Search results for: real–time information
8841 The Effectiveness of Banks’ Web Sites: A Study of Turkish Banking Sector
Authors: Raif Parlakkaya, Huseyin Cetin, Duygu Irdiren
Abstract:
By the development of World Wide Web, the usage rate of Internet has rapidly grown globally; and provided a basis for the emergence of electronic business. As well as other sectors, the banking sector has adopted the use of internet with the developments in information and communication technologies. Due to the public disclosure and transparency principle of Corporate Governance, the importance of information disclosure of banks on their web sites has increased significantly. For the purpose of this study, a Bank Disclosure Attribute Index (BDAI) in Turkey has been constructed through classifying the information disclosure on banks’ web sites into general, financial, investors and corporate governance attributes. All 47 banks in Turkish Banking System have been evaluated according to the index with the aim of providing a comparison between banks. By Chi Square Test, Pearson Correlation, T-Test, and ANOVA statistical tools, it has been concluded that the majority of banks in Turkey have shared information on their web sites adequately with respect to their total index score. Although there is a positive correlation between various types of information on banks’ web sites, there is no uniformity among them. Also, no significant difference between various types of information disclosure and bank types has been observed. Compared with the total index score averages of the five largest banks in Turkey, there are some banks that need to improve the content of their web sites.
Keywords: Banking sector, public disclosure, Turkey, web site evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14258840 Model based Soft-Sensor for Industrial Crystallization: On-line Mass of Crystals and Solubility Measurement
Authors: Cédric Damour, Michel Benne, Brigitte Grondin-Perez, Jean-Pierre Chabriat
Abstract:
Monitoring and control of cane sugar crystallization processes depend on the stability of the supersaturation (σ ) state. The most widely used information to represent σ is the electrical conductivity κ of the solutions. Nevertheless, previous studies point out the shortcomings of this approach: κ may be regarded as inappropriate to guarantee an accurate estimation of σ in impure solutions. To improve the process control efficiency, additional information is necessary. The mass of crystals in the solution ( c m ) and the solubility (mass ratio of sugar to water / s w m m ) are relevant to complete information. Indeed, c m inherently contains information about the mass balance and / s w m m contains information about the supersaturation state of the solution. The main problem is that c m and / s w m m are not available on-line. In this paper, a model based soft-sensor is presented for a final crystallization stage (C sugar). Simulation results obtained on industrial data show the reliability of this approach, c m and the crystal content ( cc ) being estimated with a sufficient accuracy for achieving on-line monitoring in industryKeywords: Soft-sensor, on-line monitoring, cane sugarcrystallization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21368839 The Impact of Semantic Web on E-Commerce
Authors: Karim Heidari
Abstract:
Semantic Web Technologies enable machines to interpret data published in a machine-interpretable form on the web. At the present time, only human beings are able to understand the product information published online. The emerging semantic Web technologies have the potential to deeply influence the further development of the Internet Economy. In this paper we propose a scenario based research approach to predict the effects of these new technologies on electronic markets and business models of traders and intermediaries and customers. Over 300 million searches are conducted everyday on the Internet by people trying to find what they need. A majority of these searches are in the domain of consumer ecommerce, where a web user is looking for something to buy. This represents a huge cost in terms of people hours and an enormous drain of resources. Agent enabled semantic search will have a dramatic impact on the precision of these searches. It will reduce and possibly eliminate information asymmetry where a better informed buyer gets the best value. By impacting this key determinant of market prices semantic web will foster the evolution of different business and economic models. We submit that there is a need for developing these futuristic models based on our current understanding of e-commerce models and nascent semantic web technologies. We believe these business models will encourage mainstream web developers and businesses to join the “semantic web revolution."Keywords: E-Commerce, E-Business, Semantic Web, XML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34618838 New Stability Analysis for Neural Networks with Time-Varying Delays
Authors: Miaomiao Yang, Shouming Zhong
Abstract:
This paper studies the problem of asymptotically stability for neural networks with time-varying delays.By establishing a suitable Lyapunov-Krasovskii function and several novel sufficient conditions are obtained to guarantee the asymptotically stability of the considered system. Finally,two numerical examples are given to illustrate the effectiveness of the proposed main results.
