Search results for: Network Security.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3522

Search results for: Network Security.

1962 Slime Mould Optimization Algorithms for Optimal Distributed Generation Integration in Distribution Electrical Network

Authors: F. Fissou Amigue, S. Ndjakomo Essiane, S. Pérabi Ngoffé, G. Abessolo Ondoa, G. Mengata Mengounou, T. P. Nna Nna

Abstract:

This document proposes a method for determining the optimal point of integration of distributed generation (DG) in distribution grid. Slime mould optimization is applied to determine best node in case of one and two injection point. Problem has been modeled as an optimization problem where the objective is to minimize joule loses and main constraint is to regulate voltage in each point. The proposed method has been implemented in MATLAB and applied in IEEE network 33 and 69 nodes. Comparing results obtained with other algorithms showed that slime mould optimization algorithms (SMOA) have the best reduction of power losses and good amelioration of voltage profile.

Keywords: Optimization, distributed generation, integration, slime mould algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 654
1961 Developing Pedotransfer Functions for Estimating Some Soil Properties using Artificial Neural Network and Multivariate Regression Approaches

Authors: Fereydoon Sarmadian, Ali Keshavarzi

Abstract:

Study of soil properties like field capacity (F.C.) and permanent wilting point (P.W.P.) play important roles in study of soil moisture retention curve. Although these parameters can be measured directly, their measurement is difficult and expensive. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. In this investigation, 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. The data set was divided into two subsets for calibration (80%) and testing (20%) of the models and their normality were tested by Kolmogorov-Smirnov method. Both multivariate regression and artificial neural network (ANN) techniques were employed to develop the appropriate PTFs for predicting soil parameters using easily measurable characteristics of clay, silt, O.C, S.P, B.D and CaCO3. The performance of the multivariate regression and ANN models was evaluated using an independent test data set. In order to evaluate the models, root mean square error (RMSE) and R2 were used. The comparison of RSME for two mentioned models showed that the ANN model gives better estimates of F.C and P.W.P than the multivariate regression model. The value of RMSE and R2 derived by ANN model for F.C and P.W.P were (2.35, 0.77) and (2.83, 0.72), respectively. The corresponding values for multivariate regression model were (4.46, 0.68) and (5.21, 0.64), respectively. Results showed that ANN with five neurons in hidden layer had better performance in predicting soil properties than multivariate regression.

Keywords: Artificial neural network, Field capacity, Permanentwilting point, Pedotransfer functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
1960 Impact of MAC Layer on the Performance of Routing Protocols in Mobile Ad hoc Networks

Authors: T.G. Basavaraju, Subir Kumar Sarkar, C Puttamadappa

Abstract:

Mobile Ad hoc Networks is an autonomous system of mobile nodes connected by multi-hop wireless links without centralized infrastructure support. As mobile communication gains popularity, the need for suitable ad hoc routing protocols will continue to grow. Efficient dynamic routing is an important research challenge in such a network. Bandwidth constrained mobile devices use on-demand approach in their routing protocols because of its effectiveness and efficiency. Many researchers have conducted numerous simulations for comparing the performance of these protocols under varying conditions and constraints. Most of them are not aware of MAC Protocols, which will impact the relative performance of routing protocols considered in different network scenarios. In this paper we investigate the choice of MAC protocols affects the relative performance of ad hoc routing protocols under different scenarios. We have evaluated the performance of these protocols using NS2 simulations. Our results show that the performance of routing protocols of ad hoc networks will suffer when run over different MAC Layer protocols.

Keywords: AODV, DSR, DSDV, MAC, MANETs, relativeperformance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2683
1959 Multi Task Scheme to Monitor Multivariate Environments Using Artificial Neural Network

Authors: K. Atashgar

Abstract:

When an assignable cause(s) manifests itself to a multivariate process and the process shifts to an out-of-control condition, a root-cause analysis should be initiated by quality engineers to identify and eliminate the assignable cause(s) affected the process. A root-cause analysis in a multivariate process is more complex compared to a univariate process. In the case of a process involved several correlated variables an effective root-cause analysis can be only experienced when it is possible to identify the required knowledge including the out-of-control condition, the change point, and the variable(s) responsible to the out-of-control condition, all simultaneously. Although literature addresses different schemes to monitor multivariate processes, one can find few scientific reports focused on all the required knowledge. To the best of the author’s knowledge this is the first time that a multi task model based on artificial neural network (ANN) is reported to monitor all the required knowledge at the same time for a multivariate process with more than two correlated quality characteristics. The performance of the proposed scheme is evaluated numerically when different step shifts affect the mean vector. Average run length is used to investigate the performance of the proposed multi task model. The simulated results indicate the multi task scheme performs all the required knowledge effectively.

