Search results for: learning algorithms
1721 A Developmental Study of the Flipped Classroom Approach on Students’ Learning in English Language Modules in British University in Egypt
Authors: A. T. Zaki
Abstract:
The flipped classroom approach as a mode of blended learning was formally introduced to students of the English language modules at the British University in Egypt (BUE) at the start of the academic year 2015/2016. This paper aims to study the impact of the flipped classroom approach after three semesters of implementation. It will restrict itself to the examination of students’ achievement rates, student satisfaction, and how different student cohorts have benefited differently from the flipped practice. The paper concludes with recommendations of how the experience can be further developed.
Keywords: Achievement rates, developmental experience, Egypt, flipped classroom, higher education, student cohorts, student satisfaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10851720 ISTER (Immune System - Tumor Efficiency Rate): An Important Key for Planning in Radiotherapic Facilities
Authors: O. Sotolongo-Grau, D. Rodriguez-Perez, J. A. Santos-Miranda, M. M. Desco, O. Sotolongo-Costa, J. C. Antoranz
Abstract:
The use of the oncologic index ISTER allows for a more effective planning of the radiotherapic facilities in the hospitals. Any change in the radiotherapy treatment, due to unexpected stops, may be adapted by recalculating the doses to the new treatment duration while keeping the optimal prognosis. The results obtained in a simulation model on millions of patients allow the definition of optimal success probability algorithms.
Keywords: Mathematical model, radiation oncology, dynamical systems applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15471719 Using the Monte Carlo Simulation to Predict the Assembly Yield
Authors: C. Chahin, M. C. Hsu, Y. H. Lin, C. Y. Huang
Abstract:
Electronics Products that achieve high levels of integrated communications, computing and entertainment, multimedia features in small, stylish and robust new form factors are winning in the market place. Due to the high costs that an industry may undergo and how a high yield is directly proportional to high profits, IC (Integrated Circuit) manufacturers struggle to maximize yield, but today-s customers demand miniaturization, low costs, high performance and excellent reliability making the yield maximization a never ending research of an enhanced assembly process. With factors such as minimum tolerances, tighter parameter variations a systematic approach is needed in order to predict the assembly process. In order to evaluate the quality of upcoming circuits, yield models are used which not only predict manufacturing costs but also provide vital information in order to ease the process of correction when the yields fall below expectations. For an IC manufacturer to obtain higher assembly yields all factors such as boards, placement, components, the material from which the components are made of and processes must be taken into consideration. Effective placement yield depends heavily on machine accuracy and the vision of the system which needs the ability to recognize the features on the board and component to place the device accurately on the pads and bumps of the PCB. There are currently two methods for accurate positioning, using the edge of the package and using solder ball locations also called footprints. The only assumption that a yield model makes is that all boards and devices are completely functional. This paper will focus on the Monte Carlo method which consists in a class of computational algorithms (information processed algorithms) which depends on repeated random samplings in order to compute the results. This method utilized in order to recreate the simulation of placement and assembly processes within a production line.
Keywords: Monte Carlo simulation, placement yield, PCBcharacterization, electronics assembly
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21651718 Blockchain-Based Assignment Management System
Authors: Amogh Katti, J. Sai Asritha, D. Nivedh, M. Kalyan Srinivas, B. Somnath Chakravarthi
Abstract:
Today's modern education system uses Learning Management System (LMS) portals for the scoring and grading of student performances, to maintain student records, and teachers are instructed to accept assignments through online submissions of .pdf, .doc, .ppt, etc. There is a risk of data tampering in the traditional portals; we will apply the Blockchain model instead of this traditional model to avoid data tampering and also provide a decentralized mechanism for overall fairness. Blockchain technology is a better and also recommended model because of the following features: consensus mechanism, decentralized system, cryptographic encryption, smart contracts, Ethereum blockchain. The proposed system ensures data integrity and tamper-proof assignment submission and grading, which will be helpful for both students and also educators.
Keywords: Education technology, learning management system, decentralized applications, blockchain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501717 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection
Authors: Yaojun Wang, Yaoqing Wang
Abstract:
Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.Keywords: Case-based reasoning, decision tree, stock selection, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17031716 Development of Multimodal e-Slide Presentation to Support Self-Learning for the Visually Impaired
Authors: Rustam Asnawi, Wan Fatimah Wan Ahmad
Abstract:
Currently electronic slide (e-slide) is one of the most common styles in educational presentation. Unfortunately, the utilization of e-slide for the visually impaired is uncommon since they are unable to see the content of such e-slides which are usually composed of text, images and animation. This paper proposes a model for presenting e-slide in multimodal presentation i.e. using conventional slide concurrent with voicing, in both languages Malay and English. At the design level, live multimedia presentation concept is used, while at the implementation level several components are used. The text content of each slide is extracted using COM component, Microsoft Speech API for voicing the text in English language and the text in Malay language is voiced using dictionary approach. To support the accessibility, an auditory user interface is provided as an additional feature. A prototype of such model named as VSlide has been developed and introduced.
