Search results for: Multi criteria inventory classification models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5752

Search results for: Multi criteria inventory classification models

4222 Multiple Targets Classification and Fuzzy Logic Decision Fusion in Wireless Sensor Networks

Authors: Ahmad Aljaafreh

Abstract:

This paper proposes a hierarchical hidden Markov model (HHMM) to model the detection of M vehicles in a wireless sensor network (WSN). The HHMM model contains an extra level of hidden Markov model to model the temporal transitions of each state of the first HMM. By modeling the temporal transitions, only those hypothesis with nonzero transition probabilities needs to be tested. Thus, this method efficiently reduces the computation load, which is preferable in WSN applications.This paper integrates several techniques to optimize the detection performance. The output of the states of the first HMM is modeled as Gaussian Mixture Model (GMM), where the number of states and the number of Gaussians are experimentally determined, while the other parameters are estimated using Expectation Maximization (EM). HHMM is used to model the sequence of the local decisions which are based on multiple hypothesis testing with maximum likelihood approach. The states in the HHMM represent various combinations of vehicles of different types. Due to the statistical advantages of multisensor data fusion, we propose a heuristic based on fuzzy weighted majority voting to enhance cooperative classification of moving vehicles within a region that is monitored by a wireless sensor network. A fuzzy inference system weighs each local decision based on the signal to noise ratio of the acoustic signal for target detection and the signal to noise ratio of the radio signal for sensor communication. The spatial correlation among the observations of neighboring sensor nodes is efficiently utilized as well as the temporal correlation. Simulation results demonstrate the efficiency of this scheme.

Keywords: Classification, decision fusion, fuzzy logic, hidden Markov model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6249
4221 The Integrated Management of Health Care Strategies and Differential Diagnosis by Expert System Technology: A Single-Dimensional Approach

Authors: A. B. Adehor, P. R. Burrell

Abstract:

The Integrated Management of Child illnesses (IMCI) and the surveillance Health Information Systems (HIS) are related strategies that are designed to manage child illnesses and community practices of diseases. However, both strategies do not function well together because of classification incompatibilities and, as such, are difficult to use by health care personnel in rural areas where a majority of people lack the basic knowledge of interpreting disease classification from these methods. This paper discusses a single approach on how a stand-alone expert system can be used as a prompt diagnostic tool for all cases of illnesses presented. The system combines the action-oriented IMCI and the disease-oriented HIS approaches to diagnose malaria and typhoid fever in the rural areas of the Niger-delta region.

Keywords: Differential diagnosis, Health Information System(HIS), Integrated Management of Child Illnesses (IMCI), Malaria andTyphoid fever.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
4220 Vision Based Hand Gesture Recognition Using Generative and Discriminative Stochastic Models

Authors: Mahmoud Elmezain, Samar El-shinawy

Abstract:

Many approaches to pattern recognition are founded on probability theory, and can be broadly characterized as either generative or discriminative according to whether or not the distribution of the image features. Generative and discriminative models have very different characteristics, as well as complementary strengths and weaknesses. In this paper, we study these models to recognize the patterns of alphabet characters (A-Z) and numbers (0-9). To handle isolated pattern, generative model as Hidden Markov Model (HMM) and discriminative models like Conditional Random Field (CRF), Hidden Conditional Random Field (HCRF) and Latent-Dynamic Conditional Random Field (LDCRF) with different number of window size are applied on extracted pattern features. The gesture recognition rate is improved initially as the window size increase, but degrades as window size increase further. Experimental results show that the LDCRF is the best in terms of results than CRF, HCRF and HMM at window size equal 4. Additionally, our results show that; an overall recognition rates are 91.52%, 95.28%, 96.94% and 98.05% for CRF, HCRF, HMM and LDCRF respectively.

Keywords: Statistical Pattern Recognition, Generative Model, Discriminative Model, Human Computer Interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2936
4219 An Interval-Based Multi-Attribute Decision Making Approach for Electric Utility Resource Planning

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

This paper presents an interval-based multi-attribute decision making (MADM) approach in support of the decision process with imprecise information. The proposed decision methodology is based on the model of linear additive utility function but extends the problem formulation with the measure of composite utility variance. A sample study concerning with the evaluation of electric generation expansion strategies is provided showing how the imprecise data may affect the choice toward the best solution and how a set of alternatives, acceptable to the decision maker (DM), may be identified with certain confidence.

