parameters including rotational Reynolds number Re , and a blowing/suction Reynolds number Rew . Viscous torques at the inner and the outer spheres are calculated, too. It is seen that increasing the amount of suction and blowing decrease the size of eddies generated in the annulus.Keywords: Concentric spheres, numerical study, suction andblowing, unsteady flow, viscous torque.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17653608 Synergistic Impacts and Optimization of Gas Flow Rate, Concentration of CO2, and Light Intensity on CO2 Biofixation in Wastewater Medium by Chlorella vulgaris
Authors: Ahmed Arkoazi, Hussein Znad, Ranjeet Utikar
Abstract:
The synergistic impact and optimization of gas flow rate, concentration of CO2, and light intensity on CO2 biofixation rate were investigated using wastewater as a medium to cultivate Chlorella vulgaris under different conditions (gas flow rate 1-8 L/min), CO2 concentration (0.03-7%), and light intensity (150-400 µmol/m2.s)). Response Surface Methodology and Box-Behnken experimental Design were applied to find optimum values for gas flow rate, CO2 concentration, and light intensity. The optimum values of the three independent variables (gas flow rate, concentration of CO2, and light intensity) and desirability were 7.5 L/min, 3.5%, and 400 µmol/m2.s, and 0.904, respectively. The highest amount of biomass produced and CO2 biofixation rate at optimum conditions were 5.7 g/L, 1.23 gL-1d-1, respectively. The synergistic effect between gas flow rate and concentration of CO2, and between gas flow rate and light intensity was significant on the three responses, while the effect between CO2 concentration and light intensity was less significant on CO2 biofixation rate. The results of this study could be highly helpful when using microalgae for CO2 biofixation in wastewater treatment.
Keywords: Synergistic impact, optimization, CO2 biofixation, airlift reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7383607 Empirical Heat Transfer Correlations of Finned-Tube Heat Exchangers in Pulsatile Flow
Authors: Jason P. Michaud, Connor P. Speer, David A. Miller, David S. Nobes
Abstract:
An experimental study on finned-tube radiators has been conducted. Three radiators found in desktop computers sized for 120 mm fans were tested in steady and pulsatile flows of ambient air over a Reynolds number range of 50 < Re < 900. Water at 60 °C was circulated through the radiators to maintain a constant fin temperature during the tests. For steady flow, it was found that the heat transfer rate increased linearly with the mass flow rate of air. The pulsatile flow experiments showed that frequency of pulsation had a negligible effect on the heat transfer rate for the range of frequencies tested (0.5 Hz – 2.5 Hz). For all three radiators, the heat transfer rate was decreased in the case of pulsatile flow. Linear heat transfer correlations for steady and pulsatile flow were calculated in terms of Reynolds number and Nusselt number.
Keywords: Finned-tube heat exchangers, radiators, heat transfer correlations, pulsatile flow, computer radiators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13673606 Simulation of 3D Flow using Numerical Model at Open-channel Confluences
Authors: R.Goudarzizadeh, S.H.Mousavi Jahromi, N.Hedayat
Abstract:
This paper analytically investigates the 3D flow pattern at the confluences of two rectangular channels having 900 angles using Navier-Stokes equations based on Reynolds Stress Turbulence Model (RSM). The equations are solved by the Finite- Volume Method (FVM) and the flow is analyzed in terms of steadystate (single-phased) conditions. The Shumate experimental findings were used to test the validity of data. Comparison of the simulation model with the experimental ones indicated a close proximity between the flow patterns of the two sets. Effects of the discharge ratio on separation zone dimensions created in the main-channel downstream of the confluence indicated an inverse relation, where a decrease in discharge ratio, will entail an increase in the length and width of the separation zone. The study also found the model as a powerful analytical tool in the feasibility study of hydraulic engineering projects.Keywords: 900 confluence angle, flow separation zone, numerical modeling, turbulent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18623605 Study on Cross-flow Heat Transfer in Fixed Bed
Authors: Hong-fang Ma, Hai-tao Zhang, Wei-yong Ying, Ding-ye Fang
Abstract:
Radial flow reactor was focused for large scale methanol synthesis and in which the heat transfer type was cross-flow. The effects of operating conditions including the reactor inlet air temperature, the heating pipe temperature and the air flow rate on the cross-flow heat transfer was investigated and the results showed that the temperature profile of the area in front of the heating pipe was slightly affected by all the operating conditions. The main area whose temperature profile was influenced was the area behind the heating pipe. The heat transfer direction according to the air flow directions. In order to provide the basis for radial flow reactor design calculation, the dimensionless number group method was used for data fitting of the bed effective thermal conductivity and the wall heat transfer coefficient which was calculated by the mathematical model with the product of Reynolds number and Prandtl number. The comparison of experimental data and calculated value showed that the calculated value fit the experimental data very well and the formulas could be used for reactor designing calculation.Keywords: Cross-flow, Heat transfer, Fixed bed, Mathematical model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18743604 Analysis for MHD Flow of a Maxwell Fluid past a Vertical Stretching Sheet in the Presence of Thermophoresis and Chemical Reaction
