Search results for: substrate-deposit interface region.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1939

Search results for: substrate-deposit interface region.

379 Improved Feature Processing for Iris Biometric Authentication System

Authors: Somnath Dey, Debasis Samanta

Abstract:

Iris-based biometric authentication is gaining importance in recent times. Iris biometric processing however, is a complex process and computationally very expensive. In the overall processing of iris biometric in an iris-based biometric authentication system, feature processing is an important task. In feature processing, we extract iris features, which are ultimately used in matching. Since there is a large number of iris features and computational time increases as the number of features increases, it is therefore a challenge to develop an iris processing system with as few as possible number of features and at the same time without compromising the correctness. In this paper, we address this issue and present an approach to feature extraction and feature matching process. We apply Daubechies D4 wavelet with 4 levels to extract features from iris images. These features are encoded with 2 bits by quantizing into 4 quantization levels. With our proposed approach it is possible to represent an iris template with only 304 bits, whereas existing approaches require as many as 1024 bits. In addition, we assign different weights to different iris region to compare two iris templates which significantly increases the accuracy. Further, we match the iris template based on a weighted similarity measure. Experimental results on several iris databases substantiate the efficacy of our approach.

Keywords: Iris recognition, biometric, feature processing, patternrecognition, pattern matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
378 Chemical Composition of Variety 'Nante' Hybrid Carrots Cultivated in Latvia

Authors: Tatjana Rakcejeva, Ingrida Augspole, Lija Dukalska, Fredijs Dimins

Abstract:

carrot is one of the important root vegetable crops, and it is highly nutritious as it contains appreciable amount of vitamins, minerals and β-carotene. The major objective of current research was to evaluate the chemical composition of carrot variety 'Nante' hybrids in general and to select the best samples for fresh-cut salad production. The research was accomplished on fresh in Latvia cultivated carrots harvested in Zemgale region in the first part of October, 2011 and immediately used for experiments. Late-bearing variety 'Nante' hybrid carrots were used for analysis: 'Nante/Berlikum', 'Nante/Maestro', 'Nante/Forto', 'Nante/Bolero' and 'Nante/Champion'. The quality parameters as moisture, soluble solid, firmness, b-carotene, carotenoid, color, polyphenols, total phenolic compounds and total antioxidant capacity were analyzed using standard methods. For fresh-cut salad production as more applicable could be recommended hybrids 'Nante/Forto' and 'Nante/Berlikum' - mainly because it-s higher nutritive value, as higher total phenolic compounds, polyphenols and pronounced antioxidant capacity.

Keywords: carrots, chemical composition, evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170
377 Leveraging xAPI in a Corporate e-Learning Environment to Facilitate the Tracking, Modelling, and Predictive Analysis of Learner Behaviour

Authors: Libor Zachoval, Daire O Broin, Oisin Cawley

Abstract:

E-learning platforms, such as Blackboard have two major shortcomings: limited data capture as a result of the limitations of SCORM (Shareable Content Object Reference Model), and lack of incorporation of Artificial Intelligence (AI) and machine learning algorithms which could lead to better course adaptations. With the recent development of Experience Application Programming Interface (xAPI), a large amount of additional types of data can be captured and that opens a window of possibilities from which online education can benefit. In a corporate setting, where companies invest billions on the learning and development of their employees, some learner behaviours can be troublesome for they can hinder the knowledge development of a learner. Behaviours that hinder the knowledge development also raise ambiguity about learner’s knowledge mastery, specifically those related to gaming the system. Furthermore, a company receives little benefit from their investment if employees are passing courses without possessing the required knowledge and potential compliance risks may arise. Using xAPI and rules derived from a state-of-the-art review, we identified three learner behaviours, primarily related to guessing, in a corporate compliance course. The identified behaviours are: trying each option for a question, specifically for multiple-choice questions; selecting a single option for all the questions on the test; and continuously repeating tests upon failing as opposed to going over the learning material. These behaviours were detected on learners who repeated the test at least 4 times before passing the course. These findings suggest that gauging the mastery of a learner from multiple-choice questions test scores alone is a naive approach. Thus, next steps will consider the incorporation of additional data points, knowledge estimation models to model knowledge mastery of a learner more accurately, and analysis of the data for correlations between knowledge development and identified learner behaviours. Additional work could explore how learner behaviours could be utilised to make changes to a course. For example, course content may require modifications (certain sections of learning material may be shown to not be helpful to many learners to master the learning outcomes aimed at) or course design (such as the type and duration of feedback).

