Search results for: pressure sensor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2062

Search results for: pressure sensor

382 Comparative Analysis of Turbulent Plane Jets from a Sharp-Edged Orifice, a Beveled-Edge Orifice and a Radially Contoured Nozzle

Authors: Ravinesh C. Deo

Abstract:

This article investigates through experiments the flow characteristics of plane jets from sharp-edged orifice-plate, beveled-edge and radially contoured nozzle. The first two configurations exhibit saddle-backed velocity profiles while the third shows a top-hat. A vena contracta is found for the jet emanating from orifice at x/h » 3 while the contoured case displays a potential core extending to the range x/h = 5. A spurt in jet pressure on the centerline supports vena contracta for the orifice-jet. Momentum thicknesses and integral length scales elongate linearly with x although the growth of the shear-layer and large-scale eddies for the orifice are greater than the contoured case. The near-field spectrum exhibits higher frequency of the primary eddies that concur with enhanced turbulence intensity. Importantly, highly “turbulent” state of the orifice-jet prevails in the far-field where the spectra confirm more energetic secondary eddies associated with greater flapping amplitude of the orifice-jet.

Keywords: Orifice, beveled-edge-orifice, radially contoured nozzle, plane jets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2642
381 Effects of SRT and HRT on Treatment Performance of MBR and Membrane Fouling

Authors: M. I. Aida Isma, Azni Idris, Rozita Omar, A. R. Putri Razreena

Abstract:

40L of hollow fiber membrane bioreactor with solids retention times (SRT) of 30, 15 and 4 days were setup for treating synthetic wastewater at hydraulic retention times (HRT) of 12, 8 and 4 hours. The objectives of the study were to investigate the effects of SRT and HRT on membrane fouling. A comparative analysis was carried out for physiochemical quality parameters (turbidity, suspended solids, COD, NH3-N and PO43-). Scanning electron microscopy (SEM), energy diffusive X-ray (EDX) analyzer and particle size distribution (PSD) were used to characterize the membrane fouling properties. The influence of SRT on the quality of effluent, activated sludge quality, and membrane fouling were also correlated. Lower membrane fouling and slower rise in trans-membrane pressure (TMP) were noticed at the longest SRT and HRT of 30d and 12h, respectively. Increasing SRT results in noticeable reduction of dissolved organic matters. The best removal efficiencies of COD, TSS, NH3-N and PO43- were 93%, 98%, 80% and 30% respectively. The high HRT with shorter SRT induced faster fouling rate. The main fouling resistance was cake layer. The most severe membrane fouling was observed at SRT and HRT of 4 and 12, respectively with thickness cake layer of 17mm as reflected by higher TMP, lower effluent removal and thick sludge cake layer.

 

Keywords: Membrane bioreactor, SRT, HRT, membrane fouling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6184
380 Cybersecurity for Digital Twins in the Built Environment: Research Landscape, Industry Attitudes and Future Direction

Authors: Kaznah Alshammari, Thomas Beach, Yacine Rezgui

Abstract:

Technological advances in the construction sector are helping to make smart cities a reality by means of Cyber-Physical Systems (CPS). CPS integrate information and the physical world through the use of Information Communication Technologies (ICT). An increasingly common goal in the built environment is to integrate Building Information Models (BIM) with Internet of Things (IoT) and sensor technologies using CPS. Future advances could see the adoption of digital twins, creating new opportunities for CPS using monitoring, simulation and optimisation technologies. However, researchers often fail to fully consider the security implications. To date, it is not widely possible to assimilate BIM data and cybersecurity concepts and, therefore, security has thus far been overlooked. This paper reviews the empirical literature concerning IoT applications in the built environment and discusses real-world applications of the IoT intended to enhance construction practices, people’s lives and bolster cybersecurity. Specifically, this research addresses two research questions: (a) How suitable are the current IoT and CPS security stacks to address the cybersecurity threats facing digital twins in the context of smart buildings and districts? and (b) What are the current obstacles to tackling cybersecurity threats to the built environment CPS? To answer these questions, this paper reviews the current state-of-the-art research concerning digital twins in the built environment, the IoT, BIM, urban cities and cybersecurity. The results of the findings of this study confirmed the importance of using digital twins in both IoT and BIM. Also, eight reference zones across Europe have gained special recognition for their contributions to the advancement of IoT science. Therefore, this paper evaluates the use of digital twins in CPS to arrive at recommendations for expanding BIM specifications to facilitate IoT compliance, bolster cybersecurity and integrate digital twin and city standards in the smart cities of the future.

