Search results for: Power line carrier
2206 Using ALOHA Code to Evaluate CO2 Concentration for Maanshan Nuclear Power Plant
Authors: W. S. Hsu, S. W. Chen, Y. T. Ku, Y. Chiang, J. R. Wang , J. H. Yang, C. Shih
Abstract:
ALOHA code was used to calculate the concentration under the CO2 storage burst condition for Maanshan nuclear power plant (NPP) in this study. Five main data are input into ALOHA code including location, building, chemical, atmospheric, and source data. The data from Final Safety Analysis Report (FSAR) and some reports were used in this study. The ALOHA results are compared with the failure criteria of R.G. 1.78 to confirm the habitability of control room. The result of comparison presents that the ALOHA result is below the R.G. 1.78 criteria. This implies that the habitability of control room can be maintained in this case. The sensitivity study for atmospheric parameters was performed in this study. The results show that the wind speed has the larger effect in the concentration calculation.
Keywords: PWR, ALOHA, habitability, Maanshan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7422205 Thailand Throne Hall Architecture in the Grand Palace in the Early Days of Ratthanakosin Era
Authors: Somchai Seviset, Lin Jian Qun
Abstract:
Amarindra-vinitchai-mahaisuraya Bhiman throne hall is one of the most significant throne halls in the grand palace in the Ratthanakosin city situated in Bangkok, Thailand. This is the first group of throne halls built in order to serve as a place for meetings, performing state affairs and royal duties until the present time. The structure and pattern of architectural design including the decoration and interior design of the throne hall obviously exhibits and convey the status of the king under the context of Thai society in the early period of Ratthanakosin era. According to the tradition of ruling the kingdom in absolute monarchy which had been in place since Ayutthaya era (A.D.1350-1767), the king was deemed as Deva Raja, the highest power and authority over the kingdom and as the greatest emperor of the universe (Chakkravatin). The architectural design adopted the concept of “Prasada" or Viman which served as the dwelling place of the gods and was presented in the form of “Thai traditional architecture" For the interior design of the throne hall, it had been adopted to be the heaven and the centre of the Universe in line with the cosmological beliefs of ancient people described in scripture Tribhumikatha (Tri Bhumi) written by Phra Maha Thamma Raja (Phraya Lithai) of the Sukhothai era (A.D.1347-1368). According to this belief, the throne hall had been designed to represent mount Meru, the central of the universe. On the top end of Mount Meru is situated the Viman and dwelling place of Indra who is the king of gods according to the idea of Deva Raja (the king god Avatar). At the same time, Indra also existed as the king of the universe simultaneously.Keywords: Amarindra-vinitchai-mahaisuraya Bhiman throne hall, throne hall architecture, grand palace, Thai traditional architecture, Ratthanakosin era
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25192204 Industrial Compressor Anti-Surge Computer Control
Authors: Ventzas Dimitrios, Petropoulos George
Abstract:
The paper presents a compressor anti-surge control system, that results in maximizing compressor throughput with pressure standard deviation reduction, increased safety margin between design point and surge limit line and avoiding possible machine surge. Alternative control strategies are presented.Keywords: Anti-surge, control, compressor, PID control, safety, fault tolerance, start-up, ESD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89652203 Secure Text Steganography for Microsoft Word Document
Authors: Khan Farhan Rafat, M. Junaid Hussain
Abstract:
Seamless modification of an entity for the purpose of hiding a message of significance inside its substance in a manner that the embedding remains oblivious to an observer is known as steganography. Together with today's pervasive registering frameworks, steganography has developed into a science that offers an assortment of strategies for stealth correspondence over the globe that must, however, need a critical appraisal from security breach standpoint. Microsoft Word is amongst the preferably used word processing software, which comes as a part of the Microsoft Office suite. With a user-friendly graphical interface, the richness of text editing, and formatting topographies, the documents produced through this software are also most suitable for stealth communication. This research aimed not only to epitomize the fundamental concepts of steganography but also to expound on the utilization of Microsoft Word document as a carrier for furtive message exchange. The exertion is to examine contemporary message hiding schemes from security aspect so as to present the explorative discoveries and suggest enhancements which may serve a wellspring of information to encourage such futuristic research endeavors.
