Search results for: Image Mining
458 Localization of Mobile Robots with Omnidirectional Cameras
Authors: Tatsuya Kato, Masanobu Nagata, Hidetoshi Nakashima, Kazunori Matsuo
Abstract:
Localization of mobile robots are important tasks for developing autonomous mobile robots. This paper proposes a method to estimate positions of a mobile robot using a omnidirectional camera on the robot. Landmarks for points of references are set up on a field where the robot works. The omnidirectional camera which can obtain 360 [deg] around images takes photographs of these landmarks. The positions of the robots are estimated from directions of these landmarks that are extracted from the images by image processing. This method can obtain the robot positions without accumulative position errors. Accuracy of the estimated robot positions by the proposed method are evaluated through some experiments. The results show that it can obtain the positions with small standard deviations. Therefore the method has possibilities of more accurate localization by tuning of appropriate offset parameters.
Keywords: Mobile robots, Localization, Omnidirectional camera.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336457 Object Recognition Approach Based on Generalized Hough Transform and Color Distribution Serving in Generating Arabic Sentences
Authors: Nada Farhani, Naim Terbeh, Mounir Zrigui
Abstract:
The recognition of the objects contained in images has always presented a challenge in the field of research because of several difficulties that the researcher can envisage because of the variability of shape, position, contrast of objects, etc. In this paper, we will be interested in the recognition of objects. The classical Hough Transform (HT) presented a tool for detecting straight line segments in images. The technique of HT has been generalized (GHT) for the detection of arbitrary forms. With GHT, the forms sought are not necessarily defined analytically but rather by a particular silhouette. For more precision, we proposed to combine the results from the GHT with the results from a calculation of similarity between the histograms and the spatiograms of the images. The main purpose of our work is to use the concepts from recognition to generate sentences in Arabic that summarize the content of the image.
Keywords: Recognition of shape, generalized hough transformation, histogram, Spatiogram, learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617456 Characterization of Inertial Confinement Fusion Targets Based on Transmission Holographic Mach-Zehnder Interferometer
Authors: B. Zare-Farsani, M. Valieghbal, M. Tarkashvand, A. H. Farahbod
Abstract:
To provide the conditions for nuclear fusion by high energy and powerful laser beams, it is required to have a high degree of symmetry and surface uniformity of the spherical capsules to reduce the Rayleigh-Taylor hydrodynamic instabilities. In this paper, we have used the digital microscopic holography based on Mach-Zehnder interferometer to study the quality of targets for inertial fusion. The interferometric pattern of the target has been registered by a CCD camera and analyzed by Holovision software. The uniformity of the surface and shell thickness are investigated and measured in reconstructed image. We measured shell thickness in different zone where obtained non uniformity 22.82 percent.Keywords: Inertial confinement fusion, Mach-Zehnder interferometer, Digital holographic microscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314455 Protein Secondary Structure Prediction Using Parallelized Rule Induction from Coverings
Authors: Leong Lee, Cyriac Kandoth, Jennifer L. Leopold, Ronald L. Frank
Abstract:
Protein 3D structure prediction has always been an important research area in bioinformatics. In particular, the prediction of secondary structure has been a well-studied research topic. Despite the recent breakthrough of combining multiple sequence alignment information and artificial intelligence algorithms to predict protein secondary structure, the Q3 accuracy of various computational prediction algorithms rarely has exceeded 75%. In a previous paper [1], this research team presented a rule-based method called RT-RICO (Relaxed Threshold Rule Induction from Coverings) to predict protein secondary structure. The average Q3 accuracy on the sample datasets using RT-RICO was 80.3%, an improvement over comparable computational methods. Although this demonstrated that RT-RICO might be a promising approach for predicting secondary structure, the algorithm-s computational complexity and program running time limited its use. Herein a parallelized implementation of a slightly modified RT-RICO approach is presented. This new version of the algorithm facilitated the testing of a much larger dataset of 396 protein domains [2]. Parallelized RTRICO achieved a Q3 score of 74.6%, which is higher than the consensus prediction accuracy of 72.9% that was achieved for the same test dataset by a combination of four secondary structure prediction methods [2].Keywords: data mining, protein secondary structure prediction, parallelization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596454 Video Quality Assessment using Visual Attention Approach for Sign Language
Authors: Julia Kucerova, Jaroslav Polec, Darina Tarcsiova
Abstract:
Visual information is very important in human perception of surrounding world. Video is one of the most common ways to capture visual information. The video capability has many benefits and can be used in various applications. For the most part, the video information is used to bring entertainment and help to relax, moreover, it can improve the quality of life of deaf people. Visual information is crucial for hearing impaired people, it allows them to communicate personally, using the sign language; some parts of the person being spoken to, are more important than others (e.g. hands, face). Therefore, the information about visually relevant parts of the image, allows us to design objective metric for this specific case. In this paper, we present an example of an objective metric based on human visual attention and detection of salient object in the observed scene.Keywords: sign language, objective video quality, visual attention, saliency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579453 5iD Viewer - Observation of Fish School Behaviour in Labyrinths and Use of Semantic and Syntactic Entropy for School Structure Definition
Authors: Dalibor Štys, Dalibor Štys Jr., Jana Pečenková, Kryštof M. Štys, Maryia Chkalova, Petr Kouba, Aliaksandr Pautsina, Denis Durniev, Tomáš Náhlík, Petr Císař
Abstract:
In this article is reported a construction and some properties of the 5iD viewer, the system recording simultaneously 5 views of a given experimental object. Properties of the system are demonstrated on the analysis of fish schooling behaviour. It is demonstrated the method of instrument calibration which allows inclusion of image distortion and it is proposed and partly tested also the method of distance assessment in the case that only two opposite cameras are available. Finally, we demonstrate how the state trajectory of the behaviour of the fish school may be constructed from the entropy of the system.
Keywords: 3D positioning, school behavior, distance calibration, space vision, space distortion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934452 Development and Evaluation of a Dynamic Cardiac Phantom for use in Nuclear Medicine
Authors: Marcos A. Dullius, Ramon C. Fernandes, Divanízia N. Souza
Abstract:
The aim of this study was to develop a dynamic cardiac phantom for quality control in myocardial scintigraphy. The dynamic heart phantom constructed only contained the left ventricle, made of elastic material (latex), comprising two cavities: one internal and one external. The data showed a non-significant variation in the values of left ventricular ejection fraction (LVEF) obtained by varying the heart rate. It was also possible to evaluate the ejection fraction (LVEF) through different arrays of image acquisition and to perform an intercomparison of LVEF by two different scintillation cameras. The results of the quality control tests were satisfactory, showing that they can be used as parameters in future assessments. The new dynamic heart phantom was demonstrated to be effective for use in LVEF measurements. Therefore, the new heart simulator is useful for the quality control of scintigraphic cameras.
Keywords: sheart, nuclear medicine, phantom
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2500451 Designing a Framework for Network Security Protection
Authors: Eric P. Jiang
Abstract:
As the Internet continues to grow at a rapid pace as the primary medium for communications and commerce and as telecommunication networks and systems continue to expand their global reach, digital information has become the most popular and important information resource and our dependence upon the underlying cyber infrastructure has been increasing significantly. Unfortunately, as our dependency has grown, so has the threat to the cyber infrastructure from spammers, attackers and criminal enterprises. In this paper, we propose a new machine learning based network intrusion detection framework for cyber security. The detection process of the framework consists of two stages: model construction and intrusion detection. In the model construction stage, a semi-supervised machine learning algorithm is applied to a collected set of network audit data to generate a profile of normal network behavior and in the intrusion detection stage, input network events are analyzed and compared with the patterns gathered in the profile, and some of them are then flagged as anomalies should these events are sufficiently far from the expected normal behavior. The proposed framework is particularly applicable to the situations where there is only a small amount of labeled network training data available, which is very typical in real world network environments.Keywords: classification, data analysis and mining, network intrusion detection, semi-supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795450 An Efficient Obstacle Detection Algorithm Using Colour and Texture
Authors: Chau Nguyen Viet, Ian Marshall
Abstract:
This paper presents a new classification algorithm using colour and texture for obstacle detection. Colour information is computationally cheap to learn and process. However in many cases, colour alone does not provide enough information for classification. Texture information can improve classification performance but usually comes at an expensive cost. Our algorithm uses both colour and texture features but texture is only needed when colour is unreliable. During the training stage, texture features are learned specifically to improve the performance of a colour classifier. The algorithm learns a set of simple texture features and only the most effective features are used in the classification stage. Therefore our algorithm has a very good classification rate while is still fast enough to run on a limited computer platform. The proposed algorithm was tested with a challenging outdoor image set. Test result shows the algorithm achieves a much better trade-off between classification performance and efficiency than a typical colour classifier.