Keywords: BIM, cybersecurity, digital twins, IoT, urban cities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814
379 Hydrogen Production from Dehydrogenation of Ethanol over Ag-Based Catalysts

Authors: S. Totong, K. Faungnawakij, N. Laosiripojana

Abstract:

The development of alternative energy is interesting in the present especially, hydrogen production because it is an important energy resource in the future. This paper studied the hydrogen production from catalytic dehydrogenation of ethanol through via low temperature (<500°C) reaction. Copper (Cu) and silver (Ag) supported on fumed silica (SiO2) were selected in the present work; in addition, bimetallic material; Ag-Cu supported on SiO2 was also investigated. The catalysts were prepared by the incipient wetness impregnation method and characterized via X-ray diffraction (XRD), temperature-programmed reduction (TPR)and nitrogen adsorption measurements. The catalytic dehydrogenation of ethanol was carried out in a fixed bed continuous flow reactor at atmospheric pressure. The effect of reaction temperature between 300-375°C was studied in order to maximize the hydrogen yield. It was found that Ag-Cu/SiO2 exhibited the highest hydrogen yield compared to Ag/SiO2 and Cu/SiO2 at low reaction temperature (300°C) with full ethanol conversion. The highest hydrogen yield observed was 40% and will be further used as a reactant in fuel cells to generate electricity or feedstock of chemical production. 

Keywords: Catalyst, dehydrogenation, ethanol, hydrogen production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3487
378 Mechanism of Damping in Welded Structures using Finite Element Approach

Authors: B. Singh, B. K. Nanda

Abstract:

The characterization and modeling of the dynamic behavior of many built-up structures under vibration conditions is still a subject of current research. The present study emphasizes the theoretical investigation of slip damping in layered and jointed welded cantilever structures using finite element approach. Application of finite element method in damping analysis is relatively recent, as such, some problems particularly slip damping analysis has not received enough attention. To validate the finite element model developed, experiments have been conducted on a number of mild steel specimens under different initial conditions of vibration. Finite element model developed affirms that the damping capacity of such structures is influenced by a number of vital parameters such as; pressure distribution, kinematic coefficient of friction and micro-slip at the interfaces, amplitude, frequency of vibration, length and thickness of the specimen. Finite element model developed can be utilized effectively in the design of machine tools, automobiles, aerodynamic and space structures, frames and machine members for enhancing their damping capacity.

Keywords: Amplitude, finite element method, slip damping, tack welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
377 A Comparative Study of Turbulence Models Performance for Turbulent Flow in a Planar Asymmetric Diffuser

Authors: Samy M. El-Behery, Mofreh H. Hamed

Abstract:

This paper presents a computational study of the separated flow in a planer asymmetric diffuser. The steady RANS equations for turbulent incompressible fluid flow and six turbulence closures are used in the present study. The commercial software code, FLUENT 6.3.26, was used for solving the set of governing equations using various turbulence models. Five of the used turbulence models are available directly in the code while the v2-f turbulence model was implemented via User Defined Scalars (UDS) and User Defined Functions (UDF). A series of computational analysis is performed to assess the performance of turbulence models at different grid density. The results show that the standard k-ω, SST k-ω and v2-f models clearly performed better than other models when an adverse pressure gradient was present. The RSM model shows an acceptable agreement with the velocity and turbulent kinetic energy profiles but it failed to predict the location of separation and attachment points. The standard k-ε and the low-Re k- ε delivered very poor results.

Keywords: Turbulence models, turbulent flow, wall functions, separation, reattachment, diffuser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3733
376 Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods

Authors: José Alberto García Fernández, Zhimin Du, Xinqiao Jin

Abstract:

Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.

Keywords: Burgers’ equations, CFD simulation, data center, discretization methods, FEM simulation, temperature profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 469
375 Decision Algorithm for Smart Airbag Deployment Safety Issues

Authors: Aini Hussain, M A Hannan, Azah Mohamed, Hilmi Sanusi, Burhanuddin Yeop Majlis

Abstract:

Airbag deployment has been known to be responsible for huge death, incidental injuries and broken bones due to low crash severity and wrong deployment decisions. Therefore, the authorities and industries have been looking for more innovative and intelligent products to be realized for future enhancements in the vehicle safety systems (VSSs). Although the VSSs technologies have advanced considerably, they still face challenges such as how to avoid unnecessary and untimely airbag deployments that can be hazardous and fatal. Currently, most of the existing airbag systems deploy without regard to occupant size and position. As such, this paper will focus on the occupant and crash sensing performances due to frontal collisions for the new breed of so called smart airbag systems. It intends to provide a thorough discussion relating to the occupancy detection, occupant size classification, occupant off-position detection to determine safe distance zone for airbag deployment, crash-severity analysis and airbag decision algorithms via a computer modeling. The proposed system model consists of three main modules namely, occupant sensing, crash severity analysis and decision fusion. The occupant sensing system module utilizes the weight sensor to determine occupancy, classify the occupant size, and determine occupant off-position condition to compute safe distance for airbag deployment. The crash severity analysis module is used to generate relevant information pertinent to airbag deployment decision. Outputs from these two modules are fused to the decision module for correct and efficient airbag deployment action. Computer modeling work is carried out using Simulink, Stateflow, SimMechanics and Virtual Reality toolboxes.