Keywords: Artificial neural network, Multivariate process, Statistical process control, Change point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
1958 Computationally Efficient Signal Quality Improvement Method for VoIP System

Authors: H. P. Singh, S. Singh

Abstract:

The voice signal in Voice over Internet protocol (VoIP) system is processed through the best effort policy based IP network, which leads to the network degradations including delay, packet loss jitter. The work in this paper presents the implementation of finite impulse response (FIR) filter for voice quality improvement in the VoIP system through distributed arithmetic (DA) algorithm. The VoIP simulations are conducted with AMR-NB 6.70 kbps and G.729a speech coders at different packet loss rates and the performance of the enhanced VoIP signal is evaluated using the perceptual evaluation of speech quality (PESQ) measurement for narrowband signal. The results show reduction in the computational complexity in the system and significant improvement in the quality of the VoIP voice signal.

Keywords: VoIP, Signal Quality, Distributed Arithmetic, Packet Loss, Speech Coder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
1957 An Innovative Approach to the Formulation of Connection Admission Control Problem

Authors: Carlo Bruni, Francesco Delli Priscoli, Giorgio Koch, Ilaria Marchetti

Abstract:

This paper proposes an innovative approach for the Connection Admission Control (CAC) problem. Starting from an abstract network modelling, the CAC problem is formulated in a technology independent fashion allowing the proposed concepts to be applied to any wireless and wired domain. The proposed CAC is decoupled from the other Resource Management procedures, but cooperates with them in order to guarantee the desired QoS requirements. Moreover, it is based on suitable performance measurements which, by using proper predictors, allow to forecast the domain dynamics in the next future. Finally, the proposed CAC control scheme is based on a feedback loop aiming at maximizing a suitable performance index accounting for the domain throughput, whilst respecting a set of constraints accounting for the QoS requirements.

Keywords: Network Management, Quality of Service (QoS) requirements, Optimal Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292
1956 Analysis of Cooperative Hybrid ARQ with Adaptive Modulation and Coding on a Correlated Fading Channel Environment

Authors: Ibrahim Ozkan

Abstract:

In this study, a cross-layer design which combines adaptive modulation and coding (AMC) and hybrid automatic repeat request (HARQ) techniques for a cooperative wireless network is investigated analytically. Previous analyses of such systems in the literature are confined to the case where the fading channel is independent at each retransmission, which can be unrealistic unless the channel is varying very fast. On the other hand, temporal channel correlation can have a significant impact on the performance of HARQ systems. In this study, utilizing a Markov channel model which accounts for the temporal correlation, the performance of non-cooperative and cooperative networks are investigated in terms of packet loss rate and throughput metrics for Chase combining HARQ strategy.

Keywords: Cooperative network, adaptive modulation and coding, hybrid ARQ, correlated fading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 590
1955 Fire Spread Simulation Tool for Cruise Vessels

Authors: Erik Hedin, Lars Strandén, Johannes Lundsten

Abstract:

In 2002 an amendment to SOLAS opened for lightweight material constructions in vessels if the same fire safety as in steel constructions could be obtained. FISPAT (FIreSPread Analysis Tool) is a computer application that simulates fire spread and fault injection in cruise vessels and identifies fire sensitive areas. It was developed to analyze cruise vessel designs and provides a method to evaluate network layout and safety of cruise vessels. It allows fast, reliable and deterministic exhaustive simulations and presents the result in a graphical vessel model. By performing the analysis iteratively while altering the cruise vessel design it can be used along with fire chamber experiments to show that the lightweight design can be as safe as a steel construction and that SOLAS regulations are fulfilled.