Keywords: presentation, self-learning, slide, visually impaired
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15681715 Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining
Authors: Tatjana Eitrich, Bruno Lang
Abstract:
This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.
Keywords: Support Vector Machines, Shared Memory Parallel Computing, Large Data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15761714 Variable Step-Size APA with Decorrelation of AR Input Process
Authors: Jae Wook Shin, Ju-man Song, Hyun-Taek Choi, Poo Gyeon Park
Abstract:
This paper introduces a new variable step-size APA with decorrelation of AR input process is based on the MSD analysis. To achieve a fast convergence rate and a small steady-state estimation error, he proposed algorithm uses variable step size that is determined by minimising the MSD. In addition, experimental results show that the proposed algorithm is achieved better performance than the other algorithms.
Keywords: adaptive filter, affine projection algorithm, variable step size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18961713 Collaborative Stylistic Group Project: A Drama Practical Analysis Application
Authors: Omnia F. Elkommos
Abstract:
In the course of teaching stylistics to undergraduate students of the Department of English Language and Literature, Faculty of Arts and Humanities, the linguistic tool kit of theories comes in handy and useful for the better understanding of the different literary genres: Poetry, drama, and short stories. In the present paper, a model of teaching of stylistics is compiled and suggested. It is a collaborative group project technique for use in the undergraduate diverse specialisms (Literature, Linguistics and Translation tracks) class. Students initially are introduced to the different linguistic tools and theories suitable for each literary genre. The second step is to apply these linguistic tools to texts. Students are required to watch videos performing the poems or play, for example, and search the net for interpretations of the texts by other authorities. They should be using a template (prepared by the researcher) that has guided questions leading students along in their analysis. Finally, a practical analysis would be written up using the practical analysis essay template (also prepared by the researcher). As per collaborative learning, all the steps include activities that are student-centered addressing differentiation and considering their three different specialisms. In the process of selecting the proper tools, the actual application and analysis discussion, students are given tasks that request their collaboration. They also work in small groups and the groups collaborate in seminars and group discussions. At the end of the course/module, students present their work also collaboratively and reflect and comment on their learning experience. The module/course uses a drama play that lends itself to the task: ‘The Bond’ by Amy Lowell and Robert Frost. The project results in an interpretation of its theme, characterization and plot. The linguistic tools are drawn from pragmatics, and discourse analysis among others.
Keywords: Applied linguistic theories, collaborative learning, cooperative principle, discourse analysis, drama analysis, group project, online acting performance, pragmatics, speech act theory, stylistics, technology enhanced learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10761712 Some Improvements on Kumlander-s Maximum Weight Clique Extraction Algorithm
Authors: Satoshi Shimizu, Kazuaki Yamaguchi, Toshiki Saitoh, Sumio Masuda
Abstract:
Some fast exact algorithms for the maximum weight clique problem have been proposed. Östergard’s algorithm is one of them. Kumlander says his algorithm is faster than it. But we confirmed that the straightforwardly implemented Kumlander’s algorithm is slower than O¨ sterga˚rd’s algorithm. We propose some improvements on Kumlander’s algorithm.