Keywords: Colour, texture, classification, obstacle detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823449 Vision-based Network System for Industrial Applications
Authors: Taweepol Suesut, Arjin Numsomran, Vittaya Tipsuwanporn
Abstract:
This paper presents the communication network for machine vision system to implement to control systems and logistics applications in industrial environment. The real-time distributed over the network is very important for communication among vision node, image processing and control as well as the distributed I/O node. A robust implementation both with respect to camera packaging and data transmission has been accounted. This network consists of a gigabit Ethernet network and a switch with integrated fire-wall is used to distribute the data and provide connection to the imaging control station and IEC-61131 conform signal integration comprising the Modbus TCP protocol. The real-time and delay time properties each part on the network were considered and worked out in this paper.Keywords: Distributed Real-Time Automation, Machine Visionand Ethernet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663448 Segmentation of Cardiac Images by the Force Field Driven Speed Term
Authors: Renato Dedic, Madjid Allili, Roger Lecomte, Adbelhamid Benchakroun
Abstract:
The class of geometric deformable models, so-called level sets, has brought tremendous impact to medical imagery. In this paper we present yet another application of level sets to medical imaging. The method we give here will in a way modify the speed term in the standard level sets equation of motion. To do so we build a potential based on the distance and the gradient of the image we study. In turn the potential gives rise to the force field: F~F(x, y) = P ∀(p,q)∈I ((x, y) - (p, q)) |ÔêçI(p,q)| |(x,y)-(p,q)| 2 . The direction and intensity of the force field at each point will determine the direction of the contour-s evolution. The images we used to test our method were produced by the Univesit'e de Sherbrooke-s PET scanners.Keywords: PET, Cardiac, Heart, Mouse, Geodesic, Geometric, Level Sets, Deformable Models, Edge Detection, Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211447 Strategy Research for the Development of Thematic Commercial Streets - Based On the Survey of Eight Typical Thematic Commercial Streets in Harbin
Authors: Wang Zhenzhen, Wang Xu, Hong Liangping
Abstract:
The construction of thematic commercial streets has been on the hotspot with the rapid development of cities. In order to improve the image and competitiveness of cities, many cities are building or rebuilding thematic commercial streets. However, many contradictions and problems have emerged during this process. Therefore, it is significant, for both the practice and the research, to analyze the development of thematic commercial streets and provide some useful suggestions. Through the deep research and comparative study of the eight typical thematic commercial streets in Harbin, this paper summarize the current situations, laws and influencing factors of the development of these streets, and then put forward some suggestions about the plan, constructions and developments of the thematic commercial streets.
Keywords: Thematic commercial streets, laws of the development, influence factors, the constructions and developments, degrees of aggregation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622446 Marketing Strategy Analysis of Boon Rawd Brewery Company
Authors: Sinee Sankrusme
Abstract:
Boon Rawd Brewery is a beer company based in Thailand that has an exemplary image, both as a good employer and a well-managed company with a strong record of social responsibility. The most famous of the company’s products is Singha beer. To study the company’s marketing strategy, a case study analysis was conducted together with qualitative research methods. The study analyzed the marketing strategy of Boon Rawd Brewery before the liberalization of the liquor market in 2000. The company’s marketing strategies consisted of the following: product line strategy, product development strategy, block channel strategy, media strategy, trade strategy, and consumer incentive strategy. Additionally, the company employed marketing mix strategy based on the 4Ps: product, price, promotion and place (of distribution).