Keywords: Fire spread, network, safety, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
1954 Deterministic Random Number Generator Algorithm for Cryptosystem Keys

Authors: Adi A. Maaita, Hamza A. A. Al_Sewadi

Abstract:

One of the crucial parameters of digital cryptographic systems is the selection of the keys used and their distribution. The randomness of the keys has a strong impact on the system’s security strength being difficult to be predicted, guessed, reproduced, or discovered by a cryptanalyst. Therefore, adequate key randomness generation is still sought for the benefit of stronger cryptosystems. This paper suggests an algorithm designed to generate and test pseudo random number sequences intended for cryptographic applications. This algorithm is based on mathematically manipulating a publically agreed upon information between sender and receiver over a public channel. This information is used as a seed for performing some mathematical functions in order to generate a sequence of pseudorandom numbers that will be used for encryption/decryption purposes. This manipulation involves permutations and substitutions that fulfill Shannon’s principle of “confusion and diffusion”. ASCII code characters were utilized in the generation process instead of using bit strings initially, which adds more flexibility in testing different seed values. Finally, the obtained results would indicate sound difficulty of guessing keys by attackers.

Keywords: Cryptosystems, Information Security agreement, Key distribution, Random numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3439
1953 Simulated Annealing and Genetic Algorithm in Telecommunications Network Planning

Authors: Aleksandar Tsenov

Abstract:

The main goal of this work is to propose a way for combined use of two nontraditional algorithms by solving topological problems on telecommunications concentrator networks. The algorithms suggested are the Simulated Annealing algorithm and the Genetic Algorithm. The Algorithm of Simulated Annealing unifies the well known local search algorithms. In addition - Simulated Annealing allows acceptation of moves in the search space witch lead to decisions with higher cost in order to attempt to overcome any local minima obtained. The Genetic Algorithm is a heuristic approach witch is being used in wide areas of optimization works. In the last years this approach is also widely implemented in Telecommunications Networks Planning. In order to solve less or more complex planning problem it is important to find the most appropriate parameters for initializing the function of the algorithm.

Keywords: Concentrator network, genetic algorithm, simulated annealing, UCPL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
1952 Performance of QoS Parameters in MANET Application Traffics in Large Scale Scenarios

Authors: Vahid Ayatollahi Tafti, Abolfazl Gandomi

Abstract:

A mobile Ad-hoc network consists of wireless nodes communicating without the need for a centralized administration. A user can move anytime in an ad hoc scenario and, as a result, such a network needs to have routing protocols which can adopt dynamically changing topology. To accomplish this, a number of ad hoc routing protocols have been proposed and implemented, which include DSR, OLSR and AODV. This paper presents a study on the QoS parameters for MANET application traffics in large-scale scenarios with 50 and 120 nodes. The application traffics analyzed in this study is File Transfer Protocol (FTP). In large scale networks (120 nodes) OLSR shows better performance and in smaller scale networks (50 nodes)AODV shows less packet drop rate and OLSR shows better throughput.

Keywords: aodv, dsr, manet , olsr , qos.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175
1951 Systholic Boolean Orthonormalizer Network in Wavelet Domain for Microarray Denoising

Authors: Mario Mastriani

Abstract:

We describe a novel method for removing noise (in wavelet domain) of unknown variance from microarrays. The method is based on the following procedure: We apply 1) Bidimentional Discrete Wavelet Transform (DWT-2D) to the Noisy Microarray, 2) scaling and rounding to the coefficients of the highest subbands (to obtain integer and positive coefficients), 3) bit-slicing to the new highest subbands (to obtain bit-planes), 4) then we apply the Systholic Boolean Orthonormalizer Network (SBON) to the input bit-plane set and we obtain two orthonormal otput bit-plane sets (in a Boolean sense), we project a set on the other one, by means of an AND operation, and then, 5) we apply re-assembling, and, 6) rescaling. Finally, 7) we apply Inverse DWT-2D and reconstruct a microarray from the modified wavelet coefficients. Denoising results compare favorably to the most of methods in use at the moment.

Keywords: Bit-Plane, Boolean Orthonormalization Process, Denoising, Microarrays, Wavelets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
1950 Wireless Transmission of Big Data Using Novel Secure Algorithm

Authors: K. Thiagarajan, K. Saranya, A. Veeraiah, B. Sudha

Abstract:

This paper presents a novel algorithm for secure, reliable and flexible transmission of big data in two hop wireless networks using cooperative jamming scheme. Two hop wireless networks consist of source, relay and destination nodes. Big data has to transmit from source to relay and from relay to destination by deploying security in physical layer. Cooperative jamming scheme determines transmission of big data in more secure manner by protecting it from eavesdroppers and malicious nodes of unknown location. The novel algorithm that ensures secure and energy balance transmission of big data, includes selection of data transmitting region, segmenting the selected region, determining probability ratio for each node (capture node, non-capture and eavesdropper node) in every segment, evaluating the probability using binary based evaluation. If it is secure transmission resume with the two- hop transmission of big data, otherwise prevent the attackers by cooperative jamming scheme and transmit the data in two-hop transmission.

