Search results for: pressure Coefficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2197

Search results for: pressure Coefficient

547 Simulation of Loss-of-Flow Transient in a Radiant Steam Boiler with Relap5/Mod3.2

Authors: A.L.Deghal.Cheridi, A.Chaker, A.Loubar

Abstract:

loss of feedwater accident is one of the frequently sever accidents in steam boiler facilities. It threatens the system structural integrity and generates serious hazards and economic loses. The safety analysis of the thermal installations, based extensively on the numeric simulation. The simulation analysis using realistic computer codes like Relap5/Mod3.2 will help understand steam boiler thermal-hydraulic behavior during normal and abnormal conditions. In this study, we are interested on the evaluation of the radiant steam boiler assessment and response to loss-of-feedwater accident. Pressure, temperature and flow rate profiles are presented in various steam boiler system components. The obtained results demonstrate the importance and capability of the Relap5/Mod3.2 code in the thermal-hydraulic analysis of the steam boiler facilities.

Keywords: Radiant steam boiler, Relap5/Mod3.2 code system, Steady-state simulation, Transient simulation, Loss of feedwateraccident

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
546 The Effect of Stress Biaxiality on Crack Shape Development

Authors: Osama A. Terfas

Abstract:

The development of shape and size of a crack in a pressure vessel under uniaxial and biaxial loadings is important in fitness-for-service evaluations such as leak-before-break. In this work finite element modelling was used to evaluate the mean stress and the J-integral around a front of a surface-breaking crack. A procedure on the basis of ductile tearing resistance curves of high and low constrained fracture mechanics geometries was developed to estimate the amount of ductile crack extension for surface-breaking cracks and to show the evolution of the initial crack shape. The results showed non-uniform constraint levels and crack driving forces around the crack front at large deformation levels. It was also shown that initially semi-elliptical surface cracks under biaxial load developed higher constraint levels around the crack front than in uniaxial tension. However similar crack shapes were observed with more extensions associated with cracks under biaxial loading.

Keywords: biaxial load, crack shape, fracture toughness, surface crack, uniaxial load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
545 Simulation and Statistical Analysis of Motion Behavior of a Single Rockfall

Authors: Iau-Teh Wang, Chin-Yu Lee

Abstract:

The impact force of a rockfall is mainly determined by its moving behavior and velocity, which are contingent on the rock shape, slope gradient, height, and surface roughness of the moving path. It is essential to precisely calculate the moving path of the rockfall in order to effectively minimize and prevent damages caused by the rockfall. By applying the Colorado Rockfall Simulation Program (CRSP) program as the analysis tool, this research studies the influence of three shapes of rock (spherical, cylindrical and discoidal) and surface roughness on the moving path of a single rockfall. As revealed in the analysis, in addition to the slope gradient, the geometry of the falling rock and joint roughness coefficient ( JRC ) of the slope are the main factors affecting the moving behavior of a rockfall. On a single flat slope, both the rock-s bounce height and moving velocity increase as the surface gradient increases, with a critical gradient value of 1:m = 1 . Bouncing behavior and faster moving velocity occur more easily when the rock geometry is more oval. A flat piece tends to cause sliding behavior and is easily influenced by the change of surface undulation. When JRC <1.4 the moving velocity decreases and the bounce height increases as JRC increases. If the gradient is fixed, when JRC is greater, the bounce height will be higher, while the moving velocity will experience a downward trend. Therefore, the best protecting point and facilities can be chosen if the moving paths of rockfalls are precisely estimated.

Keywords: rock shape, surface roughness, moving path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
544 Using Mixed Amine Solution for Gas Sweetening

Authors: Zare Aliabadi, Hassan, Mirzaei, Somaye

Abstract:

The use of amine mixtures employing methyldiethanolamine (MDEA), monoethanolamine (MEA), and diethanolamine (DEA) have been investigated for a variety of cases using a process simulation program called HYSYS. The results show that, at high pressures, amine mixtures have little or no advantage in the cases studied. As the pressure is lowered, it becomes more difficult for MDEA to meet residual gas requirements and mixtures can usually improve plant performance. Since the CO2 reaction rate with the primary and secondary amines is much faster than with MDEA, the addition of small amounts of primary or secondary amines to an MDEA based solution should greatly improve the overall reaction rate of CO2 with the amine solution. The addition of MEA caused the CO2 to be absorbed more strongly in the upper portion of the column than for MDEA along. On the other hand, raising the concentration for MEA to 11%wt, CO2 is almost completely absorbed in the lower portion of the column. The addition of MEA would be most advantageous. Thus, in areas where MDEA cannot meet the residual gas requirements, the use of amine mixtures can usually improve the plant performance.