Keywords: Beer, Boon Rawd Brewery Company, Marketing Strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8836445 High Capacity Reversible Watermarking through Interpolated Error Shifting
Authors: Hae-Yeoun Lee
Abstract:
Reversible watermarking that not only protects the copyright but also preserve the original quality of the digital content have been intensively studied. In particular, the demand for reversible watermarking has increased. In this paper, we propose a reversible watermarking scheme based on interpolation-error shifting and error pre-compensation. The intensity of a pixel is interpolated from the intensities of neighboring pixels, and the difference histogram between the interpolated and the original intensities is obtained and modified to embed the watermark message. By restoring the difference histogram, the embedded watermark is extracted and the original image is recovered by compensating for the interpolation error. The overflow and underflow are prevented by error pre-compensation. To show the performance of the method, the proposed algorithm is compared with other methods using various test images.
Keywords: Reversible watermarking, High capacity, High quality, Interpolated error shifting, Error pre-compensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221444 Mixtures of Monotone Networks for Prediction
Authors: Marina Velikova, Hennie Daniels, Ad Feelders
Abstract:
In many data mining applications, it is a priori known that the target function should satisfy certain constraints imposed by, for example, economic theory or a human-decision maker. In this paper we consider partially monotone prediction problems, where the target variable depends monotonically on some of the input variables but not on all. We propose a novel method to construct prediction models, where monotone dependences with respect to some of the input variables are preserved by virtue of construction. Our method belongs to the class of mixture models. The basic idea is to convolute monotone neural networks with weight (kernel) functions to make predictions. By using simulation and real case studies, we demonstrate the application of our method. To obtain sound assessment for the performance of our approach, we use standard neural networks with weight decay and partially monotone linear models as benchmark methods for comparison. The results show that our approach outperforms partially monotone linear models in terms of accuracy. Furthermore, the incorporation of partial monotonicity constraints not only leads to models that are in accordance with the decision maker's expertise, but also reduces considerably the model variance in comparison to standard neural networks with weight decay.Keywords: mixture models, monotone neural networks, partially monotone models, partially monotone problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246443 A Methodology for Investigating Public Opinion Using Multilevel Text Analysis
Authors: William Xiu Shun Wong, Myungsu Lim, Yoonjin Hyun, Chen Liu, Seongi Choi, Dasom Kim, Kee-Young Kwahk, Namgyu Kim
Abstract:
Recently, many users have begun to frequently share their opinions on diverse issues using various social media. Therefore, numerous governments have attempted to establish or improve national policies according to the public opinions captured from various social media. In this paper, we indicate several limitations of the traditional approaches to analyze public opinion on science and technology and provide an alternative methodology to overcome these limitations. First, we distinguish between the science and technology analysis phase and the social issue analysis phase to reflect the fact that public opinion can be formed only when a certain science and technology is applied to a specific social issue. Next, we successively apply a start list and a stop list to acquire clarified and interesting results. Finally, to identify the most appropriate documents that fit with a given subject, we develop a new logical filter concept that consists of not only mere keywords but also a logical relationship among the keywords. This study then analyzes the possibilities for the practical use of the proposed methodology thorough its application to discover core issues and public opinions from 1,700,886 documents comprising SNS, blogs, news, and discussions.Keywords: Big data, social network analysis, text mining, topic modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661442 Speaker Recognition Using LIRA Neural Networks
Authors: Nestor A. Garcia Fragoso, Tetyana Baydyk, Ernst Kussul
Abstract:
This article contains information from our investigation in the field of voice recognition. For this purpose, we created a voice database that contains different phrases in two languages, English and Spanish, for men and women. As a classifier, the LIRA (Limited Receptive Area) grayscale neural classifier was selected. The LIRA grayscale neural classifier was developed for image recognition tasks and demonstrated good results. Therefore, we decided to develop a recognition system using this classifier for voice recognition. From a specific set of speakers, we can recognize the speaker’s voice. For this purpose, the system uses spectrograms of the voice signals as input to the system, extracts the characteristics and identifies the speaker. The results are described and analyzed in this article. The classifier can be used for speaker identification in security system or smart buildings for different types of intelligent devices.