Keywords: Maximum weight clique, exact algorithm, branch-andbound, NP-hard.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18571711 Estimating an Optimal Neighborhood Size in the Spherical Self-Organizing Feature Map
Authors: Alexandros Leontitsis, Archana P. Sangole
Abstract:
This article presents a short discussion on optimum neighborhood size selection in a spherical selforganizing feature map (SOFM). A majority of the literature on the SOFMs have addressed the issue of selecting optimal learning parameters in the case of Cartesian topology SOFMs. However, the use of a Spherical SOFM suggested that the learning aspects of Cartesian topology SOFM are not directly translated. This article presents an approach on how to estimate the neighborhood size of a spherical SOFM based on the data. It adopts the L-curve criterion, previously suggested for choosing the regularization parameter on problems of linear equations where their right-hand-side is contaminated with noise. Simulation results are presented on two artificial 4D data sets of the coupled Hénon-Ikeda map.Keywords: Parameter estimation, self-organizing feature maps, spherical topology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15181710 Factors Influencing Rote Student's Intention to Use WBL: Thailand Study
Authors: Watcharawalee Lertlum, Borworn Papasratorn
Abstract:
Conventional WBL is effective for meaningful student, because rote student learn by repeating without thinking or trying to understand. It is impossible to have full benefit from conventional WBL. Understanding of rote student-s intention and what influences it becomes important. Poorly designed user interface will discourage rote student-s cultivation and intention to use WBL. Thus, user interface design is an important factor especially when WBL is used as comprehensive replacement of conventional teaching. This research proposes the influencing factors that can enhance student-s intention to use the system. The enhanced TAM is used for evaluating the proposed factors. The research result points out that factors influencing rote student-s intention are Perceived Usefulness of Homepage Content Structure, Perceived User Friendly Interface, Perceived Hedonic Component, and Perceived (homepage) Visual Attractiveness.
Keywords: E-learning, Web-Based learning, Intention to use, Rote student, Influencing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16241709 Experimental Model for Instruction of Pre-Service Teachers in ICT Tools and E-learning Environments
Authors: Rachel Baruch
Abstract:
This article describes the implementation of an experimental model for teaching ICT tools and digital environments in teachers training college. In most educational systems in the Western world, new programs were developed in order to bridge the digital gap between teachers and students. In spite of their achievements, these programs are limited due to several factors: The teachers in the schools implement new methods incorporating technological tools into the curriculum, but meanwhile the technology changes and advances. The interface of tools changes frequently, some tools disappear and new ones are invented. These conditions require an experimental model of training the pre-service teachers. The appropriate method for instruction within the domain of ICT tools should be based on exposing the learners to innovations, helping them to gain experience, teaching them how to deal with challenges and difficulties on their own, and training them. This study suggests some principles for this approach and describes step by step the implementation of this model.Keywords: ICT tools, e-learning, pre-service teachers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10931708 Traffic Flow Prediction using Adaboost Algorithm with Random Forests as a Weak Learner
Authors: Guy Leshem, Ya'acov Ritov
Abstract:
Traffic Management and Information Systems, which rely on a system of sensors, aim to describe in real-time traffic in urban areas using a set of parameters and estimating them. Though the state of the art focuses on data analysis, little is done in the sense of prediction. In this paper, we describe a machine learning system for traffic flow management and control for a prediction of traffic flow problem. This new algorithm is obtained by combining Random Forests algorithm into Adaboost algorithm as a weak learner. We show that our algorithm performs relatively well on real data, and enables, according to the Traffic Flow Evaluation model, to estimate and predict whether there is congestion or not at a given time on road intersections.Keywords: Machine Learning, Boosting, Classification, TrafficCongestion, Data Collecting, Magnetic Loop Detectors, SignalizedIntersections, Traffic Signal Timing Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39091707 Variable Regularization Parameter Normalized Least Mean Square Adaptive Filter
Authors: Young-Seok Choi
Abstract:
We present a normalized LMS (NLMS) algorithm with robust regularization. Unlike conventional NLMS with the fixed regularization parameter, the proposed approach dynamically updates the regularization parameter. By exploiting a gradient descent direction, we derive a computationally efficient and robust update scheme for the regularization parameter. In simulation, we demonstrate the proposed algorithm outperforms conventional NLMS algorithms in terms of convergence rate and misadjustment error.Keywords: Regularization, normalized LMS, system identification, robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18751706 Case-Based Reasoning: A Hybrid Classification Model Improved with an Expert's Knowledge for High-Dimensional Problems
Authors: Bruno Trstenjak, Dzenana Donko
Abstract:
Data mining and classification of objects is the process of data analysis, using various machine learning techniques, which is used today in various fields of research. This paper presents a concept of hybrid classification model improved with the expert knowledge. The hybrid model in its algorithm has integrated several machine learning techniques (Information Gain, K-means, and Case-Based Reasoning) and the expert’s knowledge into one. The knowledge of experts is used to determine the importance of features. The paper presents the model algorithm and the results of the case study in which the emphasis was put on achieving the maximum classification accuracy without reducing the number of features.
