Search results for: nonlinear controller
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1727

Search results for: nonlinear controller

137 Investigating the Dynamics of Knowledge Acquisition in Learning Using Differential Equations

Authors: Gilbert Makanda, Roelf Sypkens

Abstract:

A mathematical model for knowledge acquisition in teaching and learning is proposed. In this study we adopt the mathematical model that is normally used for disease modelling into teaching and learning. We derive mathematical conditions which facilitate knowledge acquisition. This study compares the effects of dropping out of the course at early stages with later stages of learning. The study also investigates effect of individual interaction and learning from other sources to facilitate learning. The study fits actual data to a general mathematical model using Matlab ODE45 and lsqnonlin to obtain a unique mathematical model that can be used to predict knowledge acquisition. The data used in this study was obtained from the tutorial test results for mathematics 2 students from the Central University of Technology, Free State, South Africa in the department of Mathematical and Physical Sciences. The study confirms already known results that increasing dropout rates and forgetting taught concepts reduce the population of knowledgeable students. Increasing teaching contacts and access to other learning materials facilitate knowledge acquisition. The effect of increasing dropout rates is more enhanced in the later stages of learning than earlier stages. The study opens up a new direction in further investigations in teaching and learning using differential equations.

Keywords: Differential equations, knowledge acquisition, least squares nonlinear, dynamical systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
136 Effect of Size of the Step in the Response Surface Methodology using Nonlinear Test Functions

Authors: Jesús Everardo Olguín Tiznado, Rafael García Martínez, Claudia Camargo Wilson, Juan Andrés López Barreras, Everardo Inzunza González, Javier Ordorica Villalvazo

Abstract:

The response surface methodology (RSM) is a collection of mathematical and statistical techniques useful in the modeling and analysis of problems in which the dependent variable receives the influence of several independent variables, in order to determine which are the conditions under which should operate these variables to optimize a production process. The RSM estimated a regression model of first order, and sets the search direction using the method of maximum / minimum slope up / down MMS U/D. However, this method selects the step size intuitively, which can affect the efficiency of the RSM. This paper assesses how the step size affects the efficiency of this methodology. The numerical examples are carried out through Monte Carlo experiments, evaluating three response variables: efficiency gain function, the optimum distance and the number of iterations. The results in the simulation experiments showed that in response variables efficiency and gain function at the optimum distance were not affected by the step size, while the number of iterations is found that the efficiency if it is affected by the size of the step and function type of test used.

Keywords: RSM, dependent variable, independent variables, efficiency, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
135 Degree of Bending in Axially Loaded Tubular KT-Joints of Offshore Structures: Parametric Study and Formulation

Authors: Hamid Ahmadi, Shadi Asoodeh

Abstract:

The fatigue life of tubular joints commonly found in offshore industry is not only dependent on the value of hot-spot stress (HSS), but is also significantly influenced by the through-thethickness stress distribution characterized by the degree of bending (DoB). The determination of DoB values in a tubular joint is essential for improving the accuracy of fatigue life estimation using the stresslife (S–N) method and particularly for predicting the fatigue crack growth based on the fracture mechanics (FM) approach. In the present paper, data extracted from finite element (FE) analyses of tubular KT-joints, verified against experimental data and parametric equations, was used to investigate the effects of geometrical parameters on DoB values at the crown 0°, saddle, and crown 180° positions along the weld toe of central brace in tubular KT-joints subjected to axial loading. Parametric study was followed by a set of nonlinear regression analyses to derive DoB parametric formulas for the fatigue analysis of KT-joints under axial loads. The tubular KTjoint is a quite common joint type found in steel offshore structures. However, despite the crucial role of the DoB in evaluating the fatigue performance of tubular joints, this paper is the first attempt to study and formulate the DoB values in KT-joints.

Keywords: Tubular KT-joint, fatigue, degree of bending (DoB), axial loading, parametric formula.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551
134 State Estimation of a Biotechnological Process Using Extended Kalman Filter and Particle Filter

Authors: R. Simutis, V. Galvanauskas, D. Levisauskas, J. Repsyte, V. Grincas

Abstract:

This paper deals with advanced state estimation algorithms for estimation of biomass concentration and specific growth rate in a typical fed-batch biotechnological process. This biotechnological process was represented by a nonlinear mass-balance based process model. Extended Kalman Filter (EKF) and Particle Filter (PF) was used to estimate the unmeasured state variables from oxygen uptake rate (OUR) and base consumption (BC) measurements. To obtain more general results, a simplified process model was involved in EKF and PF estimation algorithms. This model doesn’t require any special growth kinetic equations and could be applied for state estimation in various bioprocesses. The focus of this investigation was concentrated on the comparison of the estimation quality of the EKF and PF estimators by applying different measurement noises. The simulation results show that Particle Filter algorithm requires significantly more computation time for state estimation but gives lower estimation errors both for biomass concentration and specific growth rate. Also the tuning procedure for Particle Filter is simpler than for EKF. Consequently, Particle Filter should be preferred in real applications, especially for monitoring of industrial bioprocesses where the simplified implementation procedures are always desirable.