Keywords: CO2, H2S, Methyldiethanolamine, Monoethanolamine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3746
543 Hydrogen Permeability of BSCY Proton-Conducting Perovskite Membrane

Authors: M. Heidari, A. Safekordi, A. Zamaniyan, E. Ganji Babakhani, M. Amanipour

Abstract:

Perovskite-type membrane Ba0.5Sr0.5Ce0.9Y0.1O3-δ (BSCY) was successfully synthesized by liquid citrate method. The hydrogen permeation and stability of BSCY perovskite-type membranes were studied at high temperatures. The phase structure of the powder was characterized by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to characterize microstructures of the membrane sintered under various conditions. SEM results showed that increasing in sintering temperature, formed dense membrane with clear grains. XRD results for BSCY membrane that sintered in 1150 °C indicated single phase perovskite structure with orthorhombic configuration, and SEM results showed dense structure with clear grain size which is suitable for permeation tests. Partial substitution of Sr with Ba in SCY structure improved the hydrogen permeation flux through the membrane due to the larger ionic radius of Ba2+. BSCY membrane shows high hydrogen permeation flux of 1.6 ml/min.cm2 at 900 °C and partial pressure of 0.6.

Keywords: Hydrogen separation, perovskite, proton conducting membrane.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038
542 Eco-Friendly Preservative Treated Bamboo Culm: Compressive Strength Analysis

Authors: Perminder JitKaur, Santosh Satya, K. K. Pant, S. N. Naik

Abstract:

Bamboo is extensively used in construction industry. Low durability of bamboo due to fungus infestation and termites attack under storage puts certain constrains for it usage as modern structural material. Looking at many chemical formulations for bamboo treatment leading to severe harmful environment effects, research on eco-friendly preservatives for bamboo treatment has been initiated world-over. In the present studies, eco-friendly preservative for bamboo treatment has been developed. To validate its application for structural purposes, investigation of effect of treatment on compressive strength has been investigated. Neemoil (25%) integrated with copper naphthenate (0.3%) on dilution with kerosene oil impregnated into bamboo culm at 2 bar pressure, has shown weight loss of only 3.15% in soil block analysis method. The results from compressive strength analysis using HEICO Automatic Compression Testing Machine reveal that preservative treatment has not altered the structural properties of bamboo culms. Compressive strength of control (11.72 N/mm2) and above treated samples (11.71 N/mm2) was found to be comparable.

Keywords: Compressive strength, D. strictus bamboo, Ecofriendly treatment, neem oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3430
541 The Use of Plant-Based Natural Fibers in Reinforced Cement Composites

Authors: N. AlShaya, R. Alhomidan, S. Alromizan, W. Labib

Abstract:

Plant-based natural fibers are used more increasingly in construction materials. It is done to reduce the pressure on the built environment, which has been increased dramatically due to the increases world population and their needs. Plant-based natural fibers are abundant in many countries. Despite the low-cost of such environmental friendly renewable material, it has the ability to enhance the mechanical properties of construction materials. This paper presents an extensive discussion on the use of plant-based natural fibers as reinforcement for cement-based composites, with a particular emphasis upon fiber types; fiber characteristics, and fiber-cement composites performance. It also covers a thorough overview on the main factors, affecting the properties of plant-based natural fiber cement composite in it fresh and hardened state. The feasibility of using plant-based natural fibers in producing various construction materials; such as, mud bricks and blocks is investigated. In addition, other applications of using such fibers as internal curing agents as well as durability enhancer are also discussed. Finally, recommendation for possible future work in this area is presented.

Keywords: Cement composites, plant fibers, strength, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141
540 Application of Modified Maxwell-Stefan Equation for Separation of Aqueous Phenol by Pervaporation

Authors: Ujjal K Ghosh, Ling Teen

Abstract:

Pervaporation has the potential to be an alternative to the other traditional separation processes such as distillation, adsorption, reverse osmosis and extraction. This study investigates the separation of phenol from water using a polyurethane membrane by pervaporation by applying the modified Maxwell-Stephen model. The modified Maxwell-Stefan model takes into account the non-ideal multi-component solubility effect, nonideal diffusivity of all permeating components, concentration dependent density of the membrane and diffusion coupling to predict various fluxes. Four cases has been developed to investigate the process parameters effects on the flux and weight fraction of phenol in the permeate values namely feed concentration, membrane thickness, operating temperature and operating downstream pressure. The model could describe semi-quantitatively the performance of the pervaporation membrane for the given system as a very good agreement between the observed and theoretical fluxes was observed.