Keywords: Neural networks, Lyapunov-Krasovskii, Time-varying delays, Linear matrix inequality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17228837 Comparison of Artificial Neural Network Architectures in the Task of Tourism Time Series Forecast
Authors: João Paulo Teixeira, Paula Odete Fernandes
Abstract:
The authors have been developing several models based on artificial neural networks, linear regression models, Box- Jenkins methodology and ARIMA models to predict the time series of tourism. The time series consist in the “Monthly Number of Guest Nights in the Hotels" of one region. Several comparisons between the different type models have been experimented as well as the features used at the entrance of the models. The Artificial Neural Network (ANN) models have always had their performance at the top of the best models. Usually the feed-forward architecture was used due to their huge application and results. In this paper the author made a comparison between different architectures of the ANNs using simply the same input. Therefore, the traditional feed-forward architecture, the cascade forwards, a recurrent Elman architecture and a radial based architecture were discussed and compared based on the task of predicting the mentioned time series.Keywords: Artificial Neural Network Architectures, time series forecast, tourism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18858836 Diagnostic Investigation of Liftoff Time of Solid Propellant Rockets
Authors: Vignesh Rangaraj, Jerin John, N. Naveen, M. Karuppasamy Pandian, P. Sathyan, V. R. Sanal Kumar
Abstract:
In this paper parametric analytical studies have been carried out to examine the intrinsic flow physics pertaining to the liftoff time of solid propellant rockets. Idealized inert simulators of solid rockets are selected for numerical studies to examining the preignition chamber dynamics. Detailed diagnostic investigations have been carried out using an unsteady two-dimensional k-omega turbulence model. We conjectured from the numerical results that the altered variations of the igniter jet impingement angle, turbulence level, time and location of the first ignition, flame spread characteristics, the overall chamber dynamics including the boundary layer growth history are having bearing on the time for nozzle flow chocking for establishing the required thrust for the rocket liftoff. We concluded that the altered flow choking time of strap-on motors with the pre-determined identical ignition time at the lift off phase will lead to the malfunctioning of the rocket. We also concluded that, in the light of the space debris, an error in predicting the liftoff time can lead to an unfavorable launch window amounts the satellite injection errors and/or the mission failures.
Keywords: Liftoff, Nozzle Choking, Solid Rocket, Takeoff.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19188835 Distributed Multi-Agent Based Approach on an Intelligent Transportation Network
Authors: Xiao Yihong, Yu Kexin, Burra Venkata Durga Kumar
Abstract:
With the accelerating process of urbanization, the problem of urban road congestion is becoming more and more serious. Intelligent transportation system combining distributed and artificial intelligence has become a research hotspot. As the core development direction of the intelligent transportation system, Cooperative Intelligent Transportation System (C-ITS) integrates advanced information technology and communication methods and realizes the integration of human, vehicle, roadside infrastructure and other elements through the multi-agent distributed system. By analyzing the system architecture and technical characteristics of C-ITS, the paper proposes a distributed multi-agent C-ITS. The system consists of Roadside Subsystem, Vehicle Subsystem and Personal Subsystem. At the same time, we explore the scalability of the C-ITS and put forward incorporating local rewards in the centralized training decentralized execution paradigm, hoping to add a scalable value decomposition method. In addition, we also suggest introducing blockchain to improve the safety of the traffic information transmission process. The system is expected to improve vehicle capacity and traffic safety.
Keywords: Distributed system, artificial intelligence, multi-agent, Cooperative Intelligent Transportation System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5748834 Segmentation of Breast Lesions in Ultrasound Images Using Spatial Fuzzy Clustering and Structure Tensors
Authors: Yan Xu, Toshihiro Nishimura
Abstract:
Segmentation in ultrasound images is challenging due to the interference from speckle noise and fuzziness of boundaries. In this paper, a segmentation scheme using fuzzy c-means (FCM) clustering incorporating both intensity and texture information of images is proposed to extract breast lesions in ultrasound images. Firstly, the nonlinear structure tensor, which can facilitate to refine the edges detected by intensity, is used to extract speckle texture. And then, a spatial FCM clustering is applied on the image feature space for segmentation. In the experiments with simulated and clinical ultrasound images, the spatial FCM clustering with both intensity and texture information gets more accurate results than the conventional FCM or spatial FCM without texture information.