Keywords: Crash severity analysis, occupant size classification, smart airbag, vehicle safety system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4073
374 Plastic Flow through Taper Dies: A Threedimensional Analysis

Authors: Laxmi Narayan Patra, Susanta Kumar Sahoo, Mithun KumarMurmu

Abstract:

The plastic flow of metal in the extrusion process is an important factor in controlling the mechanical properties of the extruded products. It is, however, difficult to predict the metal flow in three dimensional extrusions of sections due to the involvement of re-entrant corners. The present study is to find an upper bound solution for the extrusion of triangular sectioned through taper dies from round sectioned billet. A discontinuous kinematically admissible velocity field (KAVF) is proposed. From the proposed KAVF, the upper bound solution on non-dimensional extrusion pressure is determined with respect to the chosen process parameters. The theoretical results are compared with experimental results to check the validity of the proposed velocity field. An extrusion setup is designed and fabricated for the said purpose, and all extrusions are carried out using circular billets. Experiments are carried out with commercially available lead at room temperature.

Keywords: Extrusion, Kinematically admissibly velocity fieldSpatial Elementary Rigid Region (SERR), Upper Bound Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
373 Progressive Loading Effect of Co over SiO2/Al2O3 Catalyst for Cox Free Hydrogen and Carbon Nanotubes Production via Catalytic Decomposition of Methane

Authors: Sushil Kumar Saraswat, K. K. Pant

Abstract:

Co metal supported on SiO2 and Al2O3 catalysts with a metal loading varied from 30 of 70 wt.% were evaluated for decomposition of methane to COx free hydrogen and carbon nanomaterials. The catalytic runs were carried out from 550-800oC under atmospheric pressure using fixed bed vertical flow reactor. The fresh and spent catalysts were characterized by BET surface area analyzer, XRD, SEM, TEM and TG analysis. The data showed that 50% Co/Al2O3 catalyst exhibited remarkable higher activity at 800oC with respect to H2 production compared to rest of the catalysts. However, the catalytic activity and durability was greatly declined at higher temperature. The main reason for the catalytic inhibition of Co containing SiO2 catalysts is the higher reduction temperature of Co2SiO4. TEM images illustrate that the carbon materials with various morphologies, carbon nanofibers (CNFs), helical-shaped CNFs and branched CNFs depending on the catalyst composition and reaction temperature were obtained.

Keywords: Carbon nanotubes, Cobalt, Hydrogen Production, Methane decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2786
372 Assessment of Carbon Dioxide Separation by Amine Solutions Using Electrolyte Non-Random Two-Liquid and Peng-Robinson Models: Carbon Dioxide Absorption Efficiency

Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao

Abstract:

A high pressure carbon dioxide (CO2) absorption from a specific gas in a conventional column has been evaluated by the Aspen HYSYS simulator using a wide range of single absorbents and blended solutions to estimate the outlet CO2 concentration, absorption efficiency and CO2 loading to choose the most proper solution in terms of CO2 capture for environmental concerns. The property package (Acid Gas-Chemical Solvent) which is compatible with all applied solutions for the simulation in this study, estimates the properties based on an electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for the vapor and liquid hydrocarbon phases. Among all the investigated single amines as well as blended solutions, piperazine (PZ) and the mixture of piperazine and monoethanolamine (MEA) have been found as the most effective absorbents respectively for CO2 absorption with high reactivity based on the simulated operational conditions.

Keywords: Absorption, amine solutions, Aspen HYSYS, carbon dioxide, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 518
371 Operation Parameters of Vacuum Cleaned Filters

Authors: Wilhelm Hoeflinger, Thomas Laminger, Johannes Wolfslehner

Abstract:

For vacuum cleaned dust filters there exist no calculation methods to determine design parameters (e.g. traverse velocity of the nozzle, filter area…). In this work a method to calculate the optimum traverse velocity of the nozzle of an industrial-size flat dust filter at a given mean pressure drop and filter face velocity was elaborated. Well-known equations for the design of a cleanable multi-chamber bag-house-filter were modified in order to take into account a continuously regeneration of a dust filter by a nozzle. Thereby, the specific filter medium resistance and the specific cake resistance values are needed which can be derived from filter tests under constant operation conditions.