Keywords: Big data, cooperative jamming, energy balance, physical layer, two-hop transmission, wireless security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
1949 Hybrid Hierarchical Routing Protocol for WSN Lifetime Maximization

Authors: H. Aoudia, Y. Touati, E. H. Teguig, A. Ali Cherif

Abstract:

Conceiving and developing routing protocols for wireless sensor networks requires considerations on constraints such as network lifetime and energy consumption. In this paper, we propose a hybrid hierarchical routing protocol named HHRP combining both clustering mechanism and multipath optimization taking into account residual energy and RSSI measures. HHRP consists of classifying dynamically nodes into clusters where coordinators nodes with extra privileges are able to manipulate messages, aggregate data and ensure transmission between nodes according to TDMA and CDMA schedules. The reconfiguration of the network is carried out dynamically based on a threshold value which is associated with the number of nodes belonging to the smallest cluster. To show the effectiveness of the proposed approach HHRP, a comparative study with LEACH protocol is illustrated in simulations.

Keywords: Routing protocols, energy optimization, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905
1948 Measurement Scheme Improving for State Estimation Using Stochastic Tabu Search

Authors: T. Kerdchuen

Abstract:

This paper proposes the stochastic tabu search (STS) for improving the measurement scheme for power system state estimation. If the original measured scheme is not observable, the additional measurements with minimum number of measurements are added into the system by STS so that there is no critical measurement pair. The random bit flipping and bit exchanging perturbations are used for generating the neighborhood solutions in STS. The Pδ observable concept is used to determine the network observability. Test results of 10 bus, IEEE 14 and 30 bus systems are shown that STS can improve the original measured scheme to be observable without critical measurement pair. Moreover, the results of STS are superior to deterministic tabu search (DTS) in terms of the best solution hit.

Keywords: Measurement Scheme, Power System StateEstimation, Network Observability, Stochastic Tabu Search (STS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
1947 A Product Development for Green Logistics Model by Integrated Evaluation of Design and Manufacturing and Green Supply Chain

Authors: Yuan-Jye Tseng, Yen-Jung Wang

Abstract:

A product development for green logistics model using the fuzzy analytic network process method is presented for evaluating the relationships among the product design, the manufacturing activities, and the green supply chain. In the product development stage, there can be alternative ways to design the detailed components to satisfy the design concept and product requirement. In different design alternative cases, the manufacturing activities can be different. In addition, the manufacturing activities can affect the green supply chain of the components and product. In this research, a fuzzy analytic network process evaluation model is presented for evaluating the criteria in product design, manufacturing activities, and green supply chain. The comparison matrices for evaluating the criteria among the three groups are established. The total relational values between the three groups represent the relationships and effects. In application, the total relational values can be used to evaluate the design alternative cases for decision-making to select a suitable design case and the green supply chain. In this presentation, an example product is illustrated. It shows that the model is useful for integrated evaluation of design and manufacturing and green supply chain for the purpose of product development for green logistics.

Keywords: Supply chain management, green supply chain, product development for logistics, fuzzy analytic network process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246
1946 A New Approach to Polynomial Neural Networks based on Genetic Algorithm

Authors: S. Farzi

Abstract:

Recently, a lot of attention has been devoted to advanced techniques of system modeling. PNN(polynomial neural network) is a GMDH-type algorithm (Group Method of Data Handling) which is one of the useful method for modeling nonlinear systems but PNN performance depends strongly on the number of input variables and the order of polynomial which are determined by trial and error. In this paper, we introduce GPNN (genetic polynomial neural network) to improve the performance of PNN. GPNN determines the number of input variables and the order of all neurons with GA (genetic algorithm). We use GA to search between all possible values for the number of input variables and the order of polynomial. GPNN performance is obtained by two nonlinear systems. the quadratic equation and the time series Dow Jones stock index are two case studies for obtaining the GPNN performance.