Keywords: Hiding information in plain sight, stealth communication, oblivious information exchange, conceal, steganography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16232202 Profit Optimization for Solar Plant Electricity Production
Authors: Fl. Loury, P. Sablonière
Abstract:
In this paper a stochastic scenario-based model predictive control applied to molten salt storage systems in concentrated solar tower power plant is presented. The main goal of this study is to build up a tool to analyze current and expected future resources for evaluating the weekly power to be advertised on electricity secondary market. This tool will allow plant operator to maximize profits while hedging the impact on the system of stochastic variables such as resources or sunlight shortage.
Solving the problem first requires a mixed logic dynamic modeling of the plant. The two stochastic variables, respectively the sunlight incoming energy and electricity demands from secondary market, are modeled by least square regression. Robustness is achieved by drawing a certain number of random variables realizations and applying the most restrictive one to the system. This scenario approach control technique provides the plant operator a confidence interval containing a given percentage of possible stochastic variable realizations in such a way that robust control is always achieved within its bounds. The results obtained from many trajectory simulations show the existence of a ‘’reliable’’ interval, which experimentally confirms the algorithm robustness.
Keywords: Molten Salt Storage System, Concentrated Solar Tower Power Plant, Robust Stochastic Model Predictive Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19262201 Centralized Peak Consumption Smoothing Revisited for Habitat Energy Scheduling
Authors: M. Benbouzid, Q. Bresson, A. Duclos, K. Longo, Q. Morel
Abstract:
Currently, electricity suppliers must predict the consumption of their customers in order to deduce the power they need to produce. It is then important in a first step to optimize household consumptions to obtain more constant curves by limiting peaks in energy consumption. Here centralized real time scheduling is proposed to manage the equipments starting in parallel. The aim is not to exceed a certain limit while optimizing the power consumption across a habitat. The Raspberry Pi is used as a box; this scheduler interacts with the various sensors in 6LoWPAN. At the scale of a single dwelling, household consumption decreases, particularly at times corresponding to the peaks. However, it would be wiser to consider the use of a residential complex so that the result would be more significant. So the ceiling would no longer be fixed. The scheduling would be done on two scales, on the one hand per dwelling, and secondly, at the level of a residential complex.
Keywords: Smart grid, Energy box, Scheduling, Gang Model, Energy consumption, Energy management system, and Wireless Sensor Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15862200 Biogas Control: Methane Production Monitoring Using Arduino
Authors: W. Ait Ahmed, M. Aggour, M. Naciri
Abstract:
Extracting energy from biomass is an important alternative to produce different types of energy (heat, electricity, or both) assuring low pollution and better efficiency. It is a new yet reliable approach to reduce green gas emission by extracting methane from industry effluents and use it to power machinery. We focused in our project on using paper and mill effluents, treated in a UASB reactor. The methane produced is used in the factory’s power supply. The aim of this work is to develop an electronic system using Arduino platform connected to a gas sensor, to measure and display the curve of daily methane production on processing. The sensor will send the gas values in ppm to the Arduino board so that the later sends the RS232 hardware protocol. The code developed with processing will transform the values into a curve and display it on the computer screen.Keywords: Biogas, Arduino, processing, code, methane, gas sensor, program.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35452199 Multistage Data Envelopment Analysis Model for Malmquist Productivity Index Using Grey's System Theory to Evaluate Performance of Electric Power Supply Chain in Iran
Authors: Mesbaholdin Salami, Farzad Movahedi Sobhani, Mohammad Sadegh Ghazizadeh
Abstract:
Evaluation of organizational performance is among the most important measures that help organizations and entities continuously improve their efficiency. Organizations can use the existing data and results from the comparison of units under investigation to obtain an estimation of their performance. The Malmquist Productivity Index (MPI) is an important index in the evaluation of overall productivity, which considers technological developments and technical efficiency at the same time. This article proposed a model based on the multistage MPI, considering limited data (Grey’s theory). This model can evaluate the performance of units using limited and uncertain data in a multistage process. It was applied by the electricity market manager to Iran’s electric power supply chain (EPSC), which contains uncertain data, to evaluate the performance of its actors. Results from solving the model showed an improvement in the accuracy of future performance of the units under investigation, using the Grey’s system theory. This model can be used in all case studies, in which MPI is used and there are limited or uncertain data.
