Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30843
Mechanical Investigation Approach to Optimize the High-Velocity Oxygen Fuel Fe-Based Amorphous Coatings Reinforced by B4C Nanoparticles

Authors: Behrooz Movahedi


Fe-based amorphous feedstock powders are used as the matrix into which various ratios of hard B4C nanoparticles (0, 5, 10, 15, 20 vol.%) as reinforcing agents were prepared using a planetary high-energy mechanical milling. The ball-milled nanocomposite feedstock powders were also sprayed by means of high-velocity oxygen fuel (HVOF) technique. The characteristics of the powder particles and the prepared coating depending on their microstructures and nanohardness were examined in detail using nanoindentation tester. The results showed that the formation of the Fe-based amorphous phase was noticed over the course of high-energy ball milling. It is interesting to note that the nanocomposite coating is divided into two regions, namely, a full amorphous phase region and homogeneous dispersion of B4C nanoparticles with a scale of 10–50 nm in a residual amorphous matrix. As the B4C content increases, the nanohardness of the composite coatings increases, but the fracture toughness begins to decrease at the B4C content higher than 20 vol.%. The optimal mechanical properties are obtained with 15 vol.% B4C due to the suitable content and uniform distribution of nanoparticles. Consequently, the changes in mechanical properties of the coatings were attributed to the changes in the brittle to ductile transition by adding B4C nanoparticles.