Keywords: Pervaporation, Phenol, Polyurethane, Modified Maxwell-Stefan equation, Solution Diffusion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2726
539 A Novel Machining Signal Filtering Technique: Z-notch Filter

Authors: Nuawi M. Z., Lamin F., Ismail A. R., Abdullah S., Wahid Z.

Abstract:

A filter is used to remove undesirable frequency information from a dynamic signal. This paper shows that the Znotch filter filtering technique can be applied to remove the noise nuisance from a machining signal. In machining, the noise components were identified from the sound produced by the operation of machine components itself such as hydraulic system, motor, machine environment and etc. By correlating the noise components with the measured machining signal, the interested components of the measured machining signal which was less interfered by the noise, can be extracted. Thus, the filtered signal is more reliable to be analysed in terms of noise content compared to the unfiltered signal. Significantly, the I-kaz method i.e. comprises of three dimensional graphical representation and I-kaz coefficient, Z∞ could differentiate between the filtered and the unfiltered signal. The bigger space of scattering and the higher value of Z∞ demonstrated that the signal was highly interrupted by noise. This method can be utilised as a proactive tool in evaluating the noise content in a signal. The evaluation of noise content is very important as well as the elimination especially for machining operation fault diagnosis purpose. The Z-notch filtering technique was reliable in extracting noise component from the measured machining signal with high efficiency. Even though the measured signal was exposed to high noise disruption, the signal generated from the interaction between cutting tool and work piece still can be acquired. Therefore, the interruption of noise that could change the original signal feature and consequently can deteriorate the useful sensory information can be eliminated.

Keywords: Digital signal filtering, I-kaz method, Machiningmonitoring, Noise Cancelling, Sound

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
538 Effect of Buoyancy Ratio on Non-Darcy Mixed Convection in a Vertical Channel: A Thermal Non-equilibrium Approach

Authors: Manish K. Khandelwal, P. Bera, A. Chakrabarti

Abstract:

This article presents a numerical study of the doublediffusive mixed convection in a vertical channel filled with porous medium by using non-equilibrium model. The flow is assumed fully developed, uni-directional and steady state. The controlling parameters are thermal Rayleigh number (RaT ), Darcy number (Da), Forchheimer number (F), buoyancy ratio (N), inter phase heat transfer coefficient (H), and porosity scaled thermal conductivity ratio (γ). The Brinkman-extended non-Darcy model is considered. The governing equations are solved by spectral collocation method. The main emphasize is given on flow profiles as well as heat and solute transfer rates, when two diffusive components in terms of buoyancy ratio are in favor (against) of each other and solid matrix and fluid are thermally non-equilibrium. The results show that, for aiding flow (RaT = 1000), the heat transfer rate of fluid (Nuf ) increases upto a certain value of H, beyond that decreases smoothly and converges to a constant, whereas in case of opposing flow (RaT = -1000), the result is same for N = 0 and 1. The variation of Nuf in (N, Nuf )-plane shows sinusoidal pattern for RaT = -1000. For both cases (aiding and opposing) the flow destabilize on increasing N by inviting point of inflection or flow separation on the velocity profile. Overall, the buoyancy force have significant impact on the non-Darcy mixed convection under LTNE conditions.

Keywords: buoyancy ratio, mixed convection, non-Darcy model, thermal non-equilibrium

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
537 Analytical and Experimental Methods of Design for Supersonic Two-Stage Ejectors

Authors: S. Daneshmand, C. Aghanajafi, A. Bahrami

Abstract:

In this paper the supersonic ejectors are experimentally and analytically studied. Ejector is a device that uses the energy of a fluid to move another fluid. This device works like a vacuum pump without usage of piston, rotor or any other moving component. An ejector contains an active nozzle, a passive nozzle, a mixing chamber and a diffuser. Since the fluid viscosity is large, and the flow is turbulent and three dimensional in the mixing chamber, the numerical methods consume long time and high cost to analyze the flow in ejectors. Therefore this paper presents a simple analytical method that is based on the precise governing equations in fluid mechanics. According to achieved analytical relations, a computer code has been prepared to analyze the flow in different components of the ejector. An experiment has been performed in supersonic regime 1.5Keywords: Ejector, Wind Tunnel, Supersonic, Diffuser, Machnumber, Mixing Chamber

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3206
536 Modelling Phytoremediation Rates of Aquatic Macrophytes in Aquaculture Effluent

Authors: E. A. Kiridi, A. O. Ogunlela

Abstract:

Pollutants from aquacultural practices constitute environmental problems and phytoremediation could offer cheaper environmentally sustainable alternative since equipment using advanced treatment for fish tank effluent is expensive to import, install, operate and maintain, especially in developing countries. The main objective of this research was, therefore, to develop a mathematical model for phytoremediation by aquatic plants in aquaculture wastewater. Other objectives were to evaluate the retention times on phytoremediation rates using the model and to measure the nutrient level of the aquaculture effluent and phytoremediation rates of three aquatic macrophytes, namely; water hyacinth (Eichornia crassippes), water lettuce (Pistial stratoites) and morning glory (Ipomea asarifolia). A completely randomized experimental design was used in the study. Approximately 100 g of each macrophyte were introduced into the hydroponic units and phytoremediation indices monitored at 8 different intervals from the first to the 28th day. The water quality parameters measured were pH and electrical conductivity (EC). Others were concentration of ammonium–nitrogen (NH4+ -N), nitrite- nitrogen (NO2- -N), nitrate- nitrogen (NO3- -N), phosphate –phosphorus (PO43- -P), and biomass value. The biomass produced by water hyacinth was 438.2 g, 600.7 g, 688.2 g and 725.7 g at four 7–day intervals. The corresponding values for water lettuce were 361.2 g, 498.7 g, 561.2 g and 623.7 g and for morning glory were 417.0 g, 567.0 g, 642.0 g and 679.5g. Coefficient of determination was greater than 80% for EC, TDS, NO2- -N, NO3- -N and 70% for NH4+ -N using any of the macrophytes and the predicted values were within the 95% confidence interval of measured values. Therefore, the model is valuable in the design and operation of phytoremediation systems for aquaculture effluent.

Keywords: Phytoremediation, macrophytes, hydroponic unit, aquaculture effluent, mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
535 Analysis of Cascade Control Structure in Train Dynamic Braking System

Authors: B. Moaveni, S. Morovati

Abstract:

In recent years, increasing the usage of railway transportations especially in developing countries caused more attention to control systems railway vehicles. Consequently, designing and implementing the modern control systems to improve the operating performance of trains and locomotives become one of the main concerns of researches. Dynamic braking systems is an important safety system which controls the amount of braking torque generated by traction motors, to keep the adhesion coefficient between the wheel-sets and rail road in optimum bound. Adhesion force has an important role to control the braking distance and prevent the wheels from slipping during the braking process. Cascade control structure is one of the best control methods for the wide range of industrial plants in the presence of disturbances and errors. This paper presents cascade control structure based on two forward simple controllers with two feedback loops to control the slip ratio and braking torque. In this structure, the inner loop controls the angular velocity and the outer loop control the longitudinal velocity of the locomotive that its dynamic is slower than the dynamic of angular velocity. This control structure by controlling the torque of DC traction motors, tries to track the desired velocity profile to access the predefined braking distance and to control the slip ratio. Simulation results are employed to show the effectiveness of the introduced methodology in dynamic braking system.

Keywords: Cascade control, dynamic braking system, DC traction motors, slip control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
534 Preparation and Some Mechanical Properties of Composite Materials Made from Sawdust, Cassava Starch and Natural Rubber Latex

Authors: Apusraporn Prompunjai, Waranyou Sridach

Abstract:

The composite materials were prepared by sawdust, cassava starch and natural rubber latex (NR). The mixtures of 15%w/v gelatinized cassava starch and 15%w/v PVOH were used as the binder of these composite materials. The concentrated rubber latex was added to the mixtures. They were mixed rigorously to the treated sawdust in the ratio of 70:30 until achive uniform dispersion. The batters were subjected to the hot compression moulding at the temperature of 160°C and 3,000 psi pressure for 5 min. The experimental results showed that the mechanical properties of composite materials, which contained the gelatinized cassava starch and PVOH in the ratio of 2:1, 20% NR latex by weight of the dry starch and treated sawdust with 5%NaOH or 1% BPO, were the best. It contributed the maximal compression strength (341.10 + 26.11 N), puncture resistance (8.79 + 0.98 N/mm2) and flexural strength (3.99 + 0.72N/mm2). It is also found that the physicochemical and mechanical properties of composites strongly depends on the interface quality of sawdust, cassava starch and NR latex.