Keywords: Extreme learning, LIRA neural classifier, speaker identification, voice recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764441 Functional Food Knowledge and Perceptions among Young Consumers in Malaysia
Authors: G. Rezai, P.K.Teng, Z. Mohamed, M.N Shamsudin
Abstract:
Changing in consumers lifestyles and food consumption patterns provide a great opportunity in developing the functional food sector in Malaysia. There is only a little knowledge about whether Malaysian consumers are aware of functional food and if so what image consumers have of this product. The objective of this research is to determine the extent to which selected socioeconomic characteristics and attitudes influence consumers- awareness of functional food. A survey was conducted in the Klang Valley, Malaysia where 439 respondents were interviewed using a structured questionnaire. The result shows that most respondents have a positive attitude towards functional food. For the binary logistic estimation, the results indicate that age, income and other factors such as concern about food safety, subscribing to cooking or health magazines, being a vegetarian and consumers who have been involved in a food production company significantly influence Malaysian consumers- awareness towards functional food.Keywords: Binary logistic model, functional foods, knowledge and awareness, perception
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5780440 Analysis and Measuring Surface Roughness of Nonwovens Using Machine Vision Method
Authors: Dariush Semnani, Javad Yekrang, Hossein Ghayoor
Abstract:
Concerning the measurement of friction properties of textiles and fabrics using Kawabata Evaluation System (KES), whose output is constrained to the surface friction factor of fabric, and no other data would be generated; this research has been conducted to gain information about surface roughness regarding its surface friction factor. To assess roughness properties of light nonwovens, a 3-dimensional model of a surface has been simulated with regular sinuous waves through it as an ideal surface. A new factor was defined, namely Surface Roughness Factor, through comparing roughness properties of simulated surface and real specimens. The relation between the proposed factor and friction factor of specimens has been analyzed by regression, and results showed a meaningful correlation between them. It can be inferred that the new presented factor can be used as an acceptable criterion for evaluating the roughness properties of light nonwoven fabrics.Keywords: Surface roughness, Nonwoven, Machine vision, Image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3092439 M2LGP: Mining Multiple Level Gradual Patterns
Authors: Yogi Satrya Aryadinata, Anne Laurent, Michel Sala
Abstract:
Gradual patterns have been studied for many years as they contain precious information. They have been integrated in many expert systems and rule-based systems, for instance to reason on knowledge such as “the greater the number of turns, the greater the number of car crashes”. In many cases, this knowledge has been considered as a rule “the greater the number of turns → the greater the number of car crashes” Historically, works have thus been focused on the representation of such rules, studying how implication could be defined, especially fuzzy implication. These rules were defined by experts who were in charge to describe the systems they were working on in order to turn them to operate automatically. More recently, approaches have been proposed in order to mine databases for automatically discovering such knowledge. Several approaches have been studied, the main scientific topics being: how to determine what is an relevant gradual pattern, and how to discover them as efficiently as possible (in terms of both memory and CPU usage). However, in some cases, end-users are not interested in raw level knowledge, and are rather interested in trends. Moreover, it may be the case that no relevant pattern can be discovered at a low level of granularity (e.g. city), whereas some can be discovered at a higher level (e.g. county). In this paper, we thus extend gradual pattern approaches in order to consider multiple level gradual patterns. For this purpose, we consider two aggregation policies, namely horizontal and vertical.Keywords: Gradual Pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500438 A Fuzzy Tumor Volume Estimation Approach Based On Fuzzy Segmentation of MR Images
Authors: Sara A.Yones, Ahmed S. Moussa
Abstract:
Quantitative measurements of tumor in general and tumor volume in particular, become more realistic with the use of Magnetic Resonance imaging, especially when the tumor morphological changes become irregular and difficult to assess by clinical examination. However, tumor volume estimation strongly depends on the image segmentation, which is fuzzy by nature. In this paper a fuzzy approach is presented for tumor volume segmentation based on the fuzzy connectedness algorithm. The fuzzy affinity matrix resulting from segmentation is then used to estimate a fuzzy volume based on a certainty parameter, an Alpha Cut, defined by the user. The proposed method was shown to highly affect treatment decisions. A statistical analysis was performed in this study to validate the results based on a manual method for volume estimation and the importance of using the Alpha Cut is further explained.