Keywords: HVOF, nanocomposite coating, Fe-based amorphous, B₄C nanoparticles

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 304


[1] J. Do, S. Jung, H-J. Lee, B-J. Lee, G-U. Cha, C.Y. Jo and S. Lee: Metall.Tranns. A, 2013, vol. 44, pp. 2573-80.
[2] C. Zhang, L. Liu, K.C. Chan, Q. Chen and C.Y. Tang: Intermetallics, 2012, vol. 29, pp. 80-5.
[3] D. J. Branagan: Computer Coupling of Phase Diagrams and Thermochemistry 2007, vol. 31, pp. 343-50.
[4] D. J. Branagan and Y. Tang: Composites: part A, 2002, vol. 33, pp. 855-59.
[5] D. Z. Segu, J. H. Choi, S. Yi and S. S. Kim: Tribol Lett, 2012, vol. 47, pp. 131-38.
[6] S. F. Guo, L. Liu, N. Li and Y. Li: Scripta Materialia 2010, vol. 62, pp. 329-32.
[7] Suryanarayana and A. Inoue: Bulk Metallic Glasses. (Taylor and Francis Group, LLC, 2011).
[8] T. Terajima, F. Takeuchi, K. Nakata, S. Adachi, K. Nakashima and T. Igarashi: Journal of Alloys and Compounds 2010, vol. 504, pp. 288-91.
[9] S. Yugeswaran, A. Kobayashi, K. Suresh and B. Subramanian: Journal of Alloys and Compounds, 2013, vol. 551, pp. 168–75.
[10] B. Y. Fu, D. Y. He, L. D. Zhao and X. Y. Li: Surface Engineering, 2009, vol. 25, pp. 326-32.
[11] D. H. Kwon, E. S. Park, M. Y. Huh, H. J. Kim and J. C. Bae: Journal of Alloys and Compounds 2011, vol. 509S, pp. S105–S108.
[12] T. Lampke, B. Wielage, H. Pokhmurska, C. Rupprecht, S. Schuberth, R. Drehmann and F. Schreiber: Surface and Coatings Technology 2011, vol. 205, pp. 3671–76.
[13] J. Y. Suh and D. H. Bae: Materials Science and Engineering A 2013, vol. 582, pp. 321-25.
[14] H. Choi-Yim and W. L. Johnson: Appl. Phys. Lett 1997, vol. 71, pp. 3808-10.
[15] L. Liu and C. Zhang: Thin Solid Films 2014, vol. 561, pp. 70-86.
[16] Y. Cao, C. Huang, W. Liu, W. Zhang and L. Du: journal of Thermal Spray Technology 2014, vol. 23, pp. 716-24.
[17] S. Yoon, J. Kim, B.D. Kim and C. Lee: Surface and Coatings Technology 2010, vol. 205, pp. 1962–68.
[18] G. Liu, Y. A.J. Chen, G. Hou and J. Chen: Tribol Lett 2012, vol. 46, pp. 131–38.
[19] H. J. Kim, K. M. Lim, B. G. Seong and B. G. Seong: Journal of Aterials Science 2001, vol. 36, pp. 49– 54.
[20] W. Tillmann, P. S. Hollingsworth, G. Fischer, J. Nellesen and F. Beckmann: Journal of Thermal Spray Technology 2014, vol. 23, pp. 289-95.
[21] Y. Wu, P. Lin, G. Xie, J. Hu and M. Cao: Materials Science and Engineering A 2006, vol. 430, pp. 34-39.
[22] B. Movahedi, In Advanced Plasma Spray Applications, ed. Hamidreza Salimi Jazi (InTech: Janeza Trdine 9, 51000 Rijeka, Croatia, 2012), pp 189-218.
[23] J-B. Cheng, X-B. Liang, B-S. Xu and Y-X. Wu: Journal of Non-Crystalline Solids 2009, vol. 355, pp. 1673–78.
[24] B. Movahedi, M.H. Enayati and C.C. Wong, journal of Thermal Spray Technology 2010, vol. 19, pp. 1093–99.
[25] W. Guo, Y. Wu, J. Zhang, S. Hong, G. Li, G. Ying, J. Guo and Y. Qin: journal of Thermal Spray Technology 2014, vol. 23, pp. 1157-80.
[26] B. Movahedi, M.H. Enayati and C.C. Wong: Materials Letters 2010, vol. 64, pp. 1055–58.
[27] B. Movahedi, M.H. Enayati and C.C. Wong: Materials Science and Engineering B 2010, vol. 172, pp. 50–54.
[28] B. Movahedi, Advanced Powder Technology 2014, vol. 25, pp. 871–78.
[29] A. G. Evans and T. R. Wilshaw: Acta Metallurgica 1976, vol. 24, pp. 939–56.
[30] D. J. Branagan, W. D. Swank, D. C. Haggard and J. R. Fincke, Metallurgical and Materials Transactions A: 2001, vol. 32, pp. 2615-21.
[31] E. Salahinejad, R. Amini, E. A. Bajestani and M. Hadianfard: Journal of Alloys and Compounds 2010, vol. 497, pp. 369-72.
[32] Y. Kim, K. Hiraga, A. Inoue, T. Masumoto and H. Jo: Mater. Trans. JIM 1994, vol. 35, pp. 293-302.
[33] Z. Zhou, L. Wang, D. Y. He, F. C. Wang and Y. B. Liu: Journal of Thermal Spray Technology 2010, vol. 19, pp. 1287–93.
[34] K. Wang, T. Fujita, D. Pan, T. G. Nieh, A. Inoue, D. H. Kim and M. W. Chen: Acta Mater 2008, vol. 56, pp. 3077–87.
[35] M. Iqbal, J. I. Akhter, H. F. Zhang and Z. Q. Hu: Journal of Non-Crystalline Solids 2008, vol. 354, pp. 5363–67.
[36] V. Keryvin, V. H. Hoang and J. Shen: Intermetallics 2009, vol. 19, pp. 211-7.
[37] P. A. Hess, S. J. Poon, G. J. Shiflet and R. H. Dauskardt: J. Mater. Res 2005, vol. 20, pp. 783-6.
[38] B. Movahedi: Surface and Coatings Technology 2013, vol. 235, pp. 212–9.
[39] M. Aizenshtein, I. Mizrahi, N. Froumin, S. Hayun, M. P. Dariel and N. Frage: Materials Science and Engineering A 2008, vol. 495, pp. 70-4.
[40] C-J. Li, Y-Y. Wang and H. Li: J. Vac. Sci. Technol. A 2004, vol. 22, pp. 2000-04.