Keywords: Composites, sawdust, cassava starch, natural rubber (NR) latex, surface chemical treatments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4084
533 Physiological Effects on Scientist Astronaut Candidates: Hypobaric Training Assessment

Authors: Pedro Llanos, Diego García

Abstract:

This paper is addressed to expanding our understanding of the effects of hypoxia training on our bodies to better model its dynamics and leverage some of its implications and effects on human health. Hypoxia training is a recommended practice for military and civilian pilots that allow them to recognize their early hypoxia signs and symptoms, and Scientist Astronaut Candidates (SACs) who underwent hypobaric hypoxia (HH) exposure as part of a training activity for prospective suborbital flight applications. This observational-analytical study describes physiologic responses and symptoms experienced by a SAC group before, during and after HH exposure and proposes a model for assessing predicted versus observed physiological responses. A group of individuals with diverse Science Technology Engineering Mathematics (STEM) backgrounds conducted a hypobaric training session to an altitude up to 22,000 ft (FL220) or 6,705 meters, where heart rate (HR), breathing rate (BR) and core temperature (Tc) were monitored with the use of a chest strap sensor pre and post HH exposure. A pulse oximeter registered levels of saturation of oxygen (SpO2), number and duration of desaturations during the HH chamber flight. Hypoxia symptoms as described by the SACs during the HH training session were also registered. This data allowed to generate a preliminary predictive model of the oxygen desaturation and O2 pressure curve for each subject, which consists of a sixth-order polynomial fit during exposure, and a fifth or fourth-order polynomial fit during recovery. Data analysis showed that HR and BR showed no significant differences between pre and post HH exposure in most of the SACs, while Tc measures showed slight but consistent decrement changes. All subjects registered SpO2 greater than 94% for the majority of their individual HH exposures, but all of them presented at least one clinically significant desaturation (SpO2 < 85% for more than 5 seconds) and half of the individuals showed SpO2 below 87% for at least 30% of their HH exposure time. Finally, real time collection of HH symptoms presented temperature somatosensory perceptions (SP) for 65% of individuals, and task-focus issues for 52.5% of individuals as the most common HH indications. 95% of the subjects experienced HH onset symptoms below FL180; all participants achieved full recovery of HH symptoms within 1 minute of donning their O2 mask. The current HH study performed on this group of individuals suggests a rapid and fully reversible physiologic response after HH exposure as expected and obtained in previous studies. Our data showed consistent results between predicted versus observed SpO2 curves during HH suggesting a mathematical function that may be used to model HH performance deficiencies. During the HH study, real-time HH symptoms were registered providing evidenced SP and task focusing as the earliest and most common indicators. Finally, an assessment of HH signs of symptoms in a group of heterogeneous, non-pilot individuals showed similar results to previous studies in homogeneous populations of pilots.

Keywords: Altitude sickness, cabin pressure, hypobaric chamber training, symptoms and altitude, slow onset hypoxia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 397
532 An Approximate Lateral-Torsional Buckling Mode Function for Cantilever I-Beams

Authors: H. Ozbasaran

Abstract:

Lateral torsional buckling is a global buckling mode which should be considered in design of slender structural members under flexure about their strong axis. It is possible to compute the load which causes lateral torsional buckling of a beam by finite element analysis, however, closed form equations are needed in engineering practice for calculation ease which can be obtained by using energy method. In lateral torsional buckling applications of energy method, a proper function for the critical lateral torsional buckling mode should be chosen which can be thought as the variation of twisting angle along the buckled beam. Accuracy of the results depends on how close is the chosen function to the exact mode. Since critical lateral torsional buckling mode of the cantilever I-beams varies due to material properties, section properties and loading case, the hardest step is to determine a proper mode function in application of energy method. This paper presents an approximate function for critical lateral torsional buckling mode of doubly symmetric cantilever I-beams. Coefficient matrices are calculated for concentrated load at free end, uniformly distributed load and constant moment along the beam cases. Critical lateral torsional buckling modes obtained by presented function and exact solutions are compared. It is found that the modes obtained by presented function coincide with differential equation solutions for considered loading cases.

Keywords: Buckling mode, cantilever, lateral-torsional buckling, I-beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
531 Removal of Volatile Organic Compounds from Contaminated Surfactant Solution using Co-Curren Vacuum Stripping

Authors: Pornchai Suriya-Amrit, Suratsawadee Kungsanant, Boonyarach Kitiyanan

Abstract:

There has been a growing interest in utilizing surfactants in remediation processes to separate the hydrophobic volatile organic compounds (HVOCs) from aqueous solution. One attractive process is cloud point extraction (CPE), which utilizes nonionic surfactants as a separating agent. Since the surfactant cost is a key determination of the economic viability of the process, it is important that the surfactants are recycled and reused. This work aims to study the performance of the co-current vacuum stripping using a packed column for HVOCs removal from contaminated surfactant solution. Six types HVOCs are selected as contaminants. The studied surfactant is the branched secondary alcohol ethoxylates (AEs), Tergitol TMN-6 (C14H30O2). The volatility and the solubility of HVOCs in surfactant system are determined in terms of an apparent Henry’s law constant and a solubilization constant, respectively. Moreover, the HVOCs removal efficiency of vacuum stripping column is assessed in terms of percentage of HVOCs removal and the overall liquid phase volumetric mass transfer coefficient. The apparent Henry’s law constant of benzenz , toluene, and ethyl benzene were 7.00×10-5, 5.38×10-5, 3.35× 10-5 respectively. The solubilization constant of benzene, toluene, and ethyl benzene were 1.71, 2.68, 7.54 respectively. The HVOCs removal for all solute were around 90 percent.