Authors: Noor Fadiya Mohd Noor
Abstract:
The hydromagnetic flow of a Maxwell fluid past a vertical stretching sheet with thermophoresis is considered. The impact of chemical reaction species to the flow is analyzed for the first time by using the homotopy analysis method (HAM). The h-curves for the flow boundary layer equations are presented graphically. Several values of wall skin friction, heat and mass transfer are obtained and discussed.
Keywords: homotopy, MHD, thermophoresis, chemical reaction, Maxwell
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20783603 Drag models for Simulation Gas-Solid Flow in the Bubbling Fluidized Bed of FCC Particles
Authors: S. Benzarti, H. Mhiri, H. Bournot
Abstract:
In the current work, a numerical parametric study was performed in order to model the fluid mechanics in the riser of a bubbling fluidized bed (BFB). The gas-solid flow was simulated by mean of a multi-fluid Eulerian model incorporating the kinetic theory for solid particles. The bubbling fluidized bed was simulated two dimensionally by mean of a Computational Fluid Dynamic (CFD) commercial software package, Fluent. The effects of using different inter-phase drag function (the drag model of Gidaspow, Syamlal and O-Brien and the EMMS drag model) on the model predictions were evaluated and compared. The results showed that the drag models of Gidaspow and Syamlal and O-Brien overestimated the drag force for the FCC particles and predicted a greater bed expansion in comparison to the EMMS drag model.Keywords: Bubbling fluidized bed, CFD, drag model, EMMS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67403602 Approximate Method of Calculation of Inviscid Hypersonic Flow
Authors: F. Sokhanvar, A. B. Khoshnevis
Abstract:
In the present work steady inviscid hypersonic flows are calculated by approximate Method. Maslens' inverse method is the chosen approximate method. For the inverse problem, parabolic shock shape is chosen for the two-dimensional flow, and the body shape and flow field are calculated using Maslen's method. For the axisymmetric inverse problem paraboloidal shock is chosen and the surface distribution of pressure is obtained.Keywords: Hypersonic flow, Inverse problem method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30663601 The Effect of Development of Two-Phase Flow Regimes on the Stability of Gas Lift Systems
Authors: Khalid. M. O. Elmabrok, M. L. Burby, G. G. Nasr
Abstract:
Flow instability during gas lift operation is caused by three major phenomena – the density wave oscillation, the casing heading pressure and the flow perturbation within the two-phase flow region. This paper focuses on the causes and the effect of flow instability during gas lift operation and suggests ways to control it in order to maximise productivity during gas lift operations. A laboratory-scale two-phase flow system to study the effects of flow perturbation was designed and built. The apparatus is comprised of a 2 m long by 66 mm ID transparent PVC pipe with air injection point situated at 0.1 m above the base of the pipe. This is the point where stabilised bubbles were visibly clear after injection. Air is injected into the water filled transparent pipe at different flow rates and pressures. The behavior of the different sizes of the bubbles generated within the two-phase region was captured using a digital camera and the images were analysed using the advanced image processing package. It was observed that the average maximum bubbles sizes increased with the increase in the length of the vertical pipe column from 29.72 to 47 mm. The increase in air injection pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm to 44.17 mm and then decreasing when the pressure reaches 4 bars. It was observed that at higher bubble velocity of 6.7 m/s, larger diameter bubbles coalesce and burst due to high agitation and collision with each other. This collapse of the bubbles causes pressure drop and reverse flow within two phase flow and is the main cause of the flow instability phenomena.Keywords: Gas lift instability, bubble forming, bubble collapsing, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14743600 Effect of Flow Holes on Heat Release Performance of Extruded-type Heat Sink
Authors: Jung Hyun Kim, Gyo Woo Lee
Abstract:
In this study, the enhancement of the heat release performance of an extruded-type heat sink to prepare the large-capacity solar inverter thru the flow holes in the base plate near the heat sources was investigated. Optimal location and number of the holes in the baseplate were determined by using a commercial computation program. The heat release performance of the shape-modified heat sink was measured experimentally and compared with that of the simulation. The heat sink with 12 flow holes in the 18-mm-thick base plate has a 8.1% wider heat transfer area, a 2.5% more mass flow of air, and a 2.7% higher heat release rate than those of the original heat sink. Also, the surface temperature of the base plate was lowered 1.5oC by the holes.