Keywords: Biomass concentration, Extended Kalman Filter, Particle Filter, State estimation, Specific growth rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2952
133 Optimal Green Facility Planning - Implementation of Organic Rankine Cycle System for Factory Waste Heat Recovery

Authors: Chun-Wei Lin, Yu-Lin Chen

Abstract:

As global industry developed rapidly, the energy demand also rises simultaneously. In the production process, there’s a lot of energy consumed in the process. Formally, the energy used in generating the heat in the production process. In the total energy consumption, 40% of the heat was used in process heat, mechanical work, chemical energy and electricity. The remaining 50% were released into the environment. It will cause energy waste and environment pollution. There are many ways for recovering the waste heat in factory. Organic Rankine Cycle (ORC) system can produce electricity and reduce energy costs by recovering the waste of low temperature heat in the factory. In addition, ORC is the technology with the highest power generating efficiency in low-temperature heat recycling. However, most of factories executives are still hesitated because of the high implementation cost of the ORC system, even a lot of heat are wasted. Therefore, this study constructs a nonlinear mathematical model of waste heat recovery equipment configuration to maximize profits. A particle swarm optimization algorithm is developed to generate the optimal facility installation plan for the ORC system.

Keywords: Green facility planning, organic rankine cycle, particle swarm optimization, waste heat recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
132 Estimation of Critical Period for Weed Control in Corn in Iran

Authors: Sohrab Mahmoodi, Ali Rahimi

Abstract:

The critical period for weed control (CPWC) is the period in the crop growth cycle during which weeds must be controlled to prevent unacceptable yield losses. Field studies were conducted in 2005 and 2006 in the University of Birjand at the south east of Iran to determine CPWC of corn using a randomized complete block design with 14 treatments and four replications. The treatments consisted of two different periods of weed interference, a critical weed-free period and a critical time of weed removal, were imposed at V3, V6, V9, V12, V15, and R1 (based on phonological stages of corn development) with a weedy check and a weed-free check. The CPWC was determined with the use of 2.5, 5, 10, 15 and 20% acceptable yield loss levels by non-linear Regression method and fitting Logistic and Gompertz nonlinear equations to relative yield data. The CPWC of corn was from 5- to 15-leaf stage (19-55 DAE) to prevent yield losses of 5%. This period to prevent yield losses of 2.5, 10 and 20% was 4- to 17-leaf stage (14-59 DAE), 6- to 12-leaf stage (25-47 DAE) and 8- to 9-leaf stage (31-36 DAE) respectively. The height and leaf area index of corn were significantly decreased by weed competition in both weed free and weed infested treatments (P<0.01). Results also showed that there was a significant positive correlation between yield and LAI of corn at silk stage when competing with weeds (r= 0.97).

Keywords: Corn, Critical period, Gompertz, Logistic, Weed control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
131 A New Solution for Natural Convection of Darcian Fluid about a Vertical Full Cone Embedded in Porous Media Prescribed Wall Temperature by using a Hybrid Neural Network-Particle Swarm Optimization Method

Authors: M.A.Behrang, M. Ghalambaz, E. Assareh, A.R. Noghrehabadi

Abstract:

Fluid flow and heat transfer of vertical full cone embedded in porous media is studied in this paper. Nonlinear differential equation arising from similarity solution of inverted cone (subjected to wall temperature boundary conditions) embedded in porous medium is solved using a hybrid neural network- particle swarm optimization method. To aim this purpose, a trial solution of the differential equation is defined as sum of two parts. The first part satisfies the initial/ boundary conditions and does contain an adjustable parameter and the second part which is constructed so as not to affect the initial/boundary conditions and involves adjustable parameters (the weights and biases) for a multi-layer perceptron neural network. Particle swarm optimization (PSO) is applied to find adjustable parameters of trial solution (in first and second part). The obtained solution in comparison with the numerical ones represents a remarkable accuracy.