Keywords: Apparent Henry’s law constant, Branched secondary alcohol ethoxylates, Vacuum Stripping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
530 Modelling of Powered Roof Supports Work

Authors: Marcin Michalak

Abstract:

Due to the increasing efforts on saving our natural environment a change in the structure of energy resources can be observed - an increasing fraction of a renewable energy sources. In many countries traditional underground coal mining loses its significance but there are still countries, like Poland or Germany, in which the coal based technologies have the greatest fraction in a total energy production. This necessitates to make an effort to limit the costs and negative effects of underground coal mining. The longwall complex is as essential part of the underground coal mining. The safety and the effectiveness of the work is strongly dependent of the diagnostic state of powered roof supports. The building of a useful and reliable diagnostic system requires a lot of data. As the acquisition of a data of any possible operating conditions it is important to have a possibility to generate a demanded artificial working characteristics. In this paper a new approach of modelling a leg pressure in the single unit of powered roof support. The model is a result of the analysis of a typical working cycles.

Keywords: Machine modelling, underground mining, coal mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
529 Quality Parameters of Offset Printing Wastewater

Authors: Kiurski S. Jelena, Kecić S. Vesna, Aksentijević M. Snežana

Abstract:

Samples of tap and wastewater were collected in three offset printing facilities in Novi Sad, Serbia. Ten physicochemical parameters were analyzed within all collected samples: pH, conductivity, m - alkalinity, p - alkalinity, acidity, carbonate concentration, hydrogen carbonate concentration, active oxygen content, chloride concentration and total alkali content. All measurements were conducted using the standard analytical and instrumental methods. Comparing the obtained results for tap water and wastewater, a clear quality difference was noticeable, since all physicochemical parameters were significantly higher within wastewater samples. The study also involves the application of simple linear regression analysis on the obtained dataset. By using software package ORIGIN 5 the pH value was mutually correlated with other physicochemical parameters. Based on the obtained values of Pearson coefficient of determination a strong positive correlation between chloride concentration and pH (r = -0.943), as well as between acidity and pH (r = -0.855) was determined. In addition, statistically significant difference was obtained only between acidity and chloride concentration with pH values, since the values of parameter F (247.634 and 182.536) were higher than Fcritical (5.59). In this way, results of statistical analysis highlighted the most influential parameter of water contamination in offset printing, in the form of acidity and chloride concentration. The results showed that variable dependence could be represented by the general regression model: y = a0 + a1x+ k, which further resulted with matching graphic regressions.

Keywords: Pollution, printing industry, simple linear regression analysis, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
528 Investigation of Monochromatization Light Effect at Molecular/Atomic Level in Electronegative-Electropositive Gas Mixtures Plasma

Authors: L.C. Ciobotaru

Abstract:

In electronegative-electropositive gas mixtures plasma, at a total pressure varying in the range of ten to hundred Torr, the appearance of a quasi-mochromatization effect of the emitted radiation was reported. This radiation could be the result of the generating mechanisms at molecular level, which is the case of the excimer radiation but also at atomic level. Thus, in the last case, in (Ne+1%Ar/Xe+H2) gas mixtures plasma in a dielectric barrier discharge, this effect, called M-effect, consists in the reduction of the discharge emission spectrum practice at one single, strong spectral line with λ = 585.3 nm. The present paper is concerned with the characteristics comparative investigation of the principal reaction mechanisms involved in the quasi-monochromatization effect existence in the case of the excimer radiation, respectively of the Meffect. Also, the paper points out the role of the metastable electronegative atoms in the appearance of the monochromatization – effect at atomic level.

Keywords: Colombian forces, Direct Harpoon reaction, Monochromatization – effect, Resonant polar three-body reaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393
527 On Asymptotic Laws and Transfer Processes Enhancement in Complex Turbulent Flows

Authors: A. Gorin

Abstract:

The lecture represents significant advances in understanding of the transfer processes mechanism in turbulent separated flows. Based upon experimental data suggesting the governing role of generated local pressure gradient that takes place in the immediate vicinity of the wall in separated flow as a result of intense instantaneous accelerations induced by large-scale vortex flow structures similarity laws for mean velocity and temperature and spectral characteristics and heat and mass transfer law for turbulent separated flows have been developed. These laws are confirmed by available experimental data. The results obtained were employed for analysis of heat and mass transfer in some very complex processes occurring in technological applications such as impinging jets, heat transfer of cylinders in cross flow and in tube banks, packed beds where processes manifest distinct properties which allow them to be classified under turbulent separated flows. Many facts have got an explanation for the first time.