Keywords: Heat Sink, Forced Convection, Heat Transfer, Performance Evaluation, Flow Holes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17843599 Data Traffic Dynamics and Saturation on a Single Link
Authors: Reginald D. Smith
Abstract:
The dynamics of User Datagram Protocol (UDP) traffic over Ethernet between two computers are analyzed using nonlinear dynamics which shows that there are two clear regimes in the data flow: free flow and saturated. The two most important variables affecting this are the packet size and packet flow rate. However, this transition is due to a transcritical bifurcation rather than phase transition in models such as in vehicle traffic or theorized large-scale computer network congestion. It is hoped this model will help lay the groundwork for further research on the dynamics of networks, especially computer networks.Keywords: congestion, packet flow, Internet, traffic dynamics, transcritical bifurcation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16153598 Study of Flow Behavior of Aqueous Solution of Rhodamine B in Annular Reactor Using Computational Fluid Dynamics
Authors: Jatinder Kumar, Ajay Bansal
Abstract:
The present study deals with the modeling and simulation of flow through an annular reactor at different hydrodynamic conditions using computational fluid dynamics (CFD) to investigate the flow behavior. CFD modeling was utilized to predict velocity distribution and average velocity in the annular geometry. The results of CFD simulations were compared with the mathematically derived equations and already developed correlations for validation purposes. CFD modeling was found suitable for predicting the flow characteristics in annular geometry under laminar flow conditions. It was observed that CFD also provides local values of the parameters of interest in addition to the average values for the simulated geometry.
Keywords: Annular reactor, computational fluid dynamics (CFD), hydrodynamics, Rhodamine B
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19143597 Transport of Analytes under Mixed Electroosmotic and Pressure Driven Flow of Power Law Fluid
Authors: Naren Bag, S. Bhattacharyya, Partha P. Gopmandal
Abstract:
In this study, we have analyzed the transport of analytes under a two dimensional steady incompressible flow of power-law fluids through rectangular nanochannel. A mathematical model based on the Cauchy momentum-Nernst-Planck-Poisson equations is considered to study the combined effect of mixed electroosmotic (EO) and pressure driven (PD) flow. The coupled governing equations are solved numerically by finite volume method. We have studied extensively the effect of key parameters, e.g., flow behavior index, concentration of the electrolyte, surface potential, imposed pressure gradient and imposed electric field strength on the net average flow across the channel. In addition to study the effect of mixed EOF and PD on the analyte distribution across the channel, we consider a nonlinear model based on general convective-diffusion-electromigration equation. We have also presented the retention factor for various values of electrolyte concentration and flow behavior index.Keywords: Electric double layer, finite volume method, flow behavior index, mixed electroosmotic/pressure driven flow, Non-Newtonian power-law fluids, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12033596 Design of the Propelling Nozzles for the Launchers and Satellites
Authors: R. Haoui
Abstract:
The aim of this work is to determine the supersonic nozzle profiles used in propulsion, for the launchers or embarked with the satellites. This design has as a role firstly, to give a important propulsion, i.e. with uniform and parallel flow at exit, secondly to find a short length profiles without modification of the flow in the nozzle. The first elaborate program is used to determine the profile of divergent by using the characteristics method for an axisymmetric flow. The second program is conceived by using the finite volume method to determine and test the profile found connected to a convergent.Keywords: Characteristic method, nozzles, supersonic flow, propellers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18523595 Unified Gas-Kinetic Scheme for Gas-Particle Flow in Shock-Induced Fluidization of Particles Bed
Abstract:
In this paper, a unified-gas kinetic scheme (UGKS) for the gas-particle flow is constructed. UGKS is a direct modeling method for both continuum and rarefied flow computations. The dynamics of particle and gas are described as rarefied and continuum flow, respectively. Therefore, we use the Bhatnagar-Gross-Krook (BGK) equation for the particle distribution function. For the gas phase, the gas kinetic scheme for Navier-Stokes equation is solved. The momentum transfer between gas and particle is achieved by the acceleration term added to the BGK equation. The new scheme is tested by a 2cm-in-thickness dense bed comprised of glass particles with 1.5mm in diameter, and reasonable agreement is achieved.Keywords: Gas-particle flow, unified gas-kinetic scheme, momentum transfer, shock-induced fluidization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6223594 Piezoelectric Power Output Predictions Using Single-Phase Flow to Power Flow Meters