Keywords: fuzzy c-means, spatial information, structure tensor, ultrasound image segmentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18038833 Insight-Based Evaluation of a Map-based Dashboard
Authors: Anna Fredriksson Häägg, Charlotte Weil, Niklas Rönnberg
Abstract:
Map-based dashboards are used for data exploration every day. The present study used an insight-based methodology for evaluating a map-based dashboard that presents research findings of water management and ecosystem services in the Amazon. In addition to analyzing the insights gained from using the dashboard, the evaluation method was compared to standardized questionnaires and task-based evaluations. The result suggests that the dashboard enabled the participants to gain domain-relevant, complex insights regarding the topic presented. Furthermore, the insight-based analysis highlighted unexpected insights and hypotheses regarding causes and potential adaptation strategies for remediation. Although time- and resource-consuming, the insight-based methodology was shown to have the potential of thoroughly analyzing how end users can utilize map-based dashboards for data exploration and decision making. Finally, the insight-based methodology is argued to evaluate tools in scenarios more similar to real-life usage, compared to task-based evaluation methods.
Keywords: Visual analytics, dashboard, insight-based evaluation, geographic visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4108832 On the Performance of Information Criteria in Latent Segment Models
Authors: Jaime R. S. Fonseca
Abstract:
Nevertheless the widespread application of finite mixture models in segmentation, finite mixture model selection is still an important issue. In fact, the selection of an adequate number of segments is a key issue in deriving latent segments structures and it is desirable that the selection criteria used for this end are effective. In order to select among several information criteria, which may support the selection of the correct number of segments we conduct a simulation study. In particular, this study is intended to determine which information criteria are more appropriate for mixture model selection when considering data sets with only categorical segmentation base variables. The generation of mixtures of multinomial data supports the proposed analysis. As a result, we establish a relationship between the level of measurement of segmentation variables and some (eleven) information criteria-s performance. The criterion AIC3 shows better performance (it indicates the correct number of the simulated segments- structure more often) when referring to mixtures of multinomial segmentation base variables.Keywords: Quantitative Methods, Multivariate Data Analysis, Clustering, Finite Mixture Models, Information Theoretical Criteria, Simulation experiments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15198831 Dynamic Analysis of Viscoelastic Plates with Variable Thickness
Authors: Gülçin Tekin, Fethi Kadıoğlu
Abstract:
In this study, the dynamic analysis of viscoelastic plates with variable thickness is examined. The solutions of dynamic response of viscoelastic thin plates with variable thickness have been obtained by using the functional analysis method in the conjunction with the Gâteaux differential. The four-node serendipity element with four degrees of freedom such as deflection, bending, and twisting moments at each node is used. Additionally, boundary condition terms are included in the functional by using a systematic way. In viscoelastic modeling, Three-parameter Kelvin solid model is employed. The solutions obtained in the Laplace-Carson domain are transformed to the real time domain by using MDOP, Dubner & Abate, and Durbin inverse transform techniques. To test the performance of the proposed mixed finite element formulation, numerical examples are treated.