Keywords: Alpha Cut, Fuzzy Connectedness, Magnetic Resonance Imaging, Tumor volume estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398437 Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery
Authors: Ebrahim Taherzadeh, Helmi Z. M. Shafri, Kaveh Shahi
Abstract:
One of the most important tasks in urban remote sensing is the detection of impervious surfaces (IS), such as roofs and roads. However, detection of IS in heterogeneous areas still remains one of the most challenging tasks. In this study, detection of concrete roof using an object-based approach was proposed. A new rule-based classification was developed to detect concrete roof tile. This proposed rule-based classification was applied to WorldView-2 image and results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images, with 85% accuracy.
Keywords: Urban remote sensing, impervious surface, Object- Based, Roof Material, Concrete tile, WorldView-2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3793436 Video Classification by Partitioned Frequency Spectra of Repeating Movements
Authors: Kahraman Ayyildiz, Stefan Conrad
Abstract:
In this paper we present a system for classifying videos by frequency spectra. Many videos contain activities with repeating movements. Sports videos, home improvement videos, or videos showing mechanical motion are some example areas. Motion of these areas usually repeats with a certain main frequency and several side frequencies. Transforming repeating motion to its frequency domain via FFT reveals these frequencies. Average amplitudes of frequency intervals can be seen as features of cyclic motion. Hence determining these features can help to classify videos with repeating movements. In this paper we explain how to compute frequency spectra for video clips and how to use them for classifying. Our approach utilizes series of image moments as a function. This function again is transformed into its frequency domain.Keywords: action recognition, frequency feature, motion recognition, repeating movement, video classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883435 Extended Constraint Mask Based One-Bit Transform for Low-Complexity Fast Motion Estimation
Authors: Oğuzhan Urhan
Abstract:
In this paper, an improved motion estimation (ME) approach based on weighted constrained one-bit transform is proposed for block-based ME employed in video encoders. Binary ME approaches utilize low bit-depth representation of the original image frames with a Boolean exclusive-OR based hardware efficient matching criterion to decrease computational burden of the ME stage. Weighted constrained one-bit transform (WC‑1BT) based approach improves the performance of conventional C-1BT based ME employing 2-bit depth constraint mask instead of a 1-bit depth mask. In this work, the range of constraint mask is further extended to increase ME performance of WC-1BT approach. Experiments reveal that the proposed method provides better ME accuracy compared existing similar ME methods in the literature.