Authors: Umar Alhaji Mukhtar, Abubakar Mohammed El-jummah
Abstract:
This research involved the utilization of fluid flow energy to predict power output using Lead Zirconate Titanate (PZT) piezoelectric stacks. The aim of this work is to extract energy from a controlled level of pressure fluctuation in single-phase flow which forms a part of the energy harvesting technology that powers flow meters. A device- Perspex box was developed and fixed to 50.8 mm rig to induce pressure fluctuation in the flow. An experimental test was carried out using the single-phase water flow in the developed rig in order to measure the power output generation from the piezoelectric stacks. 16 sets of experimental tests were conducted to ensure the maximum output result. The acquired signal of the pressure fluctuation was used to simulate the expected electrical output from the piezoelectric material. The results showed a maximum output voltage of 12 V with an instantaneous output power of 1 µW generated, when the pressure amplitude is 2.6 kPa at a frequency of 2.4 Hz.
Keywords: Energy harvesting, experimental test, perspex rig, pressure fluctuation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7003593 Numerical Solution of Manning's Equation in Rectangular Channels
Authors: Abdulrahman Abdulrahman
Abstract:
When the Manning equation is used, a unique value of normal depth in the uniform flow exists for a given channel geometry, discharge, roughness, and slope. Depending on the value of normal depth relative to the critical depth, the flow type (supercritical or subcritical) for a given characteristic of channel conditions is determined whether or not flow is uniform. There is no general solution of Manning's equation for determining the flow depth for a given flow rate, because the area of cross section and the hydraulic radius produce a complicated function of depth. The familiar solution of normal depth for a rectangular channel involves 1) a trial-and-error solution; 2) constructing a non-dimensional graph; 3) preparing tables involving non-dimensional parameters. Author in this paper has derived semi-analytical solution to Manning's equation for determining the flow depth given the flow rate in rectangular open channel. The solution was derived by expressing Manning's equation in non-dimensional form, then expanding this form using Maclaurin's series. In order to simplify the solution, terms containing power up to 4 have been considered. The resulted equation is a quartic equation with a standard form, where its solution was obtained by resolving this into two quadratic factors. The proposed solution for Manning's equation is valid over a large range of parameters, and its maximum error is within -1.586%.Keywords: Channel design, civil engineering, hydraulic engineering, open channel flow, Manning's equation, normal depth, uniform flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22833592 Computational Fluid Dynamics Simulation Approach for Developing a Powder Dispensing Device
Authors: Rallapalli Revanth, Shivakumar Bhavi, Vijay Kumar Turaga
Abstract:
Dispensing powders manually can be difficult as it requires to gradually pour and check the amount on the scale to be dispensed. Current systems are manual and non-continuous in nature and is user dependent and it is also difficult to control powder dispensation. Recurrent dosing of powdered medicines in precise amounts quickly and accurately has been an all-time challenge. Various powder dispensing mechanisms are being designed to overcome these challenges. Battery operated screw conveyor mechanism is being innovated to overcome above problems faced. These inventions are numerically evaluated at concept development level by employing Computational Fluid Dynamics (CFD) of gas-solids multiphase flow systems. CFD has been very helpful in the development of such devices, saving time and money by reducing the number of prototypes and testing. In this study, powder dispensation from the trocar's end is simulated by using the Dense Discrete Phase Model technique along with Kinetic Theory of Granular Flow. The powder is viewed as a secondary flow in air (DDPM-KTGF). By considering the volume fraction of powder as 50%, the transportation side is done by rotation of the screw conveyor. The performance is calculated for 1 sec time frame in an unsteady computation manner. This methodology will help designers in developing design concepts to improve the dispensation and the effective area within a quick turnaround time frame.