Keywords: Compliance Course, Corporate Training, Learner Behaviours, xAPI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 561
376 Enhanced Clustering Analysis and Visualization Using Kohonen's Self-Organizing Feature Map Networks

Authors: Kasthurirangan Gopalakrishnan, Siddhartha Khaitan, Anshu Manik

Abstract:

Cluster analysis is the name given to a diverse collection of techniques that can be used to classify objects (e.g. individuals, quadrats, species etc). While Kohonen's Self-Organizing Feature Map (SOFM) or Self-Organizing Map (SOM) networks have been successfully applied as a classification tool to various problem domains, including speech recognition, image data compression, image or character recognition, robot control and medical diagnosis, its potential as a robust substitute for clustering analysis remains relatively unresearched. SOM networks combine competitive learning with dimensionality reduction by smoothing the clusters with respect to an a priori grid and provide a powerful tool for data visualization. In this paper, SOM is used for creating a toroidal mapping of two-dimensional lattice to perform cluster analysis on results of a chemical analysis of wines produced in the same region in Italy but derived from three different cultivators, referred to as the “wine recognition data" located in the University of California-Irvine database. The results are encouraging and it is believed that SOM would make an appealing and powerful decision-support system tool for clustering tasks and for data visualization.

Keywords: Artificial neural networks, cluster analysis, Kohonen maps, wine recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
375 Influence of Non-Structural Elements on Dynamic Response of Multi-Storey Rc Building to Mining Shock

Authors: Joanna M. Dulińska, Maria Fabijańska

Abstract:

In the paper the results of calculations of the dynamic response of a multi-storey reinforced concrete building to a strong mining shock originated from the main region of mining activity in Poland (i.e. the Legnica-Glogow Copper District) are presented. The representative time histories of accelerations registered in three directions were used as ground motion data in calculations of the dynamic response of the structure. Two variants of a numerical model were applied: the model including only structural elements of the building and the model including both structural and non-structural elements (i.e. partition walls and ventilation ducts made of brick). It turned out that non-structural elements of multi-storey RC buildings have a small impact of about 10 % on natural frequencies of these structures. It was also proved that the dynamic response of building to mining shock obtained in case of inclusion of all non-structural elements in the numerical model is about 20 % smaller than in case of consideration of structural elements only. The principal stresses obtained in calculations of dynamic response of multi-storey building to strong mining shock are situated on the level of about 30% of values obtained from static analysis (dead load).

Keywords: Dynamic characteristics of buildings, mining shocks, dynamic response of buildings, non-structural elements

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887
374 Parkinsons Disease Classification using Neural Network and Feature Selection

Authors: Anchana Khemphila, Veera Boonjing

Abstract:

In this study, the Multi-Layer Perceptron (MLP)with Back-Propagation learning algorithm are used to classify to effective diagnosis Parkinsons disease(PD).It-s a challenging problem for medical community.Typically characterized by tremor, PD occurs due to the loss of dopamine in the brains thalamic region that results in involuntary or oscillatory movement in the body. A feature selection algorithm along with biomedical test values to diagnose Parkinson disease.Clinical diagnosis is done mostly by doctor-s expertise and experience.But still cases are reported of wrong diagnosis and treatment. Patients are asked to take number of tests for diagnosis.In many cases,not all the tests contribute towards effective diagnosis of a disease.Our work is to classify the presence of Parkinson disease with reduced number of attributes.Original,22 attributes are involved in classify.We use Information Gain to determine the attributes which reduced the number of attributes which is need to be taken from patients.The Artificial neural networks is used to classify the diagnosis of patients.Twenty-Two attributes are reduced to sixteen attributes.The accuracy is in training data set is 82.051% and in the validation data set is 83.333%.

Keywords: Data mining, classification, Parkinson disease, artificial neural networks, feature selection, information gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3778
373 Management of Air Pollutants from Point Sources

Authors: N. Lokeshwari, G. Srinikethan, V. S. Hegde

Abstract:

Monitoring is essential to assessing the effectiveness of air pollution control actions. The goal of the air quality information system is through monitoring, to keep authorities, major polluters and the public informed on the short and long-term changes in air quality, thereby helping to raise awareness. Mathematical models are the best tools available for the prediction of the air quality management. The main objective of the work was to apply a Model that predicts the concentration levels of different pollutants at any instant of time. In this study, distribution of air pollutants concentration such as nitrogen dioxides (NO2), sulphur dioxides (SO2) and total suspended particulates (TSP) of industries are determined by using Gaussian model. Besides that, the effect of wind speed and its direction on the pollutant concentration within the affected area were evaluated. In order to determine the efficiency and percentage of error in the modeling, validation process of data was done. Sampling of air quality was conducted in getting existing air quality around a factory and the concentrations of pollutants in a plume were inversely proportional to wind velocity. The resultant ground level concentrations were then compared to the quality standards to determine if there could be a negative impact on health. This study concludes that concentration of pollutants can be significantly predicted using Gaussian Model. The data base management is developed for the air data of Hubli-Dharwad region.