Keywords: Porous Media, Ordinary Differential Equations (ODE), Particle Swarm Optimization (PSO), Neural Network (NN).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
130 Analysis of Translational Ship Oscillations in a Realistic Environment

Authors: Chen Zhang, Bernhard Schwarz-Röhr, Alexander Härting

Abstract:

To acquire accurate ship motions at the center of gravity, a single low-cost inertial sensor is utilized and applied on board to measure ship oscillating motions. As observations, the three axes accelerations and three axes rotational rates provided by the sensor are used. The mathematical model of processing the observation data includes determination of the distance vector between the sensor and the center of gravity in x, y, and z directions. After setting up the transfer matrix from sensor’s own coordinate system to the ship’s body frame, an extended Kalman filter is applied to deal with nonlinearities between the ship motion in the body frame and the observation information in the sensor’s frame. As a side effect, the method eliminates sensor noise and other unwanted errors. Results are not only roll and pitch, but also linear motions, in particular heave and surge at the center of gravity. For testing, we resort to measurements recorded on a small vessel in a well-defined sea state. With response amplitude operators computed numerically by a commercial software (Seaway), motion characteristics are estimated. These agree well with the measurements after processing with the suggested method.

Keywords: Extended Kalman filter, nonlinear estimation, sea trial, ship motion estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052
129 Free Flapping Vibration of Rotating Inclined Euler Beams

Authors: Chih-Ling Huang, Wen-Yi Lin, Kuo-Mo Hsiao

Abstract:

A method based on the power series solution is proposed to solve the natural frequency of flapping vibration for the rotating inclined Euler beam with constant angular velocity. The vibration of the rotating beam is measured from the position of the corresponding steady state axial deformation. In this paper the governing equations for linear vibration of a rotating Euler beam are derived by the d'Alembert principle, the virtual work principle and the consistent linearization of the fully geometrically nonlinear beam theory in a rotating coordinate system. The governing equation for flapping vibration of the rotating inclined Euler beam is linear ordinary differential equation with variable coefficients and is solved by a power series with four independent coefficients. Substituting the power series solution into the corresponding boundary conditions at two end nodes of the rotating beam, a set of homogeneous equations can be obtained. The natural frequencies may be determined by solving the homogeneous equations using the bisection method. Numerical examples are studied to investigate the effect of inclination angle on the natural frequency of flapping vibration for rotating inclined Euler beams with different angular velocity and slenderness ratio.

Keywords: Flapping vibration, Inclination angle, Natural frequency, Rotating beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
128 Growth and Characterization of L-Asparagine (LAS) Crystal Admixture of Paranitrophenol (PNP): A NLO Material

Authors: Grace Sahaya Sheba, P. Omegala Priyakumari, M. Gunasekaran

Abstract:

L-asparagine admixture Paranitrophenol (LAPNP) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 12mm×5 mm×3mm have been obtained in 15 days. The grown crystals were Brown color and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV–visible absorption spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz–Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied

Keywords: Characterization, Microhardnes, Non-linear optical materials, Solution growth, Spectroscopy, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2996
127 A Critics Study of Neural Networks Applied to ion-Exchange Process

Authors: John Kabuba, Antoine Mulaba-Bafubiandi, Kim Battle

Abstract:

This paper presents a critical study about the application of Neural Networks to ion-exchange process. Ionexchange is a complex non-linear process involving many factors influencing the ions uptake mechanisms from the pregnant solution. The following step includes the elution. Published data presents empirical isotherm equations with definite shortcomings resulting in unreliable predictions. Although Neural Network simulation technique encounters a number of disadvantages including its “black box", and a limited ability to explicitly identify possible causal relationships, it has the advantage to implicitly handle complex nonlinear relationships between dependent and independent variables. In the present paper, the Neural Network model based on the back-propagation algorithm Levenberg-Marquardt was developed using a three layer approach with a tangent sigmoid transfer function (tansig) at hidden layer with 11 neurons and linear transfer function (purelin) at out layer. The above mentioned approach has been used to test the effectiveness in simulating ion exchange processes. The modeling results showed that there is an excellent agreement between the experimental data and the predicted values of copper ions removed from aqueous solutions.