Keywords: Malmquist Index, Grey's Theory, Charnes Cooper & Rhodes (CCR) Model, network data envelopment analysis, Iran electricity power chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5532198 Thermodynamic Performance Assessment of Steam-Injection Gas-Turbine Systems
Authors: Kyoung Hoon Kim, Giman Kim
Abstract:
The cycles of the steam-injection gas-turbine systems are studied. The analyses of the parametric effects and the optimal operating conditions for the steam-injection gas-turbine (STIG) system and the regenerative steam-injection gas-turbine (RSTIG) system are investigated to ensure the maximum performance. Using the analytic model, the performance parameters of the system such as thermal efficiency, fuel consumption and specific power, and also the optimal operating conditions are evaluated in terms of pressure ratio, steam injection ratio, ambient temperature and turbine inlet temperature (TIT). It is shown that the computational results are presented to have a notable enhancement of thermal efficiency and specific power.
Keywords: gas turbine, RSTIG, steam injection, STIG, thermal efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25442197 Fast Wavelength Calibration Algorithm for Optical Spectrum Analyzers
Authors: Thomas Fuhrmann
Abstract:
In this paper an algorithm for fast wavelength calibration of Optical Spectrum Analyzers (OSAs) using low power reference gas spectra is proposed. In existing OSAs a reference spectrum with low noise for precise detection of the reference extreme values is needed. To generate this spectrum costly hardware with high optical power is necessary. With this new wavelength calibration algorithm it is possible to use a noisy reference spectrum and therefore hardware costs can be cut. With this algorithm the reference spectrum is filtered and the key information is extracted by segmenting and finding the local minima and maxima. Afterwards slope and offset of a linear correction function for best matching the measured and theoretical spectra are found by correlating the measured with the stored minima. With this algorithm a reliable wavelength referencing of an OSA can be implemented on a microcontroller with a calculation time of less than one second.
Keywords: correlation, gas reference, optical spectrum analyzer, wavelength calibration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14132196 Backstepping Controller for a Variable Wind Speed Energy Conversion System Based on a DFIG
Authors: Sara Mensou, Ahmed Essadki, Issam Minka, Tamou Nasser, Badr Bououlid Idrissi
Abstract:
In this paper we present a contribution for the modeling and control of wind energy conversion system based on a Doubly Fed Induction Generator (DFIG). Since the wind speed is random the system has to produce an optimal electrical power to the Network and ensures important strength and stability. In this work, the Backstepping controller is used to control the generator via two converter witch placed a DC bus capacitor and connected to the grid by a Filter R-L, in order to optimize capture wind energy. All is simulated and presented under MATLAB/Simulink Software to show performance and robustness of the proposed controller.Keywords: Wind turbine, doubly fed induction generator, MPPT control, backstepping controller, power converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7682195 Artificial Intelligent (AI) Based Cascade Multi-Level Inverter for Smart Nano Grid
Authors: S. Chatterji, S. L. Shimi
Abstract:
As wind, solar and other clean and green energy sources gain popularity worldwide, engineers are seeking ways to make renewable energy systems more affordable and to integrate them with existing ac power grids. In the present paper an attempt has been made for integrating the PV arrays to the smart nano grid using an artificial intelligent (AI) based solar powered cascade multilevel inverter. The AI based controller switching scheme has been used for improving the power quality by reducing the Total Harmonic Distortion (THD) of the multi-level inverter output voltage.Keywords: Artificial Intelligent (AI), Solar Powered Multi-level Inverter, Smart nano grid, Total Harmonic Distortion (THD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34152194 Porcelain Insulator Performance under Different Condition of Installation around Aligarh
Authors: Asfar Ali Khan, Ekram Husain
Abstract:
Modern Society is strongly dependent on a reliable power supply. The availability of cheap and reliable supply of electrical energy is an indicator of societal welfare. Uninterrupted reliable operation of a modern power system depends to a great extent on reliable and satisfactory performance of insulators under different environmental conditions. This paper reports result of natural pollution tests that have been done at sites around city of Aligarh (India). Flashover voltage per insulation distance (FOVUID) of porcelain disc insulator for different pH values, ESDD has been recorded for proper correlation between electrical and chemical parameters. The pH of the contaminants has been suggested to be an effective pollution severity indicator and may be used as a diagnostic parameter for proper maintenance of porcelain insulators.