A lab-scale filter test rig was used to derive the specific filter media resistance value and the specific cake resistance value for vacuum cleaned filter operation. Three different filter media were tested and the determined parameters were compared to each other.

Keywords: Design of dust filter, Dust removing, Filter regeneration, Operation parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
370 Wind Tunnel for Aerodynamic Development Testing

Authors: E. T. L. Cöuras Ford, V. A. C. Vale, J. U. L. Mendes, F. A. Ribeiro

Abstract:

The study of the aerodynamics related to the improvement in the acting of airplanes and automobiles with the objective of being reduced the effect of the attrition of the air on structures, providing larger speeds and smaller consumption of fuel. The application of the knowledge of the aerodynamics not more limits to the aeronautical and automobile industries. Therefore, this research aims to design and construction of a wind tunnel to perform aerodynamic analysis in bodies of cars, seeking greater efficiency. Therefore, this research aims to design and construction of a wind tunnel to perform aerodynamic analysis in bodies of cars, seeking greater efficiency. For this, a methodology for wind tunnel type selection is designed to be built, taking into account the various existing configurations in which chose to build an open circuit tunnel, due to the lower complexity of construction and installation; operational simplicity and low cost. The guidelines for the project were teaching: the layer that limits study and analyze specimens with different geometries. For the variation of pressure in the test, section of a switched gauge used a pitot tube. Thus, it was possible to obtain quantitative and qualitative results, which proved to be satisfactory.

Keywords: Wind tunnel, Aerodynamics, Air.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
369 Determination of Unsaturated Soil Permeability Based on Geometric Factor Development of Constant Discharge Model

Authors: A. Rifa’i, Y. Takeshita, M. Komatsu

Abstract:

After Yogyakarta earthquake in 2006, the main problem that occurred in the first yard of Prambanan Temple is ponding area that occurred after rainfall. Soil characterization needs to be determined by conducting several processes, especially permeability coefficient (k) in both saturated and unsaturated conditions to solve this problem. More accurate and efficient field testing procedure is required to obtain permeability data that present the field condition. One of the field permeability test equipment is Constant Discharge procedure to determine the permeability coefficient. Necessary adjustments of the Constant Discharge procedure are needed to be determined especially the value of geometric factor (F) to improve the corresponding value of permeability coefficient. The value of k will be correlated with the value of volumetric water content (θ) of an unsaturated condition until saturated condition. The principle procedure of Constant Discharge model provides a constant flow in permeameter tube that flows into the ground until the water level in the tube becomes constant. Constant water level in the tube is highly dependent on the tube dimension. Every tube dimension has a shape factor called the geometric factor that affects the result of the test. Geometric factor value is defined as the characteristic of shape and radius of the tube. This research has modified the geometric factor parameters by using empty material tube method so that the geometric factor will change. Saturation level is monitored by using soil moisture sensor. The field test results were compared with the results of laboratory tests to validate the results of the test. Field and laboratory test results of empty tube material method have an average difference of 3.33 x 10-4 cm/sec. The test results showed that modified geometric factor provides more accurate data. The improved methods of constant discharge procedure provide more relevant results.

Keywords: Constant discharge, geometric factor, permeability coefficient, unsaturated soils.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
368 Optimal Planning of Waste-to-Energy through Mixed Integer Linear Programming

Authors: S. T. Tan, H. Hashim, W. S. Ho, C. T. Lee

Abstract:

Rapid economic development and population growth in Malaysia had accelerated the generation of solid waste. This issue gives pressure for effective management of municipal solid waste (MSW) to take place in Malaysia due to the increased cost of landfill. This paper discusses optimal planning of waste-to-energy (WTE) using a combinatorial simulation and optimization model through mixed integer linear programming (MILP) approach. The proposed multi-period model is tested in Iskandar Malaysia (IM) as case study for a period of 12 years (2011 -2025) to illustrate the economic potential and tradeoffs involved in this study. In this paper, 3 scenarios have been used to demonstrate the applicability of the model: (1) Incineration scenario (2) Landfill scenario (3) Optimal scenario. The model revealed that the minimum cost of electricity generation from 9,995,855 tonnes of MSW is estimated as USD 387million with a total electricity generation of 50MW /yr in the optimal scenario.