Keywords: Copper, ion-exchange process, neural networks, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
126 The Role of Velocity Map Quality in Estimation of Intravascular Pressure Distribution

Authors: Ali Pashaee, Parisa Shooshtari, Gholamreza Atae, Nasser Fatouraee

Abstract:

Phase-Contrast MR imaging methods are widely used for measurement of blood flow velocity components. Also there are some other tools such as CT and Ultrasound for velocity map detection in intravascular studies. These data are used in deriving flow characteristics. Some clinical applications are investigated which use pressure distribution in diagnosis of intravascular disorders such as vascular stenosis. In this paper an approach to the problem of measurement of intravascular pressure field by using velocity field obtained from flow images is proposed. The method presented in this paper uses an algorithm to calculate nonlinear equations of Navier- Stokes, assuming blood as an incompressible and Newtonian fluid. Flow images usually suffer the lack of spatial resolution. Our attempt is to consider the effect of spatial resolution on the pressure distribution estimated from this method. In order to achieve this aim, velocity map of a numerical phantom is derived at six different spatial resolutions. To determine the effects of vascular stenoses on pressure distribution, a stenotic phantom geometry is considered. A comparison between the pressure distribution obtained from the phantom and the pressure resulted from the algorithm is presented. In this regard we also compared the effects of collocated and staggered computational grids on the pressure distribution resulted from this algorithm.

Keywords: Flow imaging, pressure distribution estimation, phantom, resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
125 Lateral and Longitudinal Vibration of a Rotating Flexible Beam Coupled with Torsional Vibration of a Flexible Shaft

Authors: Khaled Alnefaie

Abstract:

In this study, rotating flexible shaft-disk system having flexible beams is considered as a dynamic system. After neglecting nonlinear terms, torsional vibration of the shaft-disk system and lateral and longitudinal vibration of the flexible beam are still coupled through the motor speed. The system has three natural frequencies; the flexible shaft-disk system torsional natural frequency, the flexible beam lateral and longitudinal natural frequencies. Eigenvalue calculations show that while the shaft speed changes, torsional natural frequency of the shaft-disk system and the beam longitudinal natural frequency are not changing but the beam lateral natural frequency changes. Beam lateral natural frequency stays the same as the nonrotating beam lateral natural frequency ωb until the motor speed ωm is equal to ωb. After then ωb increases and remains equal to the motor speed ωm until the motor speed is equal to the shaft-disk system natural frequency ωT. Then the beam lateral natural frequency ωb becomes equal to the natural frequency ωT and stays same while the motor speed ωm is increased. Modal amplitudes and phase angles of the vibrations are also plotted against the motor speed ωm.

Keywords: Rotor dynamics, beam-shaft coupling, beam vibration, flexible shaft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3574
124 Verification of On-Line Vehicle Collision Avoidance Warning System using DSRC

Authors: C. W. Hsu, C. N. Liang, L. Y. Ke, F. Y. Huang

Abstract:

Many accidents were happened because of fast driving, habitual working overtime or tired spirit. This paper presents a solution of remote warning for vehicles collision avoidance using vehicular communication. The development system integrates dedicated short range communication (DSRC) and global position system (GPS) with embedded system into a powerful remote warning system. To transmit the vehicular information and broadcast vehicle position; DSRC communication technology is adopt as the bridge. The proposed system is divided into two parts of the positioning andvehicular units in a vehicle. The positioning unit is used to provide the position and heading information from GPS module, and furthermore the vehicular unit is used to receive the break, throttle, and othersignals via controller area network (CAN) interface connected to each mechanism. The mobile hardware are built with an embedded system using X86 processor in Linux system. A vehicle is communicated with other vehicles via DSRC in non-addressed protocol with wireless access in vehicular environments (WAVE) short message protocol. From the position data and vehicular information, this paper provided a conflict detection algorithm to do time separation and remote warning with error bubble consideration. And the warning information is on-line displayed in the screen. This system is able to enhance driver assistance service and realize critical safety by using vehicular information from the neighbor vehicles.KeywordsDedicated short range communication, GPS, Control area network, Collision avoidance warning system.

Keywords: Dedicated short range communication, GPS, Control area network, Collision avoidance warning system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
123 Minimizing Grid Reliance: A Power Model Approach for Peak Hour Demand Based on Hybrid Solar Systems

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Electrical energy demands have increased due to population growth and the variety of new electrical load technologies. This increase demand has nearly doubled during peak hours. Consequently, that necessitates the construction of new power plant infrastructures, which is a costly approach due to the expense of construction building, future preservation like maintenance, and environmental impact. As an alternative approach, most electrical utilities increase the price of electrical usage during peak hours, encouraging consumers to use less electricity during peak periods under Time-Of-Use programs, which may not be universally suitable for all consumers. Furthermore, in some areas, the excessive demand and the lack of supply cause an electrical outage, posing considerable stress and challenges to electrical utilities and consumers. However, control systems, artificial intelligence (AI), and renewable energy (RE), when effectively integrated, provide new solutions to mitigate excessive demand during peak hours. This paper presents a power model that reduces the reliance on the power grid during peak hours by utilizing a hybrid solar system connected to a residential house with a power management controller, that prioritizes the power drives between Photovoltaic (PV) production, battery backup, and the utility electrical grid. As a result, dependence on utility grid was from 3% to 18% during peak hours, improving energy stability safely and efficiently for electrical utilities, consumers, and communities, providing a viable alternative to conventional approaches such as Time-Of-Use programs.