Keywords: DBMS, NO2, SO2, Wind rose plots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
372 Towards Real-Time Classification of Finger Movement Direction Using Encephalography Independent Components

Authors: Mohamed Mounir Tellache, Hiroyuki Kambara, Yasuharu Koike, Makoto Miyakoshi, Natsue Yoshimura

Abstract:

This study explores the practicality of using electroencephalographic (EEG) independent components to predict eight-direction finger movements in pseudo-real-time. Six healthy participants with individual-head MRI images performed finger movements in eight directions with two different arm configurations. The analysis was performed in two stages. The first stage consisted of using independent component analysis (ICA) to separate the signals representing brain activity from non-brain activity signals and to obtain the unmixing matrix. The resulting independent components (ICs) were checked, and those reflecting brain-activity were selected. Finally, the time series of the selected ICs were used to predict eight finger-movement directions using Sparse Logistic Regression (SLR). The second stage consisted of using the previously obtained unmixing matrix, the selected ICs, and the model obtained by applying SLR to classify a different EEG dataset. This method was applied to two different settings, namely the single-participant level and the group-level. For the single-participant level, the EEG dataset used in the first stage and the EEG dataset used in the second stage originated from the same participant. For the group-level, the EEG datasets used in the first stage were constructed by temporally concatenating each combination without repetition of the EEG datasets of five participants out of six, whereas the EEG dataset used in the second stage originated from the remaining participants. The average test classification results across datasets (mean ± S.D.) were 38.62 ± 8.36% for the single-participant, which was significantly higher than the chance level (12.50 ± 0.01%), and 27.26 ± 4.39% for the group-level which was also significantly higher than the chance level (12.49% ± 0.01%). The classification accuracy within [–45°, 45°] of the true direction is 70.03 ± 8.14% for single-participant and 62.63 ± 6.07% for group-level which may be promising for some real-life applications. Clustering and contribution analyses further revealed the brain regions involved in finger movement and the temporal aspect of their contribution to the classification. These results showed the possibility of using the ICA-based method in combination with other methods to build a real-time system to control prostheses.

Keywords: Brain-computer interface, BCI, electroencephalography, EEG, finger motion decoding, independent component analysis, pseudo-real-time motion decoding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599
371 Palmprint Recognition by Wavelet Transform with Competitive Index and PCA

Authors: Deepti Tamrakar, Pritee Khanna

Abstract:

This manuscript presents, palmprint recognition by combining different texture extraction approaches with high accuracy. The Region of Interest (ROI) is decomposed into different frequencytime sub-bands by wavelet transform up-to two levels and only the approximate image of two levels is selected, which is known as Approximate Image ROI (AIROI). This AIROI has information of principal lines of the palm. The Competitive Index is used as the features of the palmprint, in which six Gabor filters of different orientations convolve with the palmprint image to extract the orientation information from the image. The winner-take-all strategy is used to select dominant orientation for each pixel, which is known as Competitive Index. Further, PCA is applied to select highly uncorrelated Competitive Index features, to reduce the dimensions of the feature vector, and to project the features on Eigen space. The similarity of two palmprints is measured by the Euclidean distance metrics. The algorithm is tested on Hong Kong PolyU palmprint database. Different AIROI of different wavelet filter families are also tested with the Competitive Index and PCA. AIROI of db7 wavelet filter achievs Equal Error Rate (EER) of 0.0152% and Genuine Acceptance Rate (GAR) of 99.67% on the palm database of Hong Kong PolyU.

Keywords: DWT, EER, Euclidean Distance, Gabor filter, PCA, ROI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
370 A Conceptual Framework of Scheduled Waste Management in Highway Industry

Authors: Nurul Nadhirah Anuar, Muhammad Fauzi Abdul Ghani

Abstract:

Scheduled waste management is very important in environmental and health aspects. In delivering services, highway industry has been indirectly involved in producing scheduled wastes. This paper aims to define the scheduled waste, to provide a conceptual framework of the scheduled waste management in highway industry, to highlight the effect of improper management of scheduled waste and to encourage future researchers to identify and share the present practice of scheduled waste management in their country. The understanding on effective management of scheduled waste will help the operators of highway industry, the academicians, future researchers, and encourage a friendly environment around the world. The study on scheduled waste management in highway industry is very crucial as highway transverse and run along kilometers crossing the various type of environment, residential and schools. Using Environmental Quality (Scheduled Waste) Regulations 2005 as a guide, this conceptual paper highlight several scheduled wastes produced by highway industry in Malaysia and provide a conceptual framework of scheduled waste management that focused on the highway industry. Understanding on scheduled waste management is vital in order to preserve the environment. Besides that, the waste substances are hazardous to human being. Many diseases have been associated with the improper management of schedule waste such as cancer, throat irritation and respiration problem.