Keywords: Porcelain insulators, Flashover Voltage, pH value, Conductivity, ESDD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34062193 The Influence of Meteorological Properties on the Power of Night Radiation Cooling
Authors: Othmane Fahim, Naoual Belouaggadia. Charifa David, Mohamed Ezzine
Abstract:
To make better use of cooling resources, systems have been derived on the basis of the use of night radiator systems for heat pumping. Using the TRNSYS tool we determined the influence of the climatic characteristics of the two zones in Morocco on the temperature of the outer surface of a Photovoltaic Thermal Panel “PVT” made of aluminum. The proposal to improve the performance of the panel allowed us to have little heat absorption during the day and give the same performance of a panel made of aluminum at night. The variation in the granite-based panel temperature recorded a deviation from the other materials of 0.5 °C, 2.5 °C on the first day respectively in Marrakech and Casablanca, and 0.2 °C and 3.2 °C on the second night. Power varied between 110.16 and 32.01 W/m² marked in Marrakech, to be the most suitable area to practice night cooling by night radiation.
Keywords: Morocco, TRANSYS, radiative cooling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6272192 The Guideline of Overall Competitive Advantage Promotion with Key Success Paths
Authors: M. F. Wu, F. T. Cheng, C. S. Wu, M. C. Tan
Abstract:
It is a critical time to upgrade technology and increase value added with manufacturing skills developing and management strategies that will highly satisfy the customers need in the precision machinery global market. In recent years, the supply side, each precision machinery manufacturers in each country are facing the pressures of price reducing from the demand side voices that pushes the high-end precision machinery manufacturers adopts low-cost and high-quality strategy to retrieve the market. Because of the trend of the global market, the manufacturers must take price reducing strategies and upgrade technology of low-end machinery for differentiations to consolidate the market.By using six key success factors (KSFs), customer perceived value, customer satisfaction, customer service, product design, product effectiveness and machine structure quality are causal conditions to explore the impact of competitive advantage of the enterprise, such as overall profitability and product pricing power. This research uses key success paths (KSPs) approach and f/s QCA software to explore various combinations of causal relationships, so as to fully understand the performance level of KSFs and business objectives in order to achieve competitive advantage. In this study, the combination of a causal relationships, are called Key Success Paths (KSPs). The key success paths guide the enterprise to achieve the specific outcomes of business. The findings of this study indicate that there are thirteen KSPs to achieve the overall profitability, sixteen KSPs to achieve the product pricing power and seventeen KSPs to achieve both overall profitability and pricing power of the enterprise. The KSPs provide the directions of resources integration and allocation, improve utilization efficiency of limited resources to realize the continuous vision of the enterprise.
Keywords: Precision Machinery Industry, Key Success Factors (KSPs), Key Success Paths (KSPs), Overall Profitability, Product Pricing Power, Competitive Advantages.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18562191 Performance Analysis of Quantum Cascaded Lasers
Authors: M. B. El_Mashade, I. I. Mahamoud, M. S. El_Tokhy
Abstract:
Improving the performance of the QCL through block diagram as well as mathematical models is the main scope of this paper. In order to enhance the performance of the underlined device, the mathematical model parameters are used in a reliable manner in such a way that the optimum behavior was achieved. These parameters play the central role in specifying the optical characteristics of the considered laser source. Moreover, it is important to have a large amount of radiated power, where increasing the amount of radiated power represents the main hopping process that can be predicted from the behavior of quantum laser devices. It was found that there is a good agreement between the calculated values from our mathematical model and those obtained with VisSim and experimental results. These demonstrate the strength of mplementation of both mathematical and block diagram models.