Keywords: Artificial intelligence, AI, control system, photovoltaic, PV, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 126
122 Data-driven Multiscale Tsallis Complexity: Application to EEG Analysis

Authors: Young-Seok Choi

Abstract:

This work proposes a data-driven multiscale based quantitative measures to reveal the underlying complexity of electroencephalogram (EEG), applying to a rodent model of hypoxic-ischemic brain injury and recovery. Motivated by that real EEG recording is nonlinear and non-stationary over different frequencies or scales, there is a need of more suitable approach over the conventional single scale based tools for analyzing the EEG data. Here, we present a new framework of complexity measures considering changing dynamics over multiple oscillatory scales. The proposed multiscale complexity is obtained by calculating entropies of the probability distributions of the intrinsic mode functions extracted by the empirical mode decomposition (EMD) of EEG. To quantify EEG recording of a rat model of hypoxic-ischemic brain injury following cardiac arrest, the multiscale version of Tsallis entropy is examined. To validate the proposed complexity measure, actual EEG recordings from rats (n=9) experiencing 7 min cardiac arrest followed by resuscitation were analyzed. Experimental results demonstrate that the use of the multiscale Tsallis entropy leads to better discrimination of the injury levels and improved correlations with the neurological deficit evaluation after 72 hours after cardiac arrest, thus suggesting an effective metric as a prognostic tool.

Keywords: Electroencephalogram (EEG), multiscale complexity, empirical mode decomposition, Tsallis entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060
121 The Effect of Maximum Strain on Fatigue Life Prediction for Natural Rubber Material

Authors: Chang S. Woo, Hyun S. Park, Wan D. Kim

Abstract:

Fatigue life prediction and evaluation are the key technologies to assure the safety and reliability of automotive rubber components. The objective of this study is to develop the fatigue analysis process for vulcanized rubber components, which is applicable to predict fatigue life at initial product design step. Fatigue life prediction methodology of vulcanized natural rubber was proposed by incorporating the finite element analysis and fatigue damage parameter of maximum strain appearing at the critical location determined from fatigue test. In order to develop an appropriate fatigue damage parameter of the rubber material, a series of displacement controlled fatigue test was conducted using threedimensional dumbbell specimen with different levels of mean displacement. It was shown that the maximum strain was a proper damage parameter, taking the mean displacement effects into account. Nonlinear finite element analyses of three-dimensional dumbbell specimens were performed based on a hyper-elastic material model determined from the uni-axial tension, equi-biaxial tension and planar test. Fatigue analysis procedure employed in this study could be used approximately for the fatigue design.

Keywords: Rubber, Material test, Finite element analysis, Strain, Fatigue test, Fatigue life prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4659
120 Analytical Evaluation on Hysteresis Performance of Circular Shear Panel Damper

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

The idea of adding metallic energy dissipaters to a structure to absorb a large part of the seismic energy began four decades ago. There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of both stiffened and non stiffened circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. Diameter-to-thickness ratio is employed as main parameter to investigate the hysteresis performance of stiffened and unstiffened circular shear panel. Depending on these parameters three different buckling mode and hysteretic behavior was found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation and yielding with buckling and strength degradation which forms pinching at initial displacement. Hence, the hysteresis behavior is identified, specimens which deform without strength degradation so it will be used as passive energy dissipating device in civil engineering structures.

Keywords: Circular shear panel damper, FE analysis, Hysteretic behavior, Large deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2547
119 Feasibility Investigation of Near Infrared Spectrometry for Particle Size Estimation of Nano Structures

Authors: A. Bagheri Garmarudi, M. Khanmohammadi, N. Khoddami, K. Shabani

Abstract:

Determination of nano particle size is substantial since the nano particle size exerts a significant effect on various properties of nano materials. Accordingly, proposing non-destructive, accurate and rapid techniques for this aim is of high interest. There are some conventional techniques to investigate the morphology and grain size of nano particles such as scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffractometry (XRD). Vibrational spectroscopy is utilized to characterize different compounds and applied for evaluation of the average particle size based on relationship between particle size and near infrared spectra [1,4] , but it has never been applied in quantitative morphological analysis of nano materials. So far, the potential application of nearinfrared (NIR) spectroscopy with its ability in rapid analysis of powdered materials with minimal sample preparation, has been suggested for particle size determination of powdered pharmaceuticals. The relationship between particle size and diffuse reflectance (DR) spectra in near infrared region has been applied to introduce a method for estimation of particle size. Back propagation artificial neural network (BP-ANN) as a nonlinear model was applied to estimate average particle size based on near infrared diffuse reflectance spectra. Thirty five different nano TiO2 samples with different particle size were analyzed by DR-FTNIR spectrometry and the obtained data were processed by BP- ANN.