Keywords: GMDH, GPNN, GA, PNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
1945 A Study of Geographic Information System Combining with GPS and 3G for Parking Guidance and Information System

Authors: Yu-Chi Shiue, Jyong Lin, Shih-Chang Chen

Abstract:

With the increase of economic behavior and the upgrade of living standar, the ratio for people in Taiwan who own automobiles and motorcycles have recently increased with multiples. Therefore, parking issues will be a big challenge to facilitate traffic network and ensure urban life quality. The Parking Guidance and Information System is one of important systems for Advanced Traveler Information Services (ATIS). This research proposes a parking guidance and information system which integrates GPS and 3G network for a map on the Geographic Information System to solution inadequate of roadside information kanban. The system proposed in this study mainly includes Parking Host, Parking Guidance and Information Server, Geographic Map and Information System as well as Parking Guidance and Information Browser. The study results show this system can increase driver-s efficiency to find parking space and efficiently enhance parking convenience in comparison with roadside kanban system.

Keywords: Geographic Information System, 3G, GPS, parkinginformation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
1944 Electricity Consumption Prediction Model using Neuro-Fuzzy System

Authors: Rahib Abiyev, Vasif H. Abiyev, C. Ardil

Abstract:

In this paper the development of neural network based fuzzy inference system for electricity consumption prediction is considered. The electricity consumption depends on number of factors, such as number of customers, seasons, type-s of customers, number of plants, etc. It is nonlinear process and can be described by chaotic time-series. The structure and algorithms of neuro-fuzzy system for predicting future values of electricity consumption is described. To determine the unknown coefficients of the system, the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The developed system is applied for predicting future values of electricity consumption of Northern Cyprus. The simulation of neuro-fuzzy system has been performed.

Keywords: Fuzzy logic, neural network, neuro-fuzzy system, neuro-fuzzy prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
1943 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxic Gases

Authors: Slimane Ouhmad, Abdellah Halimi

Abstract:

In this work, neural networks methods MLP type were applied to a database from an array of six sensors for the detection of three toxic gases. The choice of the number of hidden layers and the weight values are influential on the convergence of the learning algorithm. We proposed, in this article, a mathematical formula to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases and optimized the computation time. The model presented here has proven to be an effective application for the fast identification of toxic gases.

Keywords: Back-propagation, Computing time, Fast identification, MLP neural network, Number of neurons in the hidden layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265
1942 Analysis and Design of Simultaneous Dual Band Harvesting System with Enhanced Efficiency

Authors: Zina Saheb, Ezz El-Masry, Jean-François Bousquet

Abstract:

This paper presents an enhanced efficiency simultaneous dual band energy harvesting system for wireless body area network. A bulk biasing is used to enhance the efficiency of the adapted rectifier design to reduce Vth of MOSFET. The presented circuit harvests the radio frequency (RF) energy from two frequency bands: 1 GHz and 2.4 GHz. It is designed with TSMC 65-nm CMOS technology and high quality factor dual matching network to boost the input voltage. Full circuit analysis and modeling is demonstrated. The simulation results demonstrate a harvester with an efficiency of 23% at 1 GHz and 46% at 2.4 GHz at an input power as low as -30 dBm.

Keywords: Energy harvester, simultaneous, dual band, CMOS, differential rectifier, voltage boosting, TSMC 65nm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
1941 Low Resolution Face Recognition Using Mixture of Experts

Authors: Fatemeh Behjati Ardakani, Fatemeh Khademian, Abbas Nowzari Dalini, Reza Ebrahimpour

Abstract:

Human activity is a major concern in a wide variety of applications, such as video surveillance, human computer interface and face image database management. Detecting and recognizing faces is a crucial step in these applications. Furthermore, major advancements and initiatives in security applications in the past years have propelled face recognition technology into the spotlight. The performance of existing face recognition systems declines significantly if the resolution of the face image falls below a certain level. This is especially critical in surveillance imagery where often, due to many reasons, only low-resolution video of faces is available. If these low-resolution images are passed to a face recognition system, the performance is usually unacceptable. Hence, resolution plays a key role in face recognition systems. In this paper we introduce a new low resolution face recognition system based on mixture of expert neural networks. In order to produce the low resolution input images we down-sampled the 48 × 48 ORL images to 12 × 12 ones using the nearest neighbor interpolation method and after that applying the bicubic interpolation method yields enhanced images which is given to the Principal Component Analysis feature extractor system. Comparison with some of the most related methods indicates that the proposed novel model yields excellent recognition rate in low resolution face recognition that is the recognition rate of 100% for the training set and 96.5% for the test set.