Keywords: Asia Region, Environment, Highway Industry, Scheduled Waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2464
369 Regionalization of IDF Curves with L-Moments for Storm Events

Authors: Noratiqah Mohd Ariff, Abdul Aziz Jemain, Mohd Aftar Abu Bakar

Abstract:

The construction of Intensity-Duration-Frequency (IDF) curves is one of the most common and useful tools in order to design hydraulic structures and to provide a mathematical relationship between rainfall characteristics. IDF curves, especially those in Peninsular Malaysia, are often built using moving windows of rainfalls. However, these windows do not represent the actual rainfall events since the duration of rainfalls is usually prefixed. Hence, instead of using moving windows, this study aims to find regionalized distributions for IDF curves of extreme rainfalls based on storm events. Homogeneity test is performed on annual maximum of storm intensities to identify homogeneous regions of storms in Peninsular Malaysia. The L-moment method is then used to regionalized Generalized Extreme Value (GEV) distribution of these annual maximums and subsequently. IDF curves are constructed using the regional distributions. The differences between the IDF curves obtained and IDF curves found using at-site GEV distributions are observed through the computation of the coefficient of variation of root mean square error, mean percentage difference and the coefficient of determination. The small differences implied that the construction of IDF curves could be simplified by finding a general probability distribution of each region. This will also help in constructing IDF curves for sites with no rainfall station.

Keywords: IDF curves, L-moments, regionalization, storm events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
368 Heat Transfer Characteristics on Blade Tip with Unsteady Wake

Authors: Minho Bang, Seok Min Choi, Jun Su Park, Hokyu Moon, Hyung Hee Cho

Abstract:

Present study investigates the effect of unsteady wakes on heat transfer in blade tip. Heat/mass transfer was measured in blade tip region depending on a variety of strouhal number by naphthalene sublimation technique. Naphthalene sublimation technique measures heat transfer using a heat/mass transfer analogy. Experiments are performed in linear cascade which is composed of five turbine blades and rotating rods. Strouhal number of inlet flow are changed ranging from 0 to 0.22. Reynolds number is 100,000 based on 11.4 m/s of outlet flow and axial chord length. Three different squealer tip geometries such as base squealer tip, vertical rib squealer tip, and camber line squealer tip are used to study how unsteady wakes affect heat transfer on a blade tip. Depending on squealer tip geometry, different flow patterns occur on a blade tip. Also, unsteady wakes cause reduced tip leakage flow and turbulent flow. As a result, as strouhal number increases, heat/mass transfer coefficients decrease due to the reduced leakage flow. As strouhal number increases, heat/ mass transfer coefficients on a blade tip increase in vertical rib squealer tip.

Keywords: Gas turbine, blade tip, heat transfer, unsteady wakes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
367 Gold-Mediated Modification of Apoferritin Surface with Targeting Antibodies

Authors: Simona Dostalova, Pavel Kopel, Marketa Vaculovicova, Vojtech Adam, Rene Kizek

Abstract:

To ensure targeting of apoferritin nanocarrier with encapsulated doxorubicin drug, we used a peptide linker based on a protein G with N-terminus affinity towards Fc region of antibodies. To connect the peptide to the surface of apoferritin, the C-terminus of peptide was made of cysteine with affinity to gold. The surface of apoferritin with encapsulated doxorubicin (APODOX) was coated either with gold nanoparticles (APODOX-Nano) or gold(III) chloride hydrate reduced with sodium borohydride (APODOX-HAu). The reduction with sodium borohydride caused a loss of doxorubicin fluorescent properties and probably accompanied with the loss of its biological activity. Fluorescent properties of APODOX-Nano were similar to the unmodified APODOX; therefore it was more suited for the intended use. To evaluate the specificity of apoferritin modified with antibodies, ELISA-like method was used with the surface of microtitration plate wells coated by the antigen (goat anti-human IgG antibodies). To these wells, the nanocarrier was applied. APODOX without the modification showed 5× lower affinity to the antigen than APODOX-Nano modified gold and targeting antibodies (human IgG antibodies).

Keywords: Antibody targeting, apoferritin, doxorubicin, nanocarrier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250
366 Evaluation of Nutritional Potential of Five Unexplored Wild Edible Food Plants from Eastern Himalayan Biodiversity Hotspot Region (India)

Authors: Pallabi Kalita, Hui Tag, H. N. Sarma, A. K. Das.

Abstract:

Wild edible food plants contain a number of organic phytochemical that have been linked to the promotion of good health. These plants used by the local people of Arunachal Pradesh (Northeast India) are found to have high nutritional potential to maintain general balance diet. A study was conducted to evaluate the nutritional potential of five commonly found, unexplored wild food plants namely, Piper pedicellatum C. DC (leaves), Gonostegia hirta (Blume ex Hassk.) Miq. (leaves), Mussaenda roxburghii Hook.f (leaves), Solanum spirale Roxb. (leaves and fruits) and Cyathea spinulosa Wall. ex Hook. (pith portion and tender rachis) from East Siang District of Arunachal Pradesh Northeast (India) for ascertaining their suitability for utilization as supplementary food. Results of study revealed that P. pedicellatum, C. spinulosa, and S. spirale (leaves) are the most promising species which have high nutritional content out of the five wild food plants investigated which is required for the normal growth and development of human.