Keywords: near infrared, particle size, chemometrics, neuralnetwork, nano structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
118 Performance Evaluation of Neural Network Prediction for Data Prefetching in Embedded Applications

Authors: Sofien Chtourou, Mohamed Chtourou, Omar Hammami

Abstract:

Embedded systems need to respect stringent real time constraints. Various hardware components included in such systems such as cache memories exhibit variability and therefore affect execution time. Indeed, a cache memory access from an embedded microprocessor might result in a cache hit where the data is available or a cache miss and the data need to be fetched with an additional delay from an external memory. It is therefore highly desirable to predict future memory accesses during execution in order to appropriately prefetch data without incurring delays. In this paper, we evaluate the potential of several artificial neural networks for the prediction of instruction memory addresses. Neural network have the potential to tackle the nonlinear behavior observed in memory accesses during program execution and their demonstrated numerous hardware implementation emphasize this choice over traditional forecasting techniques for their inclusion in embedded systems. However, embedded applications execute millions of instructions and therefore millions of addresses to be predicted. This very challenging problem of neural network based prediction of large time series is approached in this paper by evaluating various neural network architectures based on the recurrent neural network paradigm with pre-processing based on the Self Organizing Map (SOM) classification technique.

Keywords: Address, data set, memory, prediction, recurrentneural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
117 Three-Dimensional Simulation of Free Electron Laser with Prebunching and Efficiency Enhancement

Authors: M. Chitsazi, B. Maraghechi, M. H. Rouhani

Abstract:

Three-dimensional simulation of harmonic up generation in free electron laser amplifier operating simultaneously with a cold and relativistic electron beam is presented in steady-state regime where the slippage of the electromagnetic wave with respect to the electron beam is ignored. By using slowly varying envelope approximation and applying the source-dependent expansion to wave equations, electromagnetic fields are represented in terms of the Hermit Gaussian modes which are well suited for the planar wiggler configuration. The electron dynamics is described by the fully threedimensional Lorentz force equation in presence of the realistic planar magnetostatic wiggler and electromagnetic fields. A set of coupled nonlinear first-order differential equations is derived and solved numerically. The fundamental and third harmonic radiation of the beam is considered. In addition to uniform beam, prebunched electron beam has also been studied. For this effect of sinusoidal distribution of entry times for the electron beam on the evolution of radiation is compared with uniform distribution. It is shown that prebunching reduces the saturation length substantially. For efficiency enhancement the wiggler is set to decrease linearly when the radiation of the third harmonic saturates. The optimum starting point of tapering and the slope of radiation in the amplitude of wiggler are found by successive run of the code.

Keywords: Free electron laser, Prebunching, Undulator, Wiggler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
116 Simple Agents Benefit Only from Simple Brains

Authors: Valeri A. Makarov, Nazareth P. Castellanos, Manuel G. Velarde

Abstract:

In order to answer the general question: “What does a simple agent with a limited life-time require for constructing a useful representation of the environment?" we propose a robot platform including the simplest probabilistic sensory and motor layers. Then we use the platform as a test-bed for evaluation of the navigational capabilities of the robot with different “brains". We claim that a protocognitive behavior is not a consequence of highly sophisticated sensory–motor organs but instead emerges through an increment of the internal complexity and reutilization of the minimal sensory information. We show that the most fundamental robot element, the short-time memory, is essential in obstacle avoidance. However, in the simplest conditions of no obstacles the straightforward memoryless robot is usually superior. We also demonstrate how a low level action planning, involving essentially nonlinear dynamics, provides a considerable gain to the robot performance dynamically changing the robot strategy. Still, however, for very short life time the brainless robot is superior. Accordingly we suggest that small organisms (or agents) with short life-time does not require complex brains and even can benefit from simple brain-like (reflex) structures. To some extend this may mean that controlling blocks of modern robots are too complicated comparative to their life-time and mechanical abilities.