Keywords: Mixed Integer Linear Programming (MILP), optimization, solid waste management (SWM), Waste-to-energy (WTE).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2945
367 Controlling Transient Flow in Pipeline Systems by Desurging Tank with Automatic Air Control

Authors: I. Abuiziah, A. Oulhaj, K. Sebari, D. Ouazar

Abstract:

Desurging tank with automatic air control “DTAAC” is a water hammer protection device, operates either an open or closed surge tank according to the water level inside the surge tank, with the volume of air trapped in the filling phase, this protection device has the advantages of its easy maintenance, and does not need to run any external energy source (air compressor). A computer program has been developed based on the characteristic method to simulate flow transient phenomena in pressurized water pipeline systems, it provides the influence of using the protection devices to control the adverse effects due to excessive and low pressure occurring in this phenomena. The developed model applied to a simple main water pipeline system: pump combined with DTAAC connected to a reservoir.  The results obtained provide that the model is an efficient tool for water hammer analysis. Moreover; using the DTAAC reduces the unfavorable effects of the transients.

Keywords: DTAAC, Flow transient, Numerical model, Pipeline system, Protection devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2772
366 Preoperative to Intraoperative Space Registration for Management of Head Injuries

Authors: M. Gooroochurn, M. Ovinis, D. Kerr, K. Bouazza-Marouf, M. Vloeberghs

Abstract:

A registration framework for image-guided robotic surgery is proposed for three emergency neurosurgical procedures, namely Intracranial Pressure (ICP) Monitoring, External Ventricular Drainage (EVD) and evacuation of a Chronic Subdural Haematoma (CSDH). The registration paradigm uses CT and white light as modalities. This paper presents two simulation studies for a preliminary evaluation of the registration protocol: (1) The loci of the Target Registration Error (TRE) in the patient-s axial, coronal and sagittal views were simulated based on a Fiducial Localisation Error (FLE) of 5 mm and (2) Simulation of the actual framework using projected views from a surface rendered CT model to represent white light images of the patient. Craniofacial features were employed as the registration basis to map the CT space onto the simulated intraoperative space. Photogrammetry experiments on an artificial skull were also performed to benchmark the results obtained from the second simulation. The results of both simulations show that the proposed protocol can provide a 5mm accuracy for these neurosurgical procedures.

Keywords: Image-guided Surgery, Multimodality Registration, Photogrammetry, Preoperative to Intraoperative Registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
365 Mathematical Modeling of Drip Emitter Discharge of Trapezoidal Labyrinth Channel

Authors: N. Philipova

Abstract:

The influence of the geometric parameters of trapezoidal labyrinth channel on the emitter discharge is investigated in this work. The impact of the dentate angle, the dentate spacing, and the dentate height are studied among the geometric parameters of the labyrinth channel. Numerical simulations of the water flow movement are performed according to central cubic composite design using Commercial codes GAMBIT and FLUENT. Inlet pressure of the dripper is set up to be 1 bar. The objective of this paper is to derive a mathematical model of the emitter discharge depending on the dentate angle, the dentate spacing, the dentate height of the labyrinth channel. As a result, the obtained mathematical model is a second-order polynomial reporting 2-way interactions among the geometric parameters. The dentate spacing has the most important and positive influence on the emitter discharge, followed by the simultaneous impact of the dentate spacing and the dentate height. The dentate angle in the observed interval has no significant effect on the emitter discharge. The obtained model can be used as a basis for a future emitter design.

Keywords: Drip irrigation, labyrinth channel hydrodynamics, numerical simulations, Reynolds stress model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909
364 Construction and Performance Characterization of the Looped-Tube Travelling-Wave Thermoacoustic Engine with Ceramic Regenerator

Authors: Abdulrahman S. Abduljalil, Zhibin Yu, Artur J. Jaworski, Lei Shi

Abstract:

In a travelling wave thermoacoustic device, the regenerator sandwiched between a pair of (hot and cold) heat exchangers constitutes the so-called thermoacoustic core, where the thermoacoustic energy conversion from heat to acoustic power takes place. The temperature gradient along the regenerator caused by the two heat exchangers excites and maintains the acoustic wave in the resonator. The devices are called travelling wave thermoacoustic systems because the phase angle difference between the pressure and velocity oscillation is close to zero in the regenerator. This paper presents the construction and testing of a thermoacoustic engine equipped with a ceramic regenerator, made from a ceramic material that is usually used as catalyst substrate in vehicles- exhaust systems, with fine square channels (900 cells per square inch). The testing includes the onset temperature difference (minimum temperature difference required to start the acoustic oscillation in an engine), the acoustic power output, thermal efficiency and the temperature profile along the regenerator.