Keywords: Low resolution face recognition, Multilayered neuralnetwork, Mixture of experts neural network, Principal componentanalysis, Bicubic interpolation, Nearest neighbor interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
1940 Dynamic Anonymity

Authors: Emin Islam Tatlı, Dirk Stegemann, Stefan Lucks

Abstract:

Encryption protects communication partners from disclosure of their secret messages but cannot prevent traffic analysis and the leakage of information about “who communicates with whom". In the presence of collaborating adversaries, this linkability of actions can danger anonymity. However, reliably providing anonymity is crucial in many applications. Especially in contextaware mobile business, where mobile users equipped with PDAs request and receive services from service providers, providing anonymous communication is mission-critical and challenging at the same time. Firstly, the limited performance of mobile devices does not allow for heavy use of expensive public-key operations which are commonly used in anonymity protocols. Moreover, the demands for security depend on the application (e.g., mobile dating vs. pizza delivery service), but different users (e.g., a celebrity vs. a normal person) may even require different security levels for the same application. Considering both hardware limitations of mobile devices and different sensitivity of users, we propose an anonymity framework that is dynamically configurable according to user and application preferences. Our framework is based on Chaum-s mixnet. We explain the proposed framework, its configuration parameters for the dynamic behavior and the algorithm to enforce dynamic anonymity.

Keywords: Anonymity, context-awareness, mix-net, mobile business, policy management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
1939 A Metric-Set and Model Suggestion for Better Software Project Cost Estimation

Authors: Murat Ayyıldız, Oya Kalıpsız, Sırma Yavuz

Abstract:

Software project effort estimation is frequently seen as complex and expensive for individual software engineers. Software production is in a crisis. It suffers from excessive costs. Software production is often out of control. It has been suggested that software production is out of control because we do not measure. You cannot control what you cannot measure. During last decade, a number of researches on cost estimation have been conducted. The metric-set selection has a vital role in software cost estimation studies; its importance has been ignored especially in neural network based studies. In this study we have explored the reasons of those disappointing results and implemented different neural network models using augmented new metrics. The results obtained are compared with previous studies using traditional metrics. To be able to make comparisons, two types of data have been used. The first part of the data is taken from the Constructive Cost Model (COCOMO'81) which is commonly used in previous studies and the second part is collected according to new metrics in a leading international company in Turkey. The accuracy of the selected metrics and the data samples are verified using statistical techniques. The model presented here is based on Multi-Layer Perceptron (MLP). Another difficulty associated with the cost estimation studies is the fact that the data collection requires time and care. To make a more thorough use of the samples collected, k-fold, cross validation method is also implemented. It is concluded that, as long as an accurate and quantifiable set of metrics are defined and measured correctly, neural networks can be applied in software cost estimation studies with success

Keywords: Software Metrics, Software Cost Estimation, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
1938 Order Partitioning in Hybrid MTS/MTO Contexts using Fuzzy ANP

Authors: H. Rafiei, M. Rabbani

Abstract:

A novel concept to balance and tradeoff between make-to-stock and make-to-order has been hybrid MTS/MTO production context. One of the most important decisions involved in the hybrid MTS/MTO environment is determining whether a product is manufactured to stock, to order, or hybrid MTS/MTO strategy. In this paper, a model based on analytic network process is developed to tackle the addressed decision. Since the regarded decision deals with the uncertainty and ambiguity of data as well as experts- and managers- linguistic judgments, the proposed model is equipped with fuzzy sets theory. An important attribute of the model is its generality due to diverse decision factors which are elicited from the literature and developed by the authors. Finally, the model is validated by applying to a real case study to reveal how the proposed model can actually be implemented.

Keywords: Fuzzy analytic network process, Hybrid make-tostock/ make-to-order, Order partitioning, Production planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2182
1937 Anticipation of Bending Reinforcement Based on Iranian Concrete Code Using Meta-Heuristic Tools

Authors: Seyed Sadegh Naseralavi, Najmeh Bemani

Abstract:

In this paper, different concrete codes including America, New Zealand, Mexico, Italy, India, Canada, Hong Kong, Euro Code and Britain are compared with the Iranian concrete design code. First, by using Adaptive Neuro Fuzzy Inference System (ANFIS), the codes having the most correlation with the Iranian ninth issue of the national regulation are determined. Consequently, two anticipated methods are used for comparing the codes: Artificial Neural Network (ANN) and Multi-variable regression. The results show that ANN performs better. Predicting is done by using only tensile steel ratio and with ignoring the compression steel ratio.