Keywords: Quantum Cascaded Lasers (QCLs), Modeling, Block Diagram Programming, Intersubband transitions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14402190 Outage Capacity Analysis for Next Generation Wireless Communication Using Non-Orthogonal Multiple Access
Authors: Md. Sohidul Islam, Ahmad Fartheen Khan
Abstract:
In recent times, Non-Orthogonal Multiple Access (NOMA) has received significant attention as an upcoming candidate in the world of 5G systems. The main reason for getting NOMA in 5G is because of its capacity to provide services to many users who have the same time and frequency resources. It is best used as "multiple-input, multiple-output" (MIMO) technology. In this paper, we are going to investigate outage probability as a function of signal-to-noise ratio (SNR) and target rate user. These methods will be implemented using cooperative communication and fair power allocation, respectively.
Keywords: Non-orthogonal Multiple Access, Fair Power Allocation, Outage Probability, Target Rate User, Cooperative Communication, massive multiple input multiple output, MIMO, Successive Interference Cancellation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3542189 A High Thermal Dissipation Performance Polyethyleneterephthalate Heat Pipe
Authors: Chih-Chieh Chen, Chih-Hao Chen, Guan-Wei Wu, Sih-Li Chen
Abstract:
A high thermal dissipation performance polyethylene terephthalate heat pipe has been fabricated and tested in this research. Polyethylene terephthalate (PET) is used as the container material instead of copper. Copper mesh and methanol are sealed in the middle of two PET films as the wick structure and working fluid. Although the thermal conductivity of PET (0.15-0.24 W/m·K) is much smaller than copper (401 W/m·K), the experiment results reveal that the PET heat pipe can reach a minimum thermal resistance of 0.146 (oC/W) and maximum effective thermal conductivity of 18,310 (W/m·K) with 36.9 vol% at 26 W input power. However, when the input power is larger than 30 W, the laminated PET will debond due to the high vapor pressure of methanol.
Keywords: PET, heat pipe, thermal resistance, effective thermal conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29952188 Design Optimization of Doubly Fed Induction Generator Performance by Differential Evolution
Authors: Mamidi Ramakrishna Rao
Abstract:
Doubly-fed induction generators (DFIG) due to their advantages like speed variation and four-quadrant operation, find its application in wind turbines. DFIG besides supplying power to the grid has to support reactive power (kvar) under grid voltage variations, should contribute minimum fault current during faults, have high efficiency, minimum weight, adequate rotor protection during crow-bar-operation from +20% to -20% of rated speed. To achieve the optimum performance, a good electromagnetic design of DFIG is required. In this paper, a simple and heuristic global optimization – Differential Evolution has been used. Variables considered are lamination details such as slot dimensions, stack diameters, air gap length, and generator stator and rotor stack length. Two operating conditions have been considered - voltage and speed variations. Constraints included were reactive power supplied to the grid and limiting fault current and torque. The optimization has been executed separately for three objective functions - maximum efficiency, weight reduction, and grid fault stator currents. Subsequent calculations led to the conclusion that designs determined through differential evolution help in determining an optimum electrical design for each objective function.