Keywords: Neural network, probabilistic control, robot navigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
115 An Insurer’s Investment Model with Reinsurance Strategy under the Modified Constant Elasticity of Variance Process

Authors: K. N. C. Njoku, Chinwendu Best Eleje, Christian Chukwuemeka Nwandu

Abstract:

One of the problems facing most insurance companies is how best the burden of paying claims to its policy holders can be managed whenever need arises. Hence there is need for the insurer to buy a reinsurance contract in order to reduce risk which will enable the insurer to share the financial burden with the reinsurer. In this paper, the insurer’s and reinsurer’s strategy is investigated under the modified constant elasticity of variance (M-CEV) process and proportional administrative charges. The insurer considered investment in one risky asset and one risk free asset where the risky asset is modeled based on the M-CEV process which is an extension of constant elasticity of variance (CEV) process. Next, a nonlinear partial differential equation in the form of Hamilton Jacobi Bellman equation is obtained by dynamic programming approach. Using power transformation technique and variable change, the explicit solutions of the optimal investment strategy and optimal reinsurance strategy are obtained. Finally, some numerical simulations of some sensitive parameters were obtained and discussed in details where we observed that the modification factor only affects the optimal investment strategy and not the reinsurance strategy for an insurer with exponential utility function.

Keywords: Reinsurance strategy, Hamilton Jacobi Bellman equation, power transformation, M-CEV process, exponential utility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 328
114 Control of Vibrations in Flexible Smart Structures using Fast Output Sampling Feedback Technique

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

This paper features the modeling and design of a Fast Output Sampling (FOS) Feedback control technique for the Active Vibration Control (AVC) of a smart flexible aluminium cantilever beam for a Single Input Single Output (SISO) case. Controllers are designed for the beam by bonding patches of piezoelectric layer as sensor / actuator to the master structure at different locations along the length of the beam by retaining the first 2 dominant vibratory modes. The entire structure is modeled in state space form using the concept of piezoelectric theory, Euler-Bernoulli beam theory, Finite Element Method (FEM) and the state space techniques by dividing the structure into 3, 4, 5 finite elements, thus giving rise to three types of systems, viz., system 1 (beam divided into 3 finite elements), system 2 (4 finite elements), system 3 (5 finite elements). The effect of placing the sensor / actuator at various locations along the length of the beam for all the 3 types of systems considered is observed and the conclusions are drawn for the best performance and for the smallest magnitude of the control input required to control the vibrations of the beam. Simulations are performed in MATLAB. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the proposed smart system is evaluated for vibration control.

Keywords: Smart structure, Finite element method, State spacemodel, Euler-Bernoulli theory, SISO model, Fast output sampling, Vibration control, LMI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
113 Numerical and Experimental Analyses of a Semi-Active Pendulum Tuned Mass Damper

Authors: H. Juma, F. Al-hujaili, R. Kashani

Abstract:

Modern structures such as floor systems, pedestrian bridges and high-rise buildings have become lighter in mass and more flexible with negligible damping and thus prone to vibration. In this paper, a semi-actively controlled pendulum tuned mass dampers (PTMD) is presented that uses air springs as both the restoring (resilient) and energy dissipating (damping) elements; the tuned mass damper (TMD) uses no passive dampers. The proposed PTMD can readily be fine-tuned and re-tuned, via software, without changing any hardware. Almost all existing semi-active systems have the three elements that passive TMDs have, i.e., inertia, resilient, and dissipative elements with some adjustability built into one or two of these elements. The proposed semi-active air suspended TMD, on the other hand, is made up of only inertia and resilience elements. A notable feature of this TMD is the absence of a physical damping element in its make-up. The required viscous damping is introduced into the TMD using a semi-active control scheme residing in a micro-controller which actuates a high-speed proportional valve regulating the flow of air in and out of the air springs. In addition to introducing damping into the TMD, the semi-active control scheme adjusts the stiffness of the TMD. The focus of this work has been the synthesis and analysis of the control algorithms and strategies to vary the tuning accuracy, introduce damping into air suspended PTMD, and enable the PTMD to self-tune itself. The accelerations of the main structure and PTMD as well as the pressure in the air springs are used as the feedback signals in control strategies. Numerical simulation and experimental evaluation of the proposed tuned damping system are presented in this paper.