Keywords: Dynamic analysis, inverse Laplace transform techniques, mixed finite element formulation, viscoelastic plate with variable thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20318830 Information Retrieval in Domain Specific Search Engine with Machine Learning Approaches
Authors: Shilpy Sharma
Abstract:
As the web continues to grow exponentially, the idea of crawling the entire web on a regular basis becomes less and less feasible, so the need to include information on specific domain, domain-specific search engines was proposed. As more information becomes available on the World Wide Web, it becomes more difficult to provide effective search tools for information access. Today, people access web information through two main kinds of search interfaces: Browsers (clicking and following hyperlinks) and Query Engines (queries in the form of a set of keywords showing the topic of interest) [2]. Better support is needed for expressing one's information need and returning high quality search results by web search tools. There appears to be a need for systems that do reasoning under uncertainty and are flexible enough to recover from the contradictions, inconsistencies, and irregularities that such reasoning involves. In a multi-view problem, the features of the domain can be partitioned into disjoint subsets (views) that are sufficient to learn the target concept. Semi-supervised, multi-view algorithms, which reduce the amount of labeled data required for learning, rely on the assumptions that the views are compatible and uncorrelated. This paper describes the use of semi-structured machine learning approach with Active learning for the “Domain Specific Search Engines". A domain-specific search engine is “An information access system that allows access to all the information on the web that is relevant to a particular domain. The proposed work shows that with the help of this approach relevant data can be extracted with the minimum queries fired by the user. It requires small number of labeled data and pool of unlabelled data on which the learning algorithm is applied to extract the required data.Keywords: Search engines; machine learning, Informationretrieval, Active logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20838829 A Computational Study of the Effect of Intake Design on Volumetric Efficiency for Best Performance in Motorsport
Authors: Dominic Wentworth-Linton, Shian Gao
Abstract:
This project was aimed at investigating the effect of velocity stacks on the intakes of internal combustion engines for motorsport applications. The intake systems in motorsport are predominantly fuel injection with a plate mounted for the stacks. Using Computational Fluid Dynamics software, the relationship between the stack length and power and torque delivery across the engine’s rev range was investigated and the results were used to choose the best option for its intended motorsport discipline. The test results are expected to vary with engine geometry and its natural manufacturer characteristics. The test was also relevant in bridging between computational data and real simulation as the results show flow, pressure and velocity readings but the behaviour of the engine is inferred from the nature of each test. The results of the data analysis were tested in a real-life simulation on a dynamometer to prove the theory of stack length on power and torque delivery, which helps determine the most suitable stack for the Vauxhall engine for rallying in the Caribbean.
Keywords: CFD simulation, internal combustion engine, intake system, dynamometer test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22468828 Modulation of Lipopolysaccharide Induced Interleukin-17F and Cyclooxygenase-2 Gene Expression by Echinacea purpurea in Broiler Chickens
Authors: Ali Asghar Saki, Sayed Ali Hosseini Siyar, Abbass Ashoori
Abstract:
This study was conducted to evaluate the effect of Echinacea purpurea on the expression of cyclooxygenase-2 (COX-2), interleukin-17F (IL-17F) in seven-day-old broiler chickens. Four groups were fed with concentration of 0 g/kg, 5 g/kg, 10 g/kg and 20 g/kg from the root of E. purpurea in the basal diet and two other groups were only fed with the basal diet for 21 days. At the 28th day, lipopolysaccharide (LPS, 2 mg/kg diet) was injected in four groups and the basal diet group was injected by saline as control. The chickens’ spleen RNA expression was measured for the COX-2 and IL-17F genes by Real-Time PCR. The results have shown that chickens which were fed E. purpurea had a lower COX-2 and IL-17F mRNA expression. The chickens who have received LPS only, lymphocyte was lower than other treatments. Vital organ weights were not significantly different, but body weight loss was recovered by dietary herbs inclusion. The results of this study have shown the positive effect of an anti-inflammatory herb to prevent the undesirable effect of inflammation.
Keywords: Echinacea purpurea, broiler chickens, gene expression, lipopolysaccharide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9888827 Automated ECG Segmentation Using Piecewise Derivative Dynamic Time Warping
Authors: Ali Zifan, Sohrab Saberi, Mohammad Hassan Moradi, Farzad Towhidkhah
Abstract:
Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG's. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna's two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna's method.