Keywords: Wild edible plants, Gross energy, Gonostegia hirta, Cyathea spinulosa,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3265
365 Heuristic Search Algorithm (HSA) for Enhancing the Lifetime of Wireless Sensor Networks

Authors: Tripatjot S. Panag, J. S. Dhillon

Abstract:

The lifetime of a wireless sensor network can be effectively increased by using scheduling operations. Once the sensors are randomly deployed, the task at hand is to find the largest number of disjoint sets of sensors such that every sensor set provides complete coverage of the target area. At any instant, only one of these disjoint sets is switched on, while all other are switched off. This paper proposes a heuristic search method to find the maximum number of disjoint sets that completely cover the region. A population of randomly initialized members is made to explore the solution space. A set of heuristics has been applied to guide the members to a possible solution in their neighborhood. The heuristics escalate the convergence of the algorithm. The best solution explored by the population is recorded and is continuously updated. The proposed algorithm has been tested for applications which require sensing of multiple target points, referred to as point coverage applications. Results show that the proposed algorithm outclasses the existing algorithms. It always finds the optimum solution, and that too by making fewer number of fitness function evaluations than the existing approaches.

Keywords: Coverage, disjoint sets, heuristic, lifetime, scheduling, wireless sensor networks, WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
364 Improved Text-Independent Speaker Identification using Fused MFCC and IMFCC Feature Sets based on Gaussian Filter

Authors: Sandipan Chakroborty, Goutam Saha

Abstract:

A state of the art Speaker Identification (SI) system requires a robust feature extraction unit followed by a speaker modeling scheme for generalized representation of these features. Over the years, Mel-Frequency Cepstral Coefficients (MFCC) modeled on the human auditory system has been used as a standard acoustic feature set for speech related applications. On a recent contribution by authors, it has been shown that the Inverted Mel- Frequency Cepstral Coefficients (IMFCC) is useful feature set for SI, which contains complementary information present in high frequency region. This paper introduces the Gaussian shaped filter (GF) while calculating MFCC and IMFCC in place of typical triangular shaped bins. The objective is to introduce a higher amount of correlation between subband outputs. The performances of both MFCC & IMFCC improve with GF over conventional triangular filter (TF) based implementation, individually as well as in combination. With GMM as speaker modeling paradigm, the performances of proposed GF based MFCC and IMFCC in individual and fused mode have been verified in two standard databases YOHO, (Microphone Speech) and POLYCOST (Telephone Speech) each of which has more than 130 speakers.

Keywords: Gaussian Filter, Triangular Filter, Subbands, Correlation, MFCC, IMFCC, GMM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449
363 Heat Transfer Characteristics and Fluid Flow past Staggered Flat-Tube Bank Using CFD

Authors: Zeinab Sayed Abdel-Rehim

Abstract:

A computational fluid dynamic (CFD-Fluent 6.2) for two-dimensional fluid flow is applied to predict the pressure drop and heat transfer characteristics of laminar and turbulent flow past staggered flat-tube bank. Effect of aspect ratio ((H/D)/(L/D)) on pressure drop, temperature, and velocity contour for laminar and turbulent flow over staggered flat-tube bank is studied. The theoretical results of the present models are compared with previously published experimental data of different authors. Satisfactory agreement is demonstrated. Also, the comparison between the present study and others analytical methods for the Re number with Nu number is done. The results show as the Reynolds number increases the maximum velocity in the passage between the upper and lower tubes increases. The comparisons show a fair agreement especially in the turbulent flow region. The good agreement of the data of this work with these recommended analytical methods validates the current study.

Keywords: Aspect ratio ((H/D)/(L/D)), CFD, fluid flow, heat transfer, staggered arrangement, tube bank, and turbulent flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3752
362 Stress Analysis of the Ceramics Heads with Different Sizes under the Destruction Tests

Authors: V. Fuis, P. Janicek, T. Navrat

Abstract:

The global solved problem is the calculation of the parameters of ceramic material from a set of destruction tests of ceramic heads of total hip joint endoprosthesis. The standard way of calculation of the material parameters consists in carrying out a set of 3 or 4 point bending tests of specimens cut out from parts of the ceramic material to be analysed. In case of ceramic heads, it is not possible to cut out specimens of required dimensions because the heads are too small (if the cut out specimens were smaller than the normalised ones, the material parameters derived from them would exhibit higher strength values than those which the given ceramic material really has). A special destruction device for heads destruction was designed and the solved local problem is the modification of this destructive device based on the analysis of tensile stress in the head for two different values of the depth of the conical hole in the head. The goal of device modification is a shift of the location with extreme value of σ1max from the region of head’s hole bottom to its opening. This modification will increase the credibility of the obtained material properties of bioceramics, which will be determined from a set of head destructions using the Weibull weakest link theory.