Keywords: Case based reasoning, classification, expert's knowledge, hybrid model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14181705 Image Modeling Using Gibbs-Markov Random Field and Support Vector Machines Algorithm
Authors: Refaat M Mohamed, Ayman El-Baz, Aly A. Farag
Abstract:
This paper introduces a novel approach to estimate the clique potentials of Gibbs Markov random field (GMRF) models using the Support Vector Machines (SVM) algorithm and the Mean Field (MF) theory. The proposed approach is based on modeling the potential function associated with each clique shape of the GMRF model as a Gaussian-shaped kernel. In turn, the energy function of the GMRF will be in the form of a weighted sum of Gaussian kernels. This formulation of the GMRF model urges the use of the SVM with the Mean Field theory applied for its learning for estimating the energy function. The approach has been tested on synthetic texture images and is shown to provide satisfactory results in retrieving the synthesizing parameters.Keywords: Image Modeling, MRF, Parameters Estimation, SVM Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16351704 A Game Design Framework for Vocational Education
Authors: Heide Lukosch, Roy Van Bussel, Sebastiaan Meijer
Abstract:
Serious games have proven to be a useful instrument to engage learners and increase motivation. Nevertheless, a broadly accepted, practical instructional design approach to serious games does not exist. In this paper, we introduce the use of an instructional design model that has not been applied to serious games yet, and has some advantages compared to other design approaches. We present the case of mechanics mechatronics education to illustrate the close match with timing and role of knowledge and information that the instructional design model prescribes and how this has been translated to a rigidly structured game design. The structured approach answers the learning needs of applicable knowledge within the target group. It combines advantages of simulations with strengths of entertainment games to foster learner-s motivation in the best possible way. A prototype of the game will be evaluated along a well-respected evaluation method within an advanced test setting including test and control group.Keywords: Serious Gaming, Simulation, Complex Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17651703 An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique
Authors: Ghada A. Alfattni
Abstract:
Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalanced datasets. Three classification models (Logistic Regression, Support Vector Machine and Nearest Neighbour) were tested with multiple datasets, then the same datasets were oversampled by using SMOTE and applied again to the three models to compare the differences in the performances. Results of experiments show that the highest number of nearest neighbours gives lower values of error rates.Keywords: Imbalanced datasets, SMOTE, machine learning, logistic regression, support vector machine, nearest neighbour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13131702 Component Based Framework for Authoring and Multimedia Training in Mathematics
Authors: Ion Smeureanu, Marian Dardala, Adriana Reveiu
Abstract:
The new programming technologies allow for the creation of components which can be automatically or manually assembled to reach a new experience in knowledge understanding and mastering or in getting skills for a specific knowledge area. The project proposes an interactive framework that permits the creation, combination and utilization of components that are specific to mathematical training in high schools. The main framework-s objectives are: • authoring lessons by the teacher or the students; all they need are simple operating skills for Equation Editor (or something similar, or Latex); the rest are just drag & drop operations, inserting data into a grid, or navigating through menus • allowing sonorous presentations of mathematical texts and solving hints (easier understood by the students) • offering graphical representations of a mathematical function edited in Equation • storing of learning objects in a database • storing of predefined lessons (efficient for expressions and commands, the rest being calculations; allows a high compression) • viewing and/or modifying predefined lessons, according to the curricula The whole thing is focused on a mathematical expressions minicompiler, storing the code that will be later used for different purposes (tables, graphics, and optimisations). Programming technologies used. A Visual C# .NET implementation is proposed. New and innovative digital learning objects for mathematics will be developed; they are capable to interpret, contextualize and react depending on the architecture where they are assembled.Keywords: Adaptor, automatic assembly learning component and user control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17021701 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review
Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha
Abstract:
Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.
Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5921700 Computations of Bezier Geodesic-like Curves on Spheres
Authors: Sheng-Gwo Chen, Wen-Haw Chen
Abstract:
It is an important problem to compute the geodesics on a surface in many fields. To find the geodesics in practice, however, the traditional discrete algorithms or numerical approaches can only find a list of discrete points. The first author proposed in 2010 a new, elegant and accurate method, the geodesic-like method, for approximating geodesics on a regular surface. This paper will present by use of this method a computation of the Bezier geodesic-like curves on spheres.Keywords: Geodesics, Geodesic-like curve, Spheres, Bezier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16211699 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features
Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi
Abstract:
Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.
Keywords: Causal relation identification, convolutional neural networks, natural Language Processing, Machine Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22561698 Hand Gesture Detection via EmguCV Canny Pruning
Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae
Abstract:
Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.