Keywords: Adaptive Piecewise Constant Approximation, Dynamic programming, ECG segmentation, Piecewise Derivative Dynamic Time Warping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23928826 Low-Noise Amplifier Design for Improvement of Communication Range for Wake-up Receiver Based Wireless Sensor Network Application
Authors: Ilef Ketata, Mohamed Khalil Baazaoui, Robert Fromm, Ahmad Fakhfakh, Faouzi Derbel
Abstract:
The integration of wireless communication, e.g. in realor quasi-real-time applications, is related to many challenges such as energy consumption, communication range, latency, quality of service, and reliability. The improvement of wireless sensor network performance starts by enhancing the capabilities of each sensor node. While consuming less energy, wake-up receiver (WuRx) nodes have an impact on reducing latency. The solution for sensitivity improvements of sensor nodes, and WuRx in particular, with an energy consumption expense is low-noise amplifier (LNAs) blocks placed in the RF Antenna. This paper presents a comparative study for improving communication range and decreasing the energy consumption of WuRx nodes.
Keywords: Wireless sensor network, wake-up receiver, duty-cycled, low-noise amplifier, envelope detector, range study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078825 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.Keywords: Big data, building-value analysis, machine learning, price prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11648824 Alive Cemeteries with Augmented Reality and Semantic Web Technologies
Authors: TamásMatuszka, Attila Kiss
Abstract:
Due the proliferation of smartphones in everyday use, several different outdoor navigation systems have become available. Since these smartphones are able to connect to the Internet, the users can obtain location-based information during the navigation as well. The users could interactively get to know the specifics of a particular area (for instance, ancient cultural area, Statue Park, cemetery) with the help of thus obtained information. In this paper, we present an Augmented Reality system which uses Semantic Web technologies and is based on the interaction between the user and the smartphone. The system allows navigating through a specific area and provides information and details about the sight an interactive manner.
Keywords: Augmented Reality, Semantic Web, Human Computer Interaction, Mobile Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27138823 Loading and Unloading Scheduling Problem in a Multiple-Multiple Logistics Network: Modeling and Solving
Authors: Yasin Tadayonrad, Alassane Ballé Ndiaye
Abstract:
Most of the supply chain networks have many nodes starting from the suppliers’ side up to the customers’ side that each node sends/receives the raw materials/products from/to the other nodes. One of the major concerns in this kind of supply chain network is finding the best schedule for loading/unloading the shipments through the whole network by which all the constraints in the source and destination nodes are met and all the shipments are delivered on time. One of the main constraints in this problem is the loading/unloading capacity in each source/destination node at each time slot (e.g., per week/day/hour). Because of the different characteristics of different products/groups of products, the capacity of each node might differ based on each group of products. In most supply chain networks (especially in the Fast-moving consumer goods (FMCG) industry), there are different planners/planning teams working separately in different nodes to determine the loading/unloading timeslots in source/destination nodes to send/receive the shipments. In this paper, a mathematical problem has been proposed to find the best timeslots for loading/unloading the shipments minimizing the overall delays subject to respecting the capacity of loading/unloading of each node, the required delivery date of each shipment (considering the lead-times), and working-days of each node. This model was implemented on Python and solved using Python-MIP on a sample data set. Finally, the idea of a heuristic algorithm has been proposed as a way of improving the solution method that helps to implement the model on larger data sets in real business cases, including more nodes and shipments.