Keywords: Ceramic heads, depth of the conical hole, destruction test, material parameters, principal stress, total hip joint endoprosthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
361 Improving Spatiotemporal Change Detection: A High Level Fusion Approach for Discovering Uncertain Knowledge from Satellite Image Database

Authors: Wadii Boulila, Imed Riadh Farah, Karim Saheb Ettabaa, Basel Solaiman, Henda Ben Ghezala

Abstract:

This paper investigates the problem of tracking spa¬tiotemporal changes of a satellite image through the use of Knowledge Discovery in Database (KDD). The purpose of this study is to help a given user effectively discover interesting knowledge and then build prediction and decision models. Unfortunately, the KDD process for spatiotemporal data is always marked by several types of imperfections. In our paper, we take these imperfections into consideration in order to provide more accurate decisions. To achieve this objective, different KDD methods are used to discover knowledge in satellite image databases. Each method presents a different point of view of spatiotemporal evolution of a query model (which represents an extracted object from a satellite image). In order to combine these methods, we use the evidence fusion theory which considerably improves the spatiotemporal knowledge discovery process and increases our belief in the spatiotemporal model change. Experimental results of satellite images representing the region of Auckland in New Zealand depict the improvement in the overall change detection as compared to using classical methods.

Keywords: Knowledge discovery in satellite databases, knowledge fusion, data imperfection, data mining, spatiotemporal change detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
360 A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius

Authors: M. A. S. Fahim, J. Sužiedelytė Visockienė

Abstract:

With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realization often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing.

Keywords: Air pollution, anthropogenic and natural sources, machine learning, Gaussian process regression, tree ensemble, forecasting models, particulate matter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117
359 Photodetector Engineering with Plasmonic Properties

Authors: Hasan Furkan Kurt, Tugba Nur Atabey, Onat Cavit Dereli, Ahmad Salmanogli, H. Selcuk Gecim

Abstract:

In the article, the main goal is to study the effect of the plasmonic properties on the photocurrent generated by a photodetector. Fundamentally, a typical photodetector is designed and simulated using the finite element methods. To utilize the plasmonic effect, gold nanoparticles with different shape, size and morphology are buried into the intrinsic region. Plasmonic effect is arisen through the interaction of the incoming light with nanoparticles by which electrical properties of the photodetector are manipulated. In fact, using plasmonic nanoparticles not only increases the absorption bandwidth of the incoming light, but also generates a high intensity near-field close to the plasmonic nanoparticles. Those properties strongly affect the generated photocurrent. The simulation results show that using plasmonic nanoparticles significantly enhances the electrical properties of the photodetectors. More importantly, one can easily manipulate the plasmonic properties of the gold nanoparticles through engineering the nanoparticles' size, shape and morphology. Another important phenomenon is plasmon-plasmon interaction inside the photodetector. It is shown that plasmon-plasmon interaction improves the electron-hole generation rate by which the rate of the current generation is severely enhanced. This is the key factor that we want to focus on, to improve the photodetector electrical properties.

Keywords: Nanoparticles, plasmonic, plasmon-plasmon interaction, plasmonic photodetector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616
358 Experimental Study on the Effects of Water-in-Oil Emulsions to the Pressure Drop in Pipeline Flow

Authors: S. S. Dol, M. S. Chan, S. F. Wong, J. S. Lim

Abstract:

Emulsion formation is unavoidable and can be detrimental to an oil field production. The presence of stable emulsions also reduces the quality of crude oil and causes more problems in the downstream refinery operations, such as corrosion and pipeline pressure drop. Hence, it is important to know the effects of emulsions in the pipeline. Light crude oil was used for the continuous phase in the W/O emulsions where the emulsions pass through a flow loop to test the pressure drop across the pipeline. The results obtained shows that pressure drop increases as water cut is increased until it peaks at the phase inversion of the W/O emulsion between 30% to 40% water cut. Emulsions produced by gradual constrictions show a lower stability as compared to sudden constrictions. Lower stability of emulsions in gradual constriction has the higher influence of pressure drop compared to a sudden sharp decrease in diameter in sudden constriction. Generally, sudden constriction experiences pressure drop of 0.013% to 0.067% higher than gradual constriction of the same ratio. Lower constriction ratio cases cause larger pressure drop ranging from 0.061% to 0.241%. Considering the higher profitability in lower emulsion stability and lower pressure drop at the developed flow region of different constrictions, an optimum design of constriction is found to be gradual constriction with a ratio of 0.5.

Keywords: Constriction, pressure drop, turbulence, water cut, water-in-oil emulsions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1106
357 A New Perturbation Technique in Numerical Study on Buckling of Composite Shells under Axial Compression

Authors: Zia R. Tahir, P. Mandal

Abstract:

A numerical study is presented on buckling and post buckling behaviour of laminated carbon fiber reinforced plastic (CFRP) thin-walled cylindrical shells under axial compression using asymmetric meshing technique (AMT). Asymmetric meshing technique is a perturbation technique to introduce disturbance without changing geometry, boundary conditions or loading conditions. Asymmetric meshing affects predicted buckling load, buckling mode shape and post-buckling behaviour. Linear (eigenvalue) and nonlinear (Riks) analyses have been performed to study the effect of asymmetric meshing in the form of a patch on buckling behaviour. The reduction in the buckling load using Asymmetric meshing technique was observed to be about 15%. An isolated dimple formed near the bifurcation point and the size of which increased to reach a stable state in the post-buckling region. The load-displacement curve behaviour applying asymmetric meshing is quite similar to the curve obtained using initial geometric imperfection in the shell model.