Keywords: Design optimization, performance, doubly fed induction generators, DFIG, differential evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9782187 Surface Modification of Titanium Alloy with Laser Treatment
Authors: Nassier A. Nassir, Robert Birch, D. Rico Sierra, S. P. Edwardson, G. Dearden, Zhongwei Guan
Abstract:
The effect of laser surface treatment parameters on the residual strength of titanium alloy has been investigated. The influence of the laser surface treatment on the bonding strength between the titanium and poly-ether-ketone-ketone (PEKK) surfaces was also evaluated and compared to those offered by titanium foils without surface treatment to optimize the laser parameters. Material characterization using an optical microscope was carried out to study the microstructure and to measure the mean roughness value of the titanium surface. The results showed that the surface roughness shows a significant dependency on the laser power parameters in which surface roughness increases with the laser power increment. Moreover, the results of the tensile tests have shown that there is no significant dropping in tensile strength for the treated samples comparing to the virgin ones. In order to optimize the laser parameter as well as the corresponding surface roughness, single-lap shear tests were conducted on pairs of the laser treated titanium stripes. The results showed that the bonding shear strength between titanium alloy and PEKK film increased with the surface roughness increment to a specific limit. After this point, it is interesting to note that there was no significant effect for the laser parameter on the bonding strength. This evidence suggests that it is not necessary to use very high power of laser to treat titanium surface to achieve a good bonding strength between titanium alloy and the PEKK film.
Keywords: Bonding strength, laser surface treatment, PEKK, titanium alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8592186 Design and Analysis of Piping System with Supports Using CAESAR-II
Authors: M. Jamuna Rani, K. Ramanathan
Abstract:
A steam power plant is housed with various types of equipments like boiler, turbine, heat exchanger etc. These equipments are mainly connected with piping systems. Such a piping layout design depends mainly on stress analysis and flexibility. It will vary with respect to pipe geometrical properties, pressure, temperature, and supports. The present paper is to analyze the presence and effect of hangers and expansion joints in the piping layout/routing using CAESAR-II software. Main aim of piping stress analysis is to provide adequate flexibility for absorbing thermal expansion, code compliance for stresses and displacement incurred in piping system. The design is said to be safe if all these are in allowable range as per code. In this study, a sample problem is considered for analysis as per power piping ASME B31.1 code and the results thus obtained are compared.
Keywords: ASTM B31.1, hanger, expansion joint, CAESAR-II.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51332185 Comparison between Lift and Drag-Driven VAWT Concepts on Low-Wind Site AEO
Authors: Marco Raciti Castelli, Ernesto Benini
Abstract:
This work presents a comparison between the Annual Energy Output (AEO) of two commercial vertical-axis wind turbines (VAWTs) for a low-wind urban site: both a drag-driven and a liftdriven concepts are examined in order to be installed on top of the new Via dei Giustinelli building, Trieste (Italy). The power-curves, taken from the product specification sheets, have been matched to the wind characteristics of the selected installation site. The influence of rotor swept area and rated power on the performance of the two proposed wind turbines have been examined in detail, achieving a correlation between rotor swept area, electrical generator size and wind distribution, to be used as a guideline for the calculation of the AEO.Keywords: Annual Energy Output, micro-generationtechnology, urban environment, Vertical-Axis Wind Turbine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60282184 Enhanced Efficacy of Kinetic Power Transform for High-Speed Wind Field
Authors: Nan-Chyuan Tsai, Chao-Wen Chiang, Bai-Lu Wang
Abstract:
The three-time-scale plant model of a wind power generator, including a wind turbine, a flexible vertical shaft, a Variable Inertia Flywheel (VIF) module, an Active Magnetic Bearing (AMB) unit and the applied wind sequence, is constructed. In order to make the wind power generator be still able to operate as the spindle speed exceeds its rated speed, the VIF is equipped so that the spindle speed can be appropriately slowed down once any stronger wind field is exerted. To prevent any potential damage due to collision by shaft against conventional bearings, the AMB unit is proposed to regulate the shaft position deviation. By singular perturbation order-reduction technique, a lower-order plant model can be established for the synthesis of feedback controller. Two major system parameter uncertainties, an additive uncertainty and a multiplicative uncertainty, are constituted by the wind turbine and the VIF respectively. Frequency Shaping Sliding Mode Control (FSSMC) loop is proposed to account for these uncertainties and suppress the unmodeled higher-order plant dynamics. At last, the efficacy of the FSSMC is verified by intensive computer and experimental simulations for regulation on position deviation of the shaft and counter-balance of unpredictable wind disturbance.Keywords: Sliding Mode Control, Singular Perturbation, Variable Inertia Flywheel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14562183 Conventional and Fuzzy Logic Controllers at Generator Location for Low Frequency Oscillation Damping