Keywords: Fast motion estimation, low-complexity motion estimation, video coding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 854434 Persian Printed Numerals Classification Using Extended Moment Invariants
Authors: Hamid Reza Boveiri
Abstract:
Classification of Persian printed numeral characters has been considered and a proposed system has been introduced. In representation stage, for the first time in Persian optical character recognition, extended moment invariants has been utilized as characters image descriptor. In classification stage, four different classifiers namely minimum mean distance, nearest neighbor rule, multi layer perceptron, and fuzzy min-max neural network has been used, which first and second are traditional nonparametric statistical classifier. Third is a well-known neural network and forth is a kind of fuzzy neural network that is based on utilizing hyperbox fuzzy sets. Set of different experiments has been done and variety of results has been presented. The results showed that extended moment invariants are qualified as features to classify Persian printed numeral characters.Keywords: Extended moment invariants, optical characterrecognition, Persian numerals classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919433 Performance Analysis of Artificial Neural Network Based Land Cover Classification
Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul
Abstract:
Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.Keywords: Landcover classification, artificial neural network, remote sensing, SPOT-5.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606432 Sliding Joints and Soil-Structure Interaction
Authors: Radim Cajka, Pavlina Mateckova, Martina Janulikova, Marie Stara
Abstract:
Use of a sliding joint is an effective method to decrease the stress in foundation structure where there is a horizontal deformation of subsoil (areas afflicted with underground mining) or horizontal deformation of a foundation structure (pre-stressed foundations, creep, shrinkage, temperature deformation). A convenient material for a sliding joint is a bitumen asphalt belt. Experiments for different types of bitumen belts were undertaken at the Faculty of Civil Engineering - VSB Technical University of Ostrava in 2008. This year an extension of the 2008 experiments is in progress and the shear resistance of a slide joint is being tested as a function of temperature in a temperature controlled room. In this paper experimental results of temperature dependant shear resistance are presented. The result of the experiments should be the sliding joint shear resistance as a function of deformation velocity and temperature. This relationship is used for numerical analysis of stress/strain relation between foundation structure and subsoil. Using a rheological slide joint could lead to a decrease of the reinforcement amount, and contribute to higher reliability of foundation structure and thus enable design of more durable and sustainable building structures.Keywords: Pre-stressed foundations, sliding joint, soil-structure interaction, subsoil horizontal deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016431 Evaluation of the Urban Regeneration Project: Land Use Transformation and SNS Big Data Analysis
Authors: Ju-Young Kim, Tae-Heon Moon, Jung-Hun Cho
Abstract:
Urban regeneration projects have been actively promoted in Korea. In particular, Jeonju Hanok Village is evaluated as one of representative cases in terms of utilizing local cultural heritage sits in the urban regeneration project. However, recently, there has been a growing concern in this area, due to the ‘gentrification’, caused by the excessive commercialization and surging tourists. This trend was changing land and building use and resulted in the loss of identity of the region. In this regard, this study analyzed the land use transformation between 2010 and 2016 to identify the commercialization trend in Jeonju Hanok Village. In addition, it conducted SNS big data analysis on Jeonju Hanok Village from February 14th, 2016 to March 31st, 2016 to identify visitors’ awareness of the village. The study results demonstrate that rapid commercialization was underway, unlikely the initial intention, so that planners and officials in city government should reconsider the project direction and rebuild deliberate management strategies. This study is meaningful in that it analyzed the land use transformation and SNS big data to identify the current situation in urban regeneration area. Furthermore, it is expected that the study results will contribute to the vitalization of regeneration area.
Keywords: Land use, SNS, text mining, urban regeneration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1215430 Automatic Classification of Initial Categories of Alzheimer's Disease from Structural MRI Phase Images: A Comparison of PSVM, KNN and ANN Methods
Authors: Ahsan Bin Tufail, Ali Abidi, Adil Masood Siddiqui, Muhammad Shahzad Younis
Abstract:
An early and accurate detection of Alzheimer's disease (AD) is an important stage in the treatment of individuals suffering from AD. We present an approach based on the use of structural magnetic resonance imaging (sMRI) phase images to distinguish between normal controls (NC), mild cognitive impairment (MCI) and AD patients with clinical dementia rating (CDR) of 1. Independent component analysis (ICA) technique is used for extracting useful features which form the inputs to the support vector machines (SVM), K nearest neighbour (kNN) and multilayer artificial neural network (ANN) classifiers to discriminate between the three classes. The obtained results are encouraging in terms of classification accuracy and effectively ascertain the usefulness of phase images for the classification of different stages of Alzheimer-s disease.
Keywords: Biomedical image processing, classification algorithms, feature extraction, statistical learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2765429 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.
Keywords: Cancer classification, feature selection, deep learning, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271