Keywords: CFRP Composite Cylindrical Shell, Finite Element Analysis, Perturbation Technique, Asymmetric Meshing Technique, Linear Eigenvalue analysis, Non-linear Riks Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376
356 E-Education in Multicultural Setting: The Success of Mobile Learning

Authors: Subramaniam Chandran

Abstract:

This paper explains how mobile learning assures sustainable e-education for multicultural group of students. This paper reports the impact of mobile learning on distance education in multicultural environment. The emergence of learning technologies through CD, internet, and mobile is increasingly adopted by distance institutes for quick delivery and cost-effective purposes. Their sustainability is conditioned by the structure of learners as well as the teaching community. The experimental study was conducted among the distant learners of Vinayaka Missions University located at Salem in India. Students were drawn from multicultural environment based on different languages, religions, class and communities. During the mobile learning sessions, the students, who are divided on language, religion, class and community, were dominated by play impulse rather than study anxiety or cultural inhibitions. This study confirmed that mobile learning improved the performance of the students despite their division based on region, language or culture. In other words, technology was able to transcend the relative deprivation in the multicultural groups. It also confirms sustainable e-education through mobile learning and cost-effective system of instruction. Mobile learning appropriates the self-motivation and play impulse of the young learners in providing sustainable e-education to multicultural social groups of students.

Keywords: E-Education, mobile learning, multiculturalism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
355 Effect of Self-Compacting Concrete and Aggregate Size on Anchorage Performance at Highly Congested Reinforcement Regions

Authors: Umair Baig, Kohei Nagai

Abstract:

At highly congested reinforcement regions, which is common at beam-column joint area, clear spacing between parallel bars becomes less than maximum normal aggregate size (20mm) which has not been addressed in any design code and specifications. Limited clear spacing between parallel bars (herein after thin cover) is one of the causes which affect anchorage performance. In this study, an experimental investigation was carried out to understand anchorage performance of reinforcement in Self-Compacting Concrete (SCC) and Normal Concrete (NC) at highly congested regions under uni-axial tensile loading.  Column bar was pullout whereas; beam bars were offset from column reinforcement creating thin cover as per site condition. Two different sizes of coarse aggregate were used for NC (20mm and 10mm). Strain gauges were also installed along the bar in some specimens to understand the internal stress mechanism. Test results reveal that anchorage performance is affected at highly congested reinforcement region in NC with maximum aggregate size 20mm whereas; SCC and Small Aggregate (10mm) gives better structural performance. 

Keywords: Anchorage capacity, bond, Normal Concrete, self-compacting concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3430
354 Automatic Music Score Recognition System Using Digital Image Processing

Authors: Yuan-Hsiang Chang, Zhong-Xian Peng, Li-Der Jeng

Abstract:

Music has always been an integral part of human’s daily lives. But, for the most people, reading musical score and turning it into melody is not easy. This study aims to develop an Automatic music score recognition system using digital image processing, which can be used to read and analyze musical score images automatically. The technical approaches included: (1) staff region segmentation; (2) image preprocessing; (3) note recognition; and (4) accidental and rest recognition. Digital image processing techniques (e.g., horizontal /vertical projections, connected component labeling, morphological processing, template matching, etc.) were applied according to musical notes, accidents, and rests in staff notations. Preliminary results showed that our system could achieve detection and recognition rates of 96.3% and 91.7%, respectively. In conclusion, we presented an effective automated musical score recognition system that could be integrated in a system with a media player to play music/songs given input images of musical score. Ultimately, this system could also be incorporated in applications for mobile devices as a learning tool, such that a music player could learn to play music/songs.

Keywords: Connected component labeling, image processing, morphological processing, optical musical recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
353 The Use of Symbolic Signs in Modern Ukrainian Monumental Church Painting: Classification and Hidden Semantics

Authors: Khlystun Yuliia Igorivna

Abstract:

Monumental church paintings are often perceived either as the interior decoration of the temple or as the "Gospel for the illiterate," as the temple painting often contains scenes from Holy Scripture. In science the painting of the Orthodox Church is mainly the subject of study of art critics, but from the point of view of culturology and semiotics, it is insufficiently studied. The symbolism of monumental church painting is insufficiently revealed. The aim of this paper is to give a description of symbolic signs, to classify them, to give examples for each type of sign from the paintings of modern temples of Eastern Ukraine, on the basis of semiotic analysis of iconographic plots used in monumental church painting. We offer own classification of symbols of monumental church painting, using examples from the murals of modern Orthodox churches in Eastern Ukraine, mainly from the Donetsk region. When analyzing the semantics of symbolic signs, the following methods of the culturological approach were used: semiotic, iconological, iconographic, hermeneutic, culturological, descriptive, comparative-historical, visual-analytical. When interpreting the meanings of symbolic signs, scientific, cultural and theological literature were used. Photos taken by the author have been added to the article.