Keywords: Concrete design code, anticipate method, artificial neural network, multi-variable regression, adaptive neuro fuzzy inference system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 823
1936 Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression

Authors: Zhi-Jun Lu, Qi Lu, Meng Wu, Qian Xiang, Jun Gu

Abstract:

The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising.

Keywords: Artificial neural network, finite element method, perforated sections, thin-walled steel, ultimate load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1080
1935 Application of GAMS and GA in the Location and Penetration of Distributed Generation

Authors: Alireza Dehghani Pilehvarani, Mojtaba Hakimzadeh, Mohammad Jafari Far, Reza Sedaghati

Abstract:

Distributed Generation (DG) can help in reducing the cost of electricity to the costumer, relieve network congestion and provide environmentally friendly energy close to load centers. Its capacity is also scalable and it provides voltage support at distribution level. Hence, DG placement and penetration level is an important problem for both the utility and DG owner. DG allocation and capacity determination is a nonlinear optimization problem. The objective function of this problem is the minimization of the total loss of the distribution system. Also high levels of penetration of DG are a new challenge for traditional electric power systems. This paper presents a new methodology for the optimal placement of DG and penetration level of DG in distribution system based on General Algebraic Modeling System (GAMS) and Genetic Algorithm (GA).

Keywords: Distributed Generation, Location, Loss Reduction, Distribution Network, GA, GAMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2636
1934 Neural Network Based Approach for Face Detection cum Face Recognition

Authors: Kesari Verma, Aniruddha S. Thoke, Pritam Singh

Abstract:

Automatic face detection is a complex problem in image processing. Many methods exist to solve this problem such as template matching, Fisher Linear Discriminate, Neural Networks, SVM, and MRC. Success has been achieved with each method to varying degrees and complexities. In proposed algorithm we used upright, frontal faces for single gray scale images with decent resolution and under good lighting condition. In the field of face recognition technique the single face is matched with single face from the training dataset. The author proposed a neural network based face detection algorithm from the photographs as well as if any test data appears it check from the online scanned training dataset. Experimental result shows that the algorithm detected up to 95% accuracy for any image.

Keywords: Face Detection, Face Recognition, NN Approach, PCA Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304
1933 Resting-State Functional Connectivity Analysis Using an Independent Component Approach

Authors: Eric Jacob Bacon, Chaoyang Jin, Dianning He, Shuaishuai Hu, Lanbo Wang, Han Li, Shouliang Qi

Abstract:

Refractory epilepsy is a complicated type of epilepsy that can be difficult to diagnose. Recent technological advancements have made resting-state functional magnetic resonance (rsfMRI) a vital technique for studying brain activity. However, there is still much to learn about rsfMRI. Investigating rsfMRI connectivity may aid in the detection of abnormal activities. In this paper, we propose studying the functional connectivity of rsfMRI candidates to diagnose epilepsy. 45 rsfMRI candidates, comprising 26 with refractory epilepsy and 19 healthy controls, were enrolled in this study. A data-driven approach known as Independent Component Analysis (ICA) was used to achieve our goal. First, rsfMRI data from both patients and healthy controls were analyzed using group ICA. The components that were obtained were then spatially sorted to find and select meaningful ones. A two-sample t-test was also used to identify abnormal networks in patients and healthy controls. Finally, based on the fractional amplitude of low-frequency fluctuations (fALFF), a chi-square statistic test was used to distinguish the network properties of the patient and healthy control groups. The two-sample t-test analysis yielded abnormal in the default mode network, including the left superior temporal lobe and the left supramarginal. The right precuneus was found to be abnormal in the dorsal attention network. In addition, the frontal cortex showed an abnormal cluster in the medial temporal gyrus. In contrast, the temporal cortex showed an abnormal cluster in the right middle temporal gyrus and the right fronto-operculum gyrus. Finally, the chi-square statistic test was significant, producing a p-value of 0.001 for the analysis. This study offers evidence that investigating rsfMRI connectivity provides an excellent diagnosis option for refractory epilepsy.

Keywords: Independent Component Analysis, Resting State Network, refractory epilepsy, rsfMRI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 297