Keywords: Regenerator, Temperature gradient, Thermoacoustic, Travelling-wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237
363 Identification of Lean Implementation Hurdles in Indian Industries

Authors: Bhim Singh

Abstract:

Due to increased pressure from global competitors, manufacturing organizations are switching over to lean philosophies from traditional mass production. Lean manufacturing is a manufacturing philosophy which focuses on elimination of various types of wastes and creates maximum value for the end customers. Lean thinking aims to produce high quality products and services at the lowest possible cost with maximum customer responsiveness. Indian Industry is facing lot of problems in this transformation from traditional mass production to lean production. Through this paper an attempt has been made to identify various lean implementation hurdles in Indian industries with the help of a structured survey. Identified hurdles are grouped with the help of factor analysis and rated by calculating descriptive statistics. To show the effect of lean implementation hurdles a hypothesis “Organizations having higher level of lean implementation hurdles will have poor (negative) performance” has been postulated and tested using correlation matrix between performance parameters of the organizations and identified hurdles. The findings of the paper will be helpful to prepare road map to identify and eradicate the lean implementation hurdles.

Keywords: Factor analysis, global competition, lean implementation and lean hurdles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
362 Hydrothermal Treatment for Production of Aqueous Co-Product and Efficient Oil Extraction from Microalgae

Authors: Manatchanok Tantiphiphatthana, Lin Peng, Rujira Jitrwung, Kunio Yoshikawa

Abstract:

Hydrothermal liquefaction (HTL) is a technique for obtaining clean biofuel from biomass in the presence of heat and pressure in an aqueous medium which leads to a decomposition of this biomass to the formation of various products. A role of operating conditions is essential for the bio-oil and other products’ yield and also quality of the products. The effects of these parameters were investigated in regards to the composition and yield of the products. Chlorellaceae microalgae were tested under different HTL conditions to clarify suitable conditions for extracting bio-oil together with value-added co-products. Firstly, different microalgae loading rates (5-30%) were tested and found that this parameter has not much significant to product yield. Therefore, 10% microalgae loading rate was selected as a proper economical solution for conditioned schedule at 250oC and 30 min-reaction time. Next, a range of temperature (210-290oC) was applied to verify the effects of each parameter by keeping the reaction time constant at 30 min. The results showed no linkage with the increase of the reaction temperature and some reactions occurred that lead to different product yields. Moreover, some nutrients found in the aqueous product are possible to be utilized for nutrient recovery.

Keywords: Bio-oil, Hydrothermal Liquefaction, Microalgae, Aqueous co-product.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
361 CFD Simulation for Flow Behavior in Boiling Water Reactor Vessel and Upper Pool under Decommissioning Condition

Authors: Y. T. Ku, S. W. Chen, J. R. Wang, C. Shih, Y. F. Chang

Abstract:

In order to respond the policy decision of non-nuclear homes, Tai Power Company (TPC) will provide the decommissioning project of Kuosheng Nuclear power plant (KSNPP) to meet the regulatory requirement in near future. In this study, the computational fluid dynamics (CFD) methodology has been employed to develop a flow prediction model for boiling water reactor (BWR) with upper pool under decommissioning stage. The model can be utilized to investigate the flow behavior as the vessel combined with upper pool and continuity cooling system. At normal operating condition, different parameters are obtained for the full fluid area, including velocity, mass flow, and mixing phenomenon in the reactor pressure vessel (RPV) and upper pool. Through the efforts of the study, an integrated simulation model will be developed for flow field analysis of decommissioning KSNPP under normal operating condition. It can be expected that a basis result for future analysis application of TPC can be provide from this study.

Keywords: CFD, BWR, decommissioning, upper pool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 722
360 Numerical Simulation of Fluid-Structure Interaction on Wedge Slamming Impact Using Particle Method

Authors: Sung-Chul Hwang, Di Ren, Sang-Moon Yoon, Jong-Chun Park, Abbas Khayyer, Hitoshi Gotoh

Abstract:

This paper presents a fully Lagrangian coupled Fluid-Structure Interaction (FSI) solver for simulations of fluid-structure interactions, which is based on the Moving Particle Semi-implicit (MPS) method to solve the governing equations corresponding to incompressible flows as well as elastic structures. The developed solver is verified by reproducing the high velocity impact loads of deformable thin wedges with three different materials such as mild steel, aluminium and tin during water entry. The present simulation results for aluminium are compared with analytical solution derived from the hydrodynamic Wagner model and linear Wan’s theory. And also, the impact pressure and strain on the water entry wedge with three different materials, such as mild steel, aluminium and tin, are simulated and the effects of hydro-elasticity are discussed.

Keywords: Fluid-structure interaction (FSI), Moving Particle Semi-implicit (MPS) method, Elastic structure, Incompressible fluid Wedge slamming impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
359 The Experimental Measurement of the LiBr Concentration of a Solar Absorption Machine

Authors: N. Hatraf, L. Merabeti, Z. Neffeh, W. Taane

Abstract:

The excessive consumption of fossil energies (electrical energy) during summer caused by the technological development involves more and more climate warming.