Keywords: Iconography, painting of Orthodox Church, Orthodox Church, semiotic signs in modern iconography, classification of symbols in painting of Orthodox Church.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 399
352 Adaptive Fuzzy Control of Stewart Platform under Actuator Saturation

Authors: Dongsu Wu, Hongbin Gu, Peng Li

Abstract:

A novel adaptive fuzzy trajectory tracking algorithm of Stewart platform based motion platform is proposed to compensate path deviation and degradation of controller-s performance due to actuator torque limit. The algorithm can be divided into two parts: the real-time trajectory shaping part and the joint space adaptive fuzzy controller part. For a reference trajectory in task space whenever any of the actuators is saturated, the desired acceleration of the reference trajectory is modified on-line by using dynamic model of motion platform. Meanwhile an additional action with respect to the difference between the nominal and modified trajectories is utilized in the non-saturated region of actuators to reduce the path error. Using modified trajectory as input, the joint space controller incorporates compute torque controller, leg velocity observer and fuzzy disturbance observer with saturation compensation. It can ensure stability and tracking performance of controller in present of external disturbance and position only measurement. Simulation results verify the effectiveness of proposed control scheme.

Keywords: Actuator saturation, adaptive fuzzy control, Stewartplatform, trajectory shaping, flight simulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
351 Mechanical Investigation Approach to Optimize the High-Velocity Oxygen Fuel Fe-Based Amorphous Coatings Reinforced by B4C Nanoparticles

Authors: Behrooz Movahedi

Abstract:

Fe-based amorphous feedstock powders are used as the matrix into which various ratios of hard B4C nanoparticles (0, 5, 10, 15, 20 vol.%) as reinforcing agents were prepared using a planetary high-energy mechanical milling. The ball-milled nanocomposite feedstock powders were also sprayed by means of high-velocity oxygen fuel (HVOF) technique. The characteristics of the powder particles and the prepared coating depending on their microstructures and nanohardness were examined in detail using nanoindentation tester. The results showed that the formation of the Fe-based amorphous phase was noticed over the course of high-energy ball milling. It is interesting to note that the nanocomposite coating is divided into two regions, namely, a full amorphous phase region and homogeneous dispersion of B4C nanoparticles with a scale of 10–50 nm in a residual amorphous matrix. As the B4C content increases, the nanohardness of the composite coatings increases, but the fracture toughness begins to decrease at the B4C content higher than 20 vol.%. The optimal mechanical properties are obtained with 15 vol.% B4C due to the suitable content and uniform distribution of nanoparticles. Consequently, the changes in mechanical properties of the coatings were attributed to the changes in the brittle to ductile transition by adding B4C nanoparticles.

Keywords: Fe-based amorphous, B4C nanoparticles, nanocomposite coating, HVOF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742
350 Economic Evaluation of Degradation by Corrosion of an on-Grid Battery Energy Storage System: A Case Study in Algeria Territory

Authors: Fouzia Brihmat

Abstract:

Economic planning models, which are used to build microgrids and Distributed Energy Resources (DER), are the current norm for expressing such confidence. These models often decide both short-term DER dispatch and long-term DER investments. This research investigates the most cost-effective hybrid (photovoltaic-diesel) renewable energy system (HRES) based on Total Net Present Cost (TNPC) in an Algerian Saharan area, which has a high potential for solar irradiation and has a production capacity of 1 GW/h. Lead-acid batteries have been around much longer and are easier to understand, but have limited storage capacity. Lithium-ion batteries last longer, are lighter, but generally more expensive. By combining the advantages of each chemistry, we produce cost-effective high-capacity battery banks that operate solely on AC coupling. The financial implications of this research describe the corrosion process that occurs at the interface between the active material and grid material of the positive plate of a lead-acid battery. The best cost study for the HRES is completed with the assistance of the HOMER Pro MATLAB Link. Additionally, during the course of the project's 20 years, the system is simulated for each time step. In this model, which takes into consideration decline in solar efficiency, changes in battery storage levels over time, and rises in fuel prices above the rate of inflation, the trade-off is that the model is more accurate, but the computation takes longer. We initially utilized the optimizer to run the model without multi-year in order to discover the best system architecture. The optimal system for the single-year scenario is the Danvest generator, which has 760 kW, 200 kWh of the necessary quantity of lead-acid storage, and a somewhat lower Cost Of Energy (COE) of $0.309/kWh. Different scenarios that account for fluctuations in the gasified biomass generator's production of electricity have been simulated, and various strategies to guarantee the balance between generation and consumption have been investigated.

Keywords: Battery, Corrosion, Diesel, Economic planning optimization, Hybrid energy system, HES, Lead-acid battery, Li-ion battery, multi-year planning, microgrid, price forecast, total net present cost, wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165