Keywords: Supply chain management, transportation, multiple-multiple network, timeslots management, mathematical modeling, mixed integer programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5248822 Simulation and Realization of a Battery Charge Regulator
Authors: B. Nasri, M. Bensaada
Abstract:
We present a simulation and realization of a battery charge regulator (BCR) in microsatellite earth observation. The tests were performed on battery pack 12volt, capacity 24Ah and the solar array open circuit voltage of 100 volt and optimum power of about 250 watt. The battery charge is made by solar module. The principle is to adapt the output voltage of the solar module to the battery by using the technique of pulse width modulation (PWM). Among the different techniques of charge battery, we opted for the technique of the controller ON/OFF is a standard technique and simple, it-s easy to be board executed validation will be made by simulation "Proteus Isis Professional software ". The circuit and the program of this prototype are based on the PIC16F877 microcontroller, a serial interface connecting a PC is also realized, to view and save data and graphics in real time, for visualization of data and graphs we develop an interface tool “visual basic.net (VB)--.Keywords: Battery Charge Regulator, Batteries, Buck converter, Power System, Power Conditioning, Power Distribution, Solar arrays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32148821 Learning and Evaluating Possibilistic Decision Trees using Information Affinity
Authors: Ilyes Jenhani, Salem Benferhat, Zied Elouedi
Abstract:
This paper investigates the issue of building decision trees from data with imprecise class values where imprecision is encoded in the form of possibility distributions. The Information Affinity similarity measure is introduced into the well-known gain ratio criterion in order to assess the homogeneity of a set of possibility distributions representing instances-s classes belonging to a given training partition. For the experimental study, we proposed an information affinity based performance criterion which we have used in order to show the performance of the approach on well-known benchmarks.Keywords: Data mining from uncertain data, Decision Trees, Possibility Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15158820 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques
Authors: Chinlun Lai, Lunjyh Jiang
Abstract:
Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.Keywords: Baby care system, internet of things, deep learning, machine vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19038819 MIM: A Species Independent Approach for Classifying Coding and Non-Coding DNA Sequences in Bacterial and Archaeal Genomes
Authors: Achraf El Allali, John R. Rose
Abstract:
A number of competing methodologies have been developed to identify genes and classify DNA sequences into coding and non-coding sequences. This classification process is fundamental in gene finding and gene annotation tools and is one of the most challenging tasks in bioinformatics and computational biology. An information theory measure based on mutual information has shown good accuracy in classifying DNA sequences into coding and noncoding. In this paper we describe a species independent iterative approach that distinguishes coding from non-coding sequences using the mutual information measure (MIM). A set of sixty prokaryotes is used to extract universal training data. To facilitate comparisons with the published results of other researchers, a test set of 51 bacterial and archaeal genomes was used to evaluate MIM. These results demonstrate that MIM produces superior results while remaining species independent.Keywords: Coding Non-coding Classification, Entropy, GeneRecognition, Mutual Information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17288818 Optimal Maintenance Policy for a Partially Observable Two-Unit System
Authors: Leila Jafari, Viliam Makis, Akram Khaleghei G.B.
Abstract:
In this paper, we present a maintenance model of a two-unit series system with economic dependence. Unit#1 which is considered to be more expensive and more important, is subject to condition monitoring (CM) at equidistant, discrete time epochs and unit#2, which is not subject to CM has a general lifetime distribution. The multivariate observation vectors obtained through condition monitoring carry partial information about the hidden state of unit#1, which can be in a healthy or a warning state while operating. Only the failure state is assumed to be observable for both units. The objective is to find an optimal opportunistic maintenance policy minimizing the long-run expected average cost per unit time. The problem is formulated and solved in the partially observable semi-Markov decision process framework. An effective computational algorithm for finding the optimal policy and the minimum average cost is developed, illustrated by a numerical example.
Keywords: Condition-Based Maintenance, Semi-Markov Decision Process, Multivariate Bayesian Control Chart, Partially Observable System, Two-unit System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22948817 Accounting Information Systems of Kuwaiti Companies: Obstacles and Barriers
Authors: Haya Y Alobaid
Abstract:
The aim of this paper is to identify and discuss the obstacles to the ability of the accounting information systems of Kuwaiti companies to deal with electronic commerce, and then to propose appropriate solutions to overcome the barriers. The study revealed a remarkable decrease in external auditors who have professional certification. The results also showed an agreement regarding the accounting systems and the ability to deal with e-commerce, with a different degree of importance, despite the presence of obstacles to the ability of accounting systems in dealing with different companies.Keywords: Accounting information systems, obstacle, barriers, electronic commerce, Kuwait companies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13998816 A Technique for Reachability Graph Generation for the Petri Net Models of Parallel Processes
Authors: Farooq Ahmad, Hejiao Huang, Xiaolong Wang
Abstract:
Reachability graph (RG) generation suffers from the problem of exponential space and time complexity. To alleviate the more critical problem of time complexity, this paper presents the new approach for RG generation for the Petri net (PN) models of parallel processes. Independent RGs for each parallel process in the PN structure are generated in parallel and cross-product of these RGs turns into the exhaustive state space from which the RG of given parallel system is determined. The complexity analysis of the presented algorithm illuminates significant decrease in the time complexity cost of RG generation. The proposed technique is applicable to parallel programs having multiple threads with the synchronization problem.Keywords: Parallel processes, Petri net, reachability graph, time complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20148815 Sparsity-Based Unsupervised Unmixing of Hyperspectral Imaging Data Using Basis Pursuit
Authors: Ahmed Elrewainy
Abstract:
Mixing in the hyperspectral imaging occurs due to the low spatial resolutions of the used cameras. The existing pure materials “endmembers” in the scene share the spectra pixels with different amounts called “abundances”. Unmixing of the data cube is an important task to know the present endmembers in the cube for the analysis of these images. Unsupervised unmixing is done with no information about the given data cube. Sparsity is one of the recent approaches used in the source recovery or unmixing techniques. The l1-norm optimization problem “basis pursuit” could be used as a sparsity-based approach to solve this unmixing problem where the endmembers is assumed to be sparse in an appropriate domain known as dictionary. This optimization problem is solved using proximal method “iterative thresholding”. The l1-norm basis pursuit optimization problem as a sparsity-based unmixing technique was used to unmix real and synthetic hyperspectral data cubes.