Keywords: impinging jets, packed beds, turbulent separatedflows, 'two-thirds power law'

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
526 Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material

Authors: Mouna Hamed, Ammar B. Brahim

Abstract:

The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using Matlab computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times.

Keywords: Thermal energy storage, phase change material, melting, solidification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
525 Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material

Authors: Mouna Hamed, Ammar B. Brahim

Abstract:

The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using MATLAB computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times.

Keywords: Thermal energy storage, phase change material, melting, solidification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250
524 Speech Enhancement Using Wavelet Coefficients Masking with Local Binary Patterns

Authors: Christian Arcos, Marley Vellasco, Abraham Alcaim

Abstract:

In this paper, we present a wavelet coefficients masking based on Local Binary Patterns (WLBP) approach to enhance the temporal spectra of the wavelet coefficients for speech enhancement. This technique exploits the wavelet denoising scheme, which splits the degraded speech into pyramidal subband components and extracts frequency information without losing temporal information. Speech enhancement in each high-frequency subband is performed by binary labels through the local binary pattern masking that encodes the ratio between the original value of each coefficient and the values of the neighbour coefficients. This approach enhances the high-frequency spectra of the wavelet transform instead of eliminating them through a threshold. A comparative analysis is carried out with conventional speech enhancement algorithms, demonstrating that the proposed technique achieves significant improvements in terms of PESQ, an international recommendation of objective measure for estimating subjective speech quality. Informal listening tests also show that the proposed method in an acoustic context improves the quality of speech, avoiding the annoying musical noise present in other speech enhancement techniques. Experimental results obtained with a DNN based speech recognizer in noisy environments corroborate the superiority of the proposed scheme in the robust speech recognition scenario.

Keywords: Binary labels, local binary patterns, mask, wavelet coefficients, speech enhancement, speech recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000
523 Analysis of a Lignocellulose Degrading Microbial Consortium to Enhance the Anaerobic Digestion of Rice Straws

Authors: Supanun Kangrang, Kraipat Cheenkachorn, Kittiphong Rattanaporn, Malinee Sriariyanun

Abstract:

Rice straw is lignocellulosic biomass which can be utilized as substrate for the biogas production. However, due to the property and composition of rice straw, it is difficult to be degraded by hydrolysis enzymes. One of the pretreatment methods that modify such properties of lignocellulosic biomass is the application of lignocellulose-degrading microbial consortia. The aim of this study is to investigate the effect of microbial consortia to enhance biogas production. To select the high efficient consortium, cellulase enzymes were extracted and their activities were analyzed. The results suggested that microbial consortium culture obtained from cattle manure is the best candidate compared to decomposed wood and horse manure. A microbial consortium isolated from cattle manure was then mixed with anaerobic sludge and used as inoculum for biogas production. The optimal conditions for biogas production were investigated using response surface methodology (RSM). The tested parameters were the ratio of amount of microbial consortium isolated and amount of anaerobic sludge (MI:AS), substrate to inoculum ratio (S:I) and temperature. Here, the value of the regression coefficient R2 = 0.7661 could be explained by the model which is high to advocate the significance of the model. The highest cumulative biogas yield was 104.6 ml/g-rice straw at optimum ratio of MI:AS, ratio of S:I, and temperature of 2.5:1, 15:1 and 44°C respectively.

Keywords: Lignocellulolytic biomass, microbial consortium, cellulase, biogas, Response Surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3299
522 Calibration of the Discrete Element Method Using a Large Shear Box

Authors: Corné J. Coetzee, Etienne Horn

Abstract:

One of the main challenges in using the Discrete Element Method (DEM) is to specify the correct input parameter values. In general, the models are sensitive to the input parameter values and accurate results can only be achieved if the correct values are specified. For the linear contact model, micro-parameters such as the particle density, stiffness, coefficient of friction, as well as the particle size and shape distributions are required. There is a need for a procedure to accurately calibrate these parameters before any attempt can be made to accurately model a complete bulk materials handling system. Since DEM is often used to model applications in the mining and quarrying industries, a calibration procedure was developed for materials that consist of relatively large (up to 40 mm in size) particles. A coarse crushed aggregate was used as the test material. Using a specially designed large shear box with a diameter of 590 mm, the confined Young’s modulus (bulk stiffness) and internal friction angle of the material were measured by means of the confined compression test and the direct shear test respectively. DEM models of the experimental setup were developed and the input parameter values were varied iteratively until a close correlation between the experimental and numerical results was achieved. The calibration process was validated by modelling the pull-out of an anchor from a bed of material. The model results compared well with experimental measurement.