Keywords: Tuned mass damper, air spring, semi-active, vibration control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655
112 Respirator System For Total Liquid Ventilation

Authors: Miguel A. Gómez , Enrique Hilario , Francisco J. Alvarez , Elena Gastiasoro , Antonia Alvarez, Juan L. Larrabe

Abstract:

Total liquid ventilation can support gas exchange in animal models of lung injury. Clinical application awaits further technical improvements and performance verification. Our aim was to develop a liquid ventilator, able to deliver accurate tidal volumes, and a computerized system for measuring lung mechanics. The computer-assisted, piston-driven respirator controlled ventilatory parameters that were displayed and modified on a real-time basis. Pressure and temperature transducers along with a lineal displacement controller provided the necessary signals to calculate lung mechanics. Ten newborn lambs (<6 days old) with respiratory failure induced by lung lavage, were monitored using the system. Electromechanical, hydraulic and data acquisition/analysis components of the ventilator were developed and tested in animals with respiratory failure. All pulmonary signals were collected synchronized in time, displayed in real-time, and archived on digital media. The total mean error (due to transducers, A/D conversion, amplifiers, etc.) was less than 5% compared to calibrated signals. Improvements in gas exchange and lung mechanics were observed during liquid ventilation, without impairment of cardiovascular profiles. The total liquid ventilator maintained accurate control of tidal volumes and the sequencing of inspiration/expiration. The computerized system demonstrated its ability to monitor in vivo lung mechanics, providing valuable data for early decision-making.

Keywords: immature lamb, perfluorocarbon, pressure-limited, total liquid ventilation, ventilator; volume-controlled

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
111 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760
110 Robust Sensorless Speed Control of Induction Motor with DTFC and Fuzzy Speed Regulator

Authors: Jagadish H. Pujar, S. F. Kodad

Abstract:

Recent developments in Soft computing techniques, power electronic switches and low-cost computational hardware have made it possible to design and implement sophisticated control strategies for sensorless speed control of AC motor drives. Such an attempt has been made in this work, for Sensorless Speed Control of Induction Motor (IM) by means of Direct Torque Fuzzy Control (DTFC), PI-type fuzzy speed regulator and MRAS speed estimator strategy, which is absolutely nonlinear in its nature. Direct torque control is known to produce quick and robust response in AC drive system. However, during steady state, torque, flux and current ripple occurs. So, the performance of conventional DTC with PI speed regulator can be improved by implementing fuzzy logic techniques. Certain important issues in design including the space vector modulated (SVM) 3-Ф voltage source inverter, DTFC design, generation of reference torque using PI-type fuzzy speed regulator and sensor less speed estimator have been resolved. The proposed scheme is validated through extensive numerical simulations on MATLAB. The simulated results indicate the sensor less speed control of IM with DTFC and PI-type fuzzy speed regulator provides satisfactory high dynamic and static performance compare to conventional DTC with PI speed regulator.

Keywords: Sensor-less Speed Estimator, Fuzzy Logic Control(FLC), SVM, DTC, DTFC, IM, fuzzy speed regulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2495
109 Fuzzy Control of Thermally Isolated Greenhouse Building by Utilizing Underground Heat Exchanger and Outside Weather Conditions

Authors: Raghad Alhusari, Farag Omar, Moustafa Fadel

Abstract:

A traditional greenhouse is a metal frame agricultural building used for cultivation plants in a controlled environment isolated from external climatic changes. Using greenhouses in agriculture is an efficient way to reduce the water consumption, where agriculture field is considered the biggest water consumer world widely. Controlling greenhouse environment yields better productivity of plants but demands an increase of electric power. Although various control approaches have been used towards greenhouse automation, most of them are applied to traditional greenhouses with ventilation fans and/or evaporation cooling system. Such approaches are still demanding high energy and water consumption. The aim of this research is to develop a fuzzy control system that minimizes water and energy consumption by utilizing outside weather conditions and underground heat exchanger to maintain the optimum climate of the greenhouse. The proposed control system is implemented on an experimental model of thermally isolated greenhouse structure with dimensions of 6x5x2.8 meters. It uses fans for extracting heat from the ground heat exchanger system, motors for automatic open/close of the greenhouse windows and LED as lighting system. The controller is integrated also with environmental condition sensors. It was found that using the air-to-air horizontal ground heat exchanger with 90 mm diameter and 2 mm thickness placed 2.5 m below the ground surface results in decreasing the greenhouse temperature of 3.28 ˚C which saves around 3 kW of consumed energy. It also eliminated the water consumption needed in evaporation cooling systems which are traditionally used for cooling the greenhouse environment.

Keywords: Automation, earth-to-air heat exchangers, fuzzy control, greenhouse, sustainable buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
108 MPPT Operation for PV Grid-connected System using RBFNN and Fuzzy Classification

Authors: A. Chaouachi, R. M. Kamel, K. Nagasaka

Abstract:

This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW Photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three Radial Basis Function Neural Networks (RBFNN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated RBFNN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and non-linear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network.

Keywords: MPPT, neuro-fuzzy, RBFN, grid-connected, photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3181