In order to reduce the worst impact of gas emissions produced from classical air conditioning, heat driven solar absorption chiller is pretty promising; it consists on using solar as motive energy which is clean and environmentally friendly to provide cold.

Solar absorption machine is composed by four components using Lithium Bromide /water as a refrigerating couple. LiBr- water is the most promising in chiller applications due to high safety, high volatility ratio, high affinity, high stability and its high latent heat. The lithium bromide solution is constitute by the salt lithium bromide which absorbs water under certain conditions of pressure and temperature however if the concentration of the solution is high in the absorption chillers; which exceed 70%, the solution will crystallize.

The main aim of this article is to study the phenomena of the crystallization and to evaluate how the dependence between the electric conductivity and the concentration which should be controlled.

Keywords: Absorption chillers, crystallization, experimental results, Lithium Bromide solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3729
358 Autohydrolysis Treatment of Olive Cake to Extract Fructose and Sucrose

Authors: G. Blázquez, A. Gálvez-Pérez, M. Calero, I. Iáñez-Rodríguez, M. A. Martín-Lara, A. Pérez

Abstract:

The production of olive oil is considered as one of the most important agri-food industries. However, some of the by-products generated in the process are potential pollutants and cause environmental problems. Consequently, the management of these by-products is currently considered as a challenge for the olive oil industry. In this context, several technologies have been developed and tested. In this sense, the autohydrolysis of these by-products could be considered as a promising technique. Therefore, this study focused on autohydrolysis treatments of a solid residue from the olive oil industry denominated olive cake. This one comes from the olive pomace extraction with hexane. Firstly, a water washing was carried out to eliminate the water soluble compounds. Then, an experimental design was developed for the autohydrolysis experiments carried out in the hydrothermal pressure reactor. The studied variables were temperature (30, 60 and 90 ºC) and time (30, 60, 90 min). On the other hand, aliquots of liquid obtained fractions were analysed by HPLC to determine the fructose and sucrose contents present in the liquid fraction. Finally, the obtained results of sugars contents and the yields of the different experiments were fitted to a neuro-fuzzy and to a polynomial model.

Keywords: ANFIS, olive cake, polyols, saccharides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 620
357 Achieving Environmentally Sustainable Supply Chain in Textile and Apparel Industries

Authors: Faisal Bin Alam

Abstract:

Most of the manufacturing entities cause negative footprint to nature that demand due attention. Textile industries have one of the longest supply chains and bear the liability of significant environmental impact to our planet. Issues of environmental safety, scarcity of energy and resources, and demand for eco-friendly products have driven research to search for safe and suitable alternatives in apparel processing. Consumer awareness, increased pressure from fashion brands and actions from local legislative authorities have somewhat been able to improve the practices. Objective of this paper is to reveal the best selection of raw materials and methods of production, taking environmental sustainability into account. Methodology used in this study is exploratory in nature based on personal experience, field visits in the factories of Bangladesh and secondary sources. Findings are limited to exploring better alternatives to conventional operations of a Readymade Garment manufacturing, from fibre selection to final product delivery, therefore showing some ways of achieving greener environment in the supply chain of a clothing industry.

Keywords: Textile and apparel, environment, sustainability, supply chain, production, clothing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
356 Megalopolisation: An Effect of Large Scale Urbanisation in Post-Reform China

Authors: Siqing Chen

Abstract:

Megalopolis is a group of densely populated metropolitan areas that combine to form an urban complex. Since China introduced the economic reforms in late 1970s, the Chinese urban system has experienced unprecedented growth. The process of urbanisation prevailed in the 1980s, and the process of predominantly large city growth appeared to continue through 1990s and 2000s. In this study, the magnitude and pattern of urbanisation in China during 1990s were examined using remotely sensed imagery acquired by TM/ETM+ sensor onboard the Landsat satellites. The development of megalopolis areas in China was also studied based on the GIS analysis of the increases of urban and built-up area from 1990 to 2000. The analysis suggests that in the traditional agricultural zones in China, e.g., Huang-Huai-Hai Plains, Changjiang River Delta, Pearl River Delta and Sichuan Basin, the urban and built-up areas increased by 1.76 million hectares, of which 0.82 million hectares are expansion of urban areas, an increase of 24.78% compared with 1990 at the national scale. The Yellow River Delta, Changjiang River Delta and Pearl River Delta also saw an increase of urban and built-up area by 63.9%, 66.2% and 83.0% respectively. As a result, three major megalopolises were developed in China: the Guangzhou-Shenzhen-Hong Kong- Macau (Pearl River Delta: PRD) megalopolis area, the Shanghai- Nanjing-Hangzhou (Changjiang River Delta: CRD) megalopolis area and the Beijing-Tianjing-Tangshan-Qinhuangdao (Yellow River Delta-Bohai Sea Ring: YRD) megalopolis area. The relationship between the processed of megalopolisation and the inter-provincial population flow was also explored in the context of social-economic and transport infrastructure development in Post-reform China.