Keywords: Basis pursuit, blind source separation, hyperspectral imaging, spectral unmixing, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8378814 Mathematical Rescheduling Models for Railway Services
Authors: Zuraida Alwadood, Adibah Shuib, Norlida Abd Hamid
Abstract:
This paper presents the review of past studies concerning mathematical models for rescheduling passenger railway services, as part of delay management in the occurrence of railway disruption. Many past mathematical models highlighted were aimed at minimizing the service delays experienced by passengers during service disruptions. Integer programming (IP) and mixed-integer programming (MIP) models are critically discussed, focusing on the model approach, decision variables, sets and parameters. Some of them have been tested on real-life data of railway companies worldwide, while a few have been validated on fictive data. Based on selected literatures on train rescheduling, this paper is able to assist researchers in the model formulation by providing comprehensive analyses towards the model building. These analyses would be able to help in the development of new approaches in rescheduling strategies or perhaps to enhance the existing rescheduling models and make them more powerful or more applicable with shorter computing time.
Keywords: Mathematical modelling, Mixed-integer programming, Railway rescheduling, Service delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32518813 Design of Wireless Sensor Networks for Environmental Monitoring Using LoRa
Authors: Shathya Duobiene, Gediminas Račiukaitis
Abstract:
Wireless Sensor Networks (WSNs) are an emerging technology that opens up a new field of research. The significant advance in WSN leads to an increasing prevalence of various monitoring applications and real-time assistance in labs and factories. Selective surface activation induced by laser (SSAIL) is a promising technology that adapts to the WSN design freedom of shape, dimensions, and material. This article proposes and implements a WSN-based temperature and humidity monitoring system, and its deployed architectures made for the monitoring task are discussed. Experimental results of developed sensor nodes implemented in university campus laboratories are shown. Then, the simulation and the implementation results obtained through monitoring scenarios are displayed. At last, a convenient solution to keep the WSN alive and functional as long as possible is proposed. Unlike other existing models, on success, the node is self-powered and can utilize minimal power consumption for sensing and data transmission to the base station.
Keywords: Internet of Things, IoT, network formation, sensor nodes, SSAIL technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3858812 Synchronization for Impulsive Fuzzy Cohen-Grossberg Neural Networks with Time Delays under Noise Perturbation
Authors: Changzhao Li, Juan Zhang
Abstract:
In this paper, we investigate a class of fuzzy Cohen- Grossberg neural networks with time delays and impulsive effects. By virtue of stochastic analysis, Halanay inequality for stochastic differential equations, we find sufficient conditions for the global exponential square-mean synchronization of the FCGNNs under noise perturbation. In particular, the traditional assumption on the differentiability of the time-varying delays is no longer needed. Finally, a numerical example is given to show the effectiveness of the results in this paper.
Keywords: Fuzzy Cohen-Grossberg neural networks (FCGNNs), complete synchronization, time delays, impulsive, noise perturbation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344