Keywords: Multiphase flow, screw conveyor, transient, DDPM - KTGF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3733591 Exploring the Nature and Meaning of Theory in the Field of Neuroeducation Studies
Authors: Ali Nouri
Abstract:
Neuroeducation is one of the most exciting research fields which is continually evolving. However, there is a need to develop its theoretical bases in connection to practice. The present paper is a starting attempt in this regard to provide a space from which to think about neuroeducational theory and invoke more investigation in this area. Accordingly, a comprehensive theory of neuroeducation could be defined as grouping or clustering of concepts and propositions that describe and explain the nature of human learning to provide valid interpretations and implications useful for educational practice in relation to philosophical aspects or values. Whereas it should be originated from the philosophical foundations of the field and explain its normative significance, it needs to be testable in terms of rigorous evidence to fundamentally advance contemporary educational policy and practice. There is thus pragmatically a need to include a course on neuroeducational theory into the curriculum of the field. In addition, there is a need to articulate and disseminate considerable discussion over the subject within professional journals and academic societies.
Keywords: Neuroeducation studies, neuroeducational theory, theory building, neuroeducation research.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14473590 Transient Analysis of Central Region Void Fraction in a 3x3 Rod Bundle under Bubbly and Cap/Slug Flows
Authors: Ya-Chi Yu, Pei-Syuan Ruan, Shao-Wen Chen, Yu-Hsien Chang, Jin-Der Lee, Jong-Rong Wang, Chunkuan Shih
Abstract:
This study analyzed the transient signals of central region void fraction of air-water two-phase flow in a 3x3 rod bundle. Experimental tests were carried out utilizing a vertical rod bundle test section along with a set of air-water supply/flow control system, and the transient signals of the central region void fraction were collected through the electrical conductivity sensors as well as visualized via high speed photography. By converting the electric signals, transient void fraction can be obtained through the voltage ratios. With a fixed superficial water velocity (Jf=0.094 m/s), two different superficial air velocities (Jg=0.094 m/s and 0.236 m/s) were tested and presented, which were corresponding to the flow conditions of bubbly flows and cap/slug flows, respectively. The time averaged central region void fraction was obtained as 0.109-0.122 with 0.028 standard deviation for the selected bubbly flow and 0.188-0.221with 0.101 standard deviation for the selected cap/slug flow, respectively. Through Fast Fourier Transform (FFT) analysis, no clear frequency peak was found in bubbly flow, while two dominant frequencies were identified around 1.6 Hz and 2.5 Hz in the present cap/slug flow.Keywords: Central region, rod bundles, transient void fraction, two-phase flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6943589 Numerical Simulation of Plasma Actuator Using OpenFOAM
Authors: H. Yazdani, K. Ghorbanian
Abstract:
This paper deals with modeling and simulation of the plasma actuator with OpenFOAM. Plasma actuator is one of the newest devices in flow control techniques which can delay separation by inducing external momentum to the boundary layer of the flow. The effects of the plasma actuators on the external flow are incorporated into Navier-Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. In order to compute this body force vector, the model solves two equations: One for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The simulation result is compared to the experimental and typical values which confirms the validity of the modeling.
Keywords: Active flow control, flow field, OpenFOAM, plasma actuator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561