Keywords: Megalopolisation, Land use change, Spatial analysis, Post-reform China

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
355 The CEO Mission II, Rescue Robot with Multi-Joint Mechanical Arm

Authors: Amon Tunwannarux, Supanunt Tunwannarux

Abstract:

This paper presents design features of a rescue robot, named CEO Mission II. Its body is designed to be the track wheel type with double front flippers for climbing over the collapse and the rough terrain. With 125 cm. long, 5-joint mechanical arm installed on the robot body, it is deployed not only for surveillance from the top view but also easier and faster access to the victims to get their vital signs. Two cameras and sensors for searching vital signs are set up at the tip of the multi-joint mechanical arm. The third camera is at the back of the robot for driving control. Hardware and software of the system, which controls and monitors the rescue robot, are explained. The control system is used for controlling the robot locomotion, the 5-joint mechanical arm, and for turning on/off devices. The monitoring system gathers all information from 7 distance sensors, IR temperature sensors, 3 CCD cameras, voice sensor, robot wheels encoders, yawn/pitch/roll angle sensors, laser range finder and 8 spare A/D inputs. All sensors and controlling data are communicated with a remote control station via IEEE 802.11b Wi-Fi. The audio and video data are compressed and sent via another IEEE 802.11g Wi-Fi transmitter for getting real-time response. At remote control station site, the robot locomotion and the mechanical arm are controlled by joystick. Moreover, the user-friendly GUI control program is developed based on the clicking and dragging method to easily control the movement of the arm. Robot traveling map is plotted from computing the information of wheel encoders and the yawn/pitch data. 2D Obstacle map is plotted from data of the laser range finder. The concept and design of this robot can be adapted to suit many other applications. As the Best Technique awardee from Thailand Rescue Robot Championship 2006, all testing results are satisfied.

Keywords: Controlling, monitoring, rescue robot, mechanicalarm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
354 Solid Waste Management through Mushroom Cultivation – An Eco Friendly Approach

Authors: Mary Josephine

Abstract:

Waste of certain process can be the input source of  other sectors in order to reduce environmental pollution. Today there  are more and more solid wastes are generated, but only very small  amount of those are recycled. So, the threatening of environmental  pressure to public health is very serious. The methods considered for  the treatment of solid waste are biogas tanks or processing to make  animal feed and fertilizer, however, they did not perform well. An  alternative approach is growing mushrooms on waste residues. This  is regarded as an environmental friendly solution with potential  economical benefit. The substrate producers do their best to produce  quality substrate at low cost. Apart from other methods, this can be  achieved by employing biologically degradable wastes used as the  resource material component of the substrate. Mushroom growing is  a significant tool for the restoration, replenishment and remediation  of Earth’s overburdened ecosphere. One of the rational methods of  waste utilization involves locally available wastes. The present study  aims to find out the yield of mushroom grown on locally available  waste for free and to conserve our environment by recycling wastes.

 

Keywords: Biodegradable, environment, mushroom, remediation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5260
353 Effects of Salinity and Drought Levels in Seed Germination of Five Crop Species

Authors: Ahmad Gholami, Saeed Sharafi, Hamid Abbasdokht

Abstract:

The heterotrophic seedling growth can be defined as a product of two components: (1) the weight of mobilized seed reserve, and (2) conversion efficiency of utilized seed reserve to seedling tissue. The first component can be further divided into (1) initial seed weight, and (2) the fraction of seed reserve, which is mobilized. The objective of this study was the identification of the sensitive seedling growth component(s) in response to drought and salinity stresses. Two experiments were separately conducted using various salinity levels (osmotic pressure) of 0, 0.25, 0.50, 0.75, 1, 1.25 and 1.5 MPa created using NaCl as first experiment and by polyethylene glycol (drought stress) of 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2 and 1.4 MPa in second experiment. Seeds of five crops species (Hordeum vulgare, Brassica napus, Zea mays, Medicago sativa and Medicago scutellata) were used in each experiment. In both experiments, seedling growth, fraction of seed reserve utilization and weight of mobilized seed reserve decreased with increasing drought and salt intensity. However, drought and salinity stresses had no effect on the conversion efficiency. It was concluded that the sensitive component of seedling growth is the weight of mobilized seed reserve.

Keywords: Salinity, Drought, Seed reserve, Seedling, Cropsspecies

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876