Authors: K. Prasertwong, N. Mithulananthan
Abstract:
This paper investigates and compares performance of various conventional and fuzzy logic based controllers at generator locations for oscillation damping. Performance of combination of conventional and fuzzy logic based controllers also studied by comparing overshoot on the active power deviation response for a small disturbance and damping ratio of the critical mode. Fuzzy logic based controllers can not be modeled in the state space form to get the eigenvalues and corresponding damping ratios of various modes of generators and controllers. Hence, a new method based on tracing envelop of time domain waveform is also presented and used in the paper for comparing performance of controllers. The paper also shows that if the fuzzy based controllers designed separately combining them could not lead to a better performance.Keywords: Automatic voltage regulator, damping ratio, fuzzylogic controller, power system stabilizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20112182 Evaluation of Model and Performance of Fuel Cell Hybrid Electric Vehicle in Different Drive Cycles
Authors: Fathollah Ommi, Golnaz Pourabedin, Koros Nekofa
Abstract:
In recent years fuel cell vehicles are rapidly appearing all over the globe. In less than 10 years, fuel cell vehicles have gone from mere research novelties to operating prototypes and demonstration models. At the same time, government and industry in development countries have teamed up to invest billions of dollars in partnerships intended to commercialize fuel cell vehicles within the early years of the 21st century. The purpose of this study is evaluation of model and performance of fuel cell hybrid electric vehicle in different drive cycles. A fuel cell system model developed in this work is a semi-experimental model that allows users to use the theory and experimental relationships in a fuel cell system. The model can be used as part of a complex fuel cell vehicle model in advanced vehicle simulator (ADVISOR). This work reveals that the fuel consumption and energy efficiency vary in different drive cycles. Arising acceleration and speed in a drive cycle leads to Fuel consumption increase. In addition, energy losses in drive cycle relates to fuel cell system power request. Parasitic power in different parts of fuel cell system will increase when power request increases. Finally, most of energy losses in drive cycle occur in fuel cell system because of producing a lot of energy by fuel cell stack.Keywords: Drive cycle, Energy efficiency, energy consumption, Fuel cell system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16852181 Analysis of Effect of Pre-Logic Factoring on Cell Based Combinatorial Logic Synthesis
Authors: Padmanabhan Balasubramanian, Bashetty Raghavendra
Abstract:
In this paper, an analysis is presented, which demonstrates the effect pre-logic factoring could have on an automated combinational logic synthesis process succeeding it. The impact of pre-logic factoring for some arbitrary combinatorial circuits synthesized within a FPGA based logic design environment has been analyzed previously. This paper explores a similar effect, but with the non-regenerative logic synthesized using elements of a commercial standard cell library. On an overall basis, the results obtained pertaining to the analysis on a variety of MCNC/IWLS combinational logic benchmark circuits indicate that pre-logic factoring has the potential to facilitate simultaneous power, delay and area optimized synthesis solutions in many cases.Keywords: Algebraic factoring, Combinational logic synthesis, Standard cells, Low power, Delay optimization, Area reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13762180 Multipath Routing Sensor Network for Finding Crack in Metallic Structure Using Fuzzy Logic
Authors: Dulal Acharjee, Punyaban Patel
Abstract:
For collecting data from all sensor nodes, some changes in Dynamic Source Routing (DSR) protocol is proposed. At each hop level, route-ranking technique is used for distributing packets to different selected routes dynamically. For calculating rank of a route, different parameters like: delay, residual energy and probability of packet loss are used. A hybrid topology of DMPR(Disjoint Multi Path Routing) and MMPR(Meshed Multi Path Routing) is formed, where braided topology is used in different faulty zones of network. For reducing energy consumption, variant transmission ranges is used instead of fixed transmission range. For reducing number of packet drop, a fuzzy logic inference scheme is used to insert different types of delays dynamically. A rule based system infers membership function strength which is used to calculate the final delay amount to be inserted into each of the node at different clusters. In braided path, a proposed 'Dual Line ACK Link'scheme is proposed for sending ACK signal from a damaged node or link to a parent node to ensure that any error in link or any node-failure message may not be lost anyway. This paper tries to design the theoretical aspects of a model which may be applied for collecting data from any large hanging iron structure with the help of wireless sensor network. But analyzing these data is the subject of material science and civil structural construction technology, that part is out of scope of this paper.Keywords: Metallic corrosion, Multi Path Routing, DisjointMPR, Meshed MPR, braided path, dual line ACK link, route rankingand Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15192179 Economic Dispatch Fuzzy Linear Regression and Optimization
Authors: A. K. Al-Othman
Abstract:
This study presents a new approach based on Tanaka's fuzzy linear regression (FLP) algorithm to solve well-known power system economic load dispatch problem (ELD). Tanaka's fuzzy linear regression (FLP) formulation will be employed to compute the optimal solution of optimization problem after linearization. The unknowns are expressed as fuzzy numbers with a triangular membership function that has middle and spread value reflected on the unknowns. The proposed fuzzy model is formulated as a linear optimization problem, where the objective is to minimize the sum of the spread of the unknowns, subject to double inequality constraints. Linear programming technique is employed to obtain the middle and the symmetric spread for every unknown (power generation level). Simulation results of the proposed approach will be compared with those reported in literature.Keywords: Economic Dispatch, Fuzzy Linear Regression (FLP)and Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22932178 PAPR Reduction of FBMC Using Sliding Window Tone Reservation Active Constellation Extension Technique
Authors: V. Sandeep Kumar, S. Anuradha
Abstract:
The high Peak to Average Power Ratio (PAR) in Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation (FBMC-OQAM) can significantly reduce power efficiency and performance. In this paper, we address the problem of PAPR reduction for FBMC-OQAM systems using Tone Reservation (TR) technique. Due to the overlapping structure of FBMCOQAM signals, directly applying TR schemes of OFDM systems to FBMC-OQAM systems is not effective. We improve the tone reservation (TR) technique by employing sliding window with Active Constellation Extension for the PAPR reduction of FBMC-OQAM signals, called sliding window tone reservation Active Constellation Extension (SW-TRACE) technique. The proposed SW-TRACE technique uses the peak reduction tones (PRTs) of several consecutive data blocks to cancel the peaks of the FBMC-OQAM signal inside a window, with dynamically extending outer constellation points in active(data-carrying) channels, within margin-preserving constraints, in order to minimize the peak magnitude. Analysis and simulation results compared to the existing Tone Reservation (TR) technique for FBMC/OQAM system. The proposed method SW-TRACE has better PAPR performance and lower computational complexity.
Keywords: FBMC-OQAM, peak-to-average power ratio, sliding window, tone reservation Active Constellation Extension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28392177 Piezoelectric Approach on Harvesting Acoustic Energy
Authors: Khin Fai Chen, Jee-Hou Ho, Eng Hwa Yap
Abstract:
An Acoustic Micro-Energy Harvester (AMEH) is developed to convert wasted acoustical energy into useful electrical energy. AMEH is mathematically modeled using Lumped Element Modelling (LEM) and Euler-Bernoulli beam (EBB) modelling. An experiment is designed to validate the mathematical model and assess the feasibility of AMEH. Comparison of theoretical and experimental data on critical parameter value such as Mm, Cms, dm and Ceb showed the variances are within 1% to 6%, which is reasonably acceptable. Then, AMEH undergoes bandwidth tuning for performance optimization. The AMEH successfully produces 0.9V/(m/s^2) and 1.79μW/(m^2/s^4) at 60Hz and 400kΩ resistive load which only show variances about 7% compared to theoretical data. At 1g and 60Hz resonance frequency, the averaged power output is about 2.2mW which fulfilled a range of wireless sensors and communication peripherals power requirements. Finally, the design for AMEH is assessed, validated and deemed as a feasible design.Keywords: Piezoelectric, acoustic, energy harvester, thermoacoustic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3273