Keywords: Discrete Element Method (DEM), calibration, shear box, anchor pull-out.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2652
521 The Applicability of Distillation as an Alternative Nuclear Reprocessing Method

Authors: Dominik Böhm, Konrad Czerski

Abstract:

A customized two-stage model has been developed to simulate, analyse, and visualize distillation of actinides as a useful alternative low-pressure separation method in the nuclear recycling cases. Under the most optimal conditions of idealized thermodynamic equilibrium stages and under total reflux of distillate the investigated cases of chloride systems for the separation of such actinides are (A) UCl4-CsCl-PuCl3 and (B) ThCl4-NaCl-PuCl3. Simulatively, uranium tetrachloride in case A is successfully separated by distillation into a six-stage distillation column, and thorium tetrachloride from case B into an eight-stage distillation column. For this, a permissible mole fraction value of 1E-06 has been assumed for the residual impurification degree. With further separation effort of eleven to seventeen required separation stages, the monochlorides of plutonium trichloride from both systems A and B are simulatively shown to be separated as high pure distillation products.

Keywords: Conceptual design of a pyroprocessing unit, molten salt recovery, simulation of total-reflux distillation column, used nuclear fuel reprocessing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593
520 Design and Fabrication of Micro-Bubble Oxygenator

Authors: Chiang-Ho Cheng, An-Shik Yang, Hong-Yih Cheng

Abstract:

This paper applies the MEMS technology to design and fabricate a micro-bubble generator by a piezoelectric actuator. Coupled with a nickel nozzle plate, an annular piezoelectric ceramic was utilized as the primary structure of the generator. In operations, the piezoelectric element deforms transversely under an electric field applied across the thickness of the generator. The surface of the nozzle plate can expand or contract because of the induction of radial strain, resulting in the whole structure to bend, and successively transport oxygen micro-bubbles into the blood flow for enhancing the oxygen content in blood. In the tests, a high magnification microscope and a high speed CCD camera were employed to photograph the time evolution of meniscus shape of gaseous bubbles dispensed from the micro-bubble generator for flow visualization. This investigation thus explored the bubble formation process including the influences of inlet gas pressure along with driving voltage and resonance frequency on the formed bubble extent.

Keywords: Micro-bubble, nozzle, oxygenator, piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1325
519 Dynamic Modeling and Simulation of Heavy Paraffin Dehydrogenation Reactor for Selective Olefin Production in Linear Alkyl Benzene Production Plant

Authors: G. Zahedi, H. Yaghoobi

Abstract:

Modeling of a heterogeneous industrial fixed bed reactor for selective dehydrogenation of heavy paraffin with Pt-Sn- Al2O3 catalyst has been the subject of current study. By applying mass balance, momentum balance for appropriate element of reactor and using pressure drop, rate and deactivation equations, a detailed model of the reactor has been obtained. Mass balance equations have been written for five different components. In order to estimate reactor production by the passage of time, the reactor model which is a set of partial differential equations, ordinary differential equations and algebraic equations has been solved numerically. Paraffins, olefins, dienes, aromatics and hydrogen mole percent as a function of time and reactor radius have been found by numerical solution of the model. Results of model have been compared with industrial reactor data at different operation times. The comparison successfully confirms validity of proposed model.

Keywords: Dehydrogenation, fixed bed reactor, modeling, linear alkyl benzene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3014
518 Phase Behavior and Structure Properties of Supported Lipid Monolayers and Bilayers in Interaction with Silica Nanoparticles

Authors: Ndeye Rokhaya Faye, Ibtissem Gammoudi, Fabien Moroté, Christine Grauby-Heywang, TouriaCohen-Bouhacina

Abstract:

In this study we investigate silica nanoparticle (SiO2- NP) effects on the structure and phase properties of supported lipid monolayers and bilayers, coupling surface pressure measurements, fluorescence microscopy and atomic force microscopy. SiO2-NPs typically in size range of 10nm to 100 nm in diameter are tested. Our results suggest first that lipid molecules organization depends to their nature. Secondly, lipid molecules in the vinicity of big aggregates nanoparticles organize in liquid condensed phase whereas small aggregates are localized in both fluid liquid-expanded (LE) and liquid-condenced (LC). We demonstrated also by atomic force microscopy that by measuring friction forces it is possible to get information as if nanoparticle aggregates are recovered or not by lipid monolayers and bilayers.

Keywords: Atomic force microscopy, fluorescence microscopy, Langmuir films, silica nanoparticles, supported membrane models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2621