Keywords: Canny pruning, hand recognition, machine learning, skin tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13061697 Problems of Lifelong Education Course in Information and Communication Technology
Authors: Hisham Md Suhadi, Faaizah Shahbodin, Jamaluddin Hashim
Abstract:
The study is the way to identify the problems that occur in organizing short course’s lifelong learning in the information and communication technology (ICT) education which are faced by the lecturer and staff at the Mara Skill Institute and Industrial Training Institute in Pahang Malaysia. The important aspects of these issues are classified to five which are selecting the courses administrative. Fifty lecturers and staff were selected as a respondent. The sample is selected by using the non-random sampling method purpose sampling. The questionnaire is used as a research instrument and divided into five main parts. All the data that gain from the questionnaire are analyzed by using the SPSS in term of mean, standard deviation and percentage. The findings showed, there are the problems occur in organizing the short course for lifelong learning in ICT education.Keywords: Lifelong education, information and communication technology (ICT), short course, ICT education, courses administrative.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18091696 Game based Learning to Enhance Cognitive and Physical Capabilities of Elderly People: Concepts and Requirements
Authors: Aurelie Aurilla Bechina Arntzen
Abstract:
The last decade has seen an early majority of people The last decade, the role of the of the information communication technologies has increased in improving the social and business life of people. Today, it is recognized that game could contribute to enhance virtual rehabilitation by better engaging patients. Our research study aims to develop a game based system enhancing cognitive and physical capabilities of elderly people. To this end, the project aims to develop a low cost hand held system based on existing game such as Wii, PSP, or Xbox. This paper discusses the concepts and requirements for developing such game for elderly people. Based on the requirement elicitation, we intend to develop a prototype related to sport and dance activities.Keywords: Elderly people, Game based learning system, Health systems, rehabilitation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25151695 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning
Authors: Federico Pittino, Dominik Holzmann, Krithika Sayar-Chand, Stefan Moser, Sebastian Pliessnig, Thomas Arnold
Abstract:
The shredding of waste materials is a key step in the recycling process towards circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need of frequent maintenance of critical components. The maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for several months and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring a very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for efficient operation of industrial shredders.
Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6391694 Muscle: The Tactile Texture Designed for the Blind
Authors: Chantana Insra
Abstract:
The research objective focuses on creating a prototype media of the tactile texture of muscles for educational institutes to help visually impaired students learn massage extra learning materials further than the ordinary curriculum. This media is designed as an extra learning material. The population in this study was 30 blinded students between 4th - 6th grades who were able to read Braille language. The research was conducted during the second semester in 2012 at The Bangkok School for the Blind. The method in choosing the population in the study was purposive sampling. The methodology of the research includes collecting data related to visually impaired people, the production of the tactile texture media, human anatomy and Thai traditional massage from literature reviews and field studies. This information was used for analyzing and designing 14 tactile texture pictures presented to experts to evaluate and test the media.
Keywords: Blind, Tactile Texture, Muscle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18301693 Future-Proofing the Workforce: A Case Study of Integrated Human Capability Frameworks to Support Business Success
Authors: P. Paliadelis, A. Jones, G. Campbell
Abstract:
This paper discusses the development of co-designed capability frameworks for two large multinational organizations led by a university department. The aim was to create evidence-based, integrated capability frameworks that could define, identify, and measure human skill capabilities independent of specific work roles. The frameworks capture and cluster human skills required in the workplace and capture their application at various levels of mastery. Identified capability gaps inform targeted learning opportunities for workers to enhance their employability skills. The paper highlights the value of this evidence-based framework development process in capturing, defining, and assessing desired human-focused capabilities for organizational growth and success.
Keywords: Capability framework, human skills, work-integrated learning, credentialing, digital badging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 451692 Eye Tracking: Biometric Evaluations of Instructional Materials for Improved Learning
Authors: Janet Holland
Abstract:
Eye tracking is a great way to triangulate multiple data sources for deeper, more complete knowledge of how instructional materials are really being used and emotional connections made. Using sensor based biometrics provides a detailed local analysis in real time expanding our ability to collect science based data for a more comprehensive level of understanding, not previously possible, for teaching and learning. The knowledge gained will be used to make future improvements to instructional materials, tools, and interactions. The literature has been examined and a preliminary pilot test was implemented to develop a methodology for research in Instructional Design and Technology. Eye tracking now offers the addition of objective metrics obtained from eye tracking and other biometric data collection with analysis for a fresh perspective.Keywords: Area of interest, eye tracking, biometrics, fixation, fixation count, fixation sequence, fixation time, gaze points, heat map, saccades, time to first fixation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 877