Keywords: Decision Making, Power Generation, ElectricUtilities, Resource Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
4218 A New Heuristic Approach for Large Size Zero-One Multi Knapsack Problem Using Intercept Matrix

Authors: K. Krishna Veni, S. Raja Balachandar

Abstract:

This paper presents a heuristic to solve large size 0-1 Multi constrained Knapsack problem (01MKP) which is NP-hard. Many researchers are used heuristic operator to identify the redundant constraints of Linear Programming Problem before applying the regular procedure to solve it. We use the intercept matrix to identify the zero valued variables of 01MKP which is known as redundant variables. In this heuristic, first the dominance property of the intercept matrix of constraints is exploited to reduce the search space to find the optimal or near optimal solutions of 01MKP, second, we improve the solution by using the pseudo-utility ratio based on surrogate constraint of 01MKP. This heuristic is tested for benchmark problems of sizes upto 2500, taken from literature and the results are compared with optimum solutions. Space and computational complexity of solving 01MKP using this approach are also presented. The encouraging results especially for relatively large size test problems indicate that this heuristic can successfully be used for finding good solutions for highly constrained NP-hard problems.

Keywords: 0-1 Multi constrained Knapsack problem, heuristic, computational complexity, NP-Hard problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
4217 Dynamic Load Modeling for KHUZESTAN Power System Voltage Stability Studies

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

Based on the component approach, three kinds of dynamic load models, including a single –motor model, a two-motor model and composite load model have been developed for the stability studies of Khuzestan power system. The study results are presented in this paper. Voltage instability is a dynamic phenomenon and therefore requires dynamic representation of the power system components. Industrial loads contain a large fraction of induction machines. Several models of different complexity are available for the description investigations. This study evaluates the dynamic performances of several dynamic load models in combination with the dynamics of a load changing transformer. Case study is steel industrial substation in Khuzestan power systems.

Keywords: Dynamic load, modeling, Voltage Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
4216 Design and Analysis of Fault Tolerate feature of n-Phase Induction Motor Drive

Authors: G. Renuka Devi

Abstract:

This paper presents design and analysis of fault tolerate feature of n-phase induction motor drive. The n-phase induction motor (more than 3-phases) has a number of advantages over conventional 3-phase induction motor, it has low torque pulsation with increased torque density, more fault tolerant feature, low current ripple with increased efficiency. When increasing the number of phases, it has reduced current per phase without increasing per phase voltage, resulting in an increase in the total power rating of n-phase motors in the same volume machine. In this paper, the theory of operation of a multi-phase induction motor is discussed. The detailed study of d-q modeling of n-phase induction motors is elaborated. The d-q model of n-phase (5, 6, 7, 9 and 12) induction motors is developed in a MATLAB/Simulink environment. The steady state and dynamic performance of the multi-phase induction motor is studied under varying load conditions. Comparison of 5-phase induction is presented under normal and fault conditions.

Keywords: d-q model, dynamic Response, fault tolerant feature, matlab/simulink, multi-phase induction motor, transient response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 578
4215 The Multi-scenario Knapsack Problem: An Adaptive Search Algorithm

Authors: Mhand Hifi, Hedi Mhalla, Mustapha Michaphy

Abstract:

In this paper, we study the multi-scenario knapsack problem, a variant of the well-known NP-Hard single knapsack problem. We investigate the use of an adaptive algorithm for solving heuristically the problem. The used method combines two complementary phases: a size reduction phase and a dynamic 2- opt procedure one. First, the reduction phase applies a polynomial reduction strategy; that is used for reducing the size problem. Second, the adaptive search procedure is applied in order to attain a feasible solution Finally, the performances of two versions of the proposed algorithm are evaluated on a set of randomly generated instances.

Keywords: combinatorial optimization, max-min optimization, knapsack, heuristics, problem reduction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
4214 Antioxidant Capacity of Maize Corn under Drought Stress from the Different Zones of Growing

Authors: Astghik R. Sukiasyan

Abstract:

The semidental sweet maize of Armenian population under drought stress and pollution by some heavy metals (HMs) in sites along the river Debet was studied. Accordingly, the objective of this work was to investigate the antioxidant status of maize plant in order to identify simple and reliable criteria for assessing the degree of adaptation of plants to abiotic stress of drought and HMs. It was found that in the case of removal from the mainstream of the river, the antioxidant status of the plant varies. As parameters, the antioxidant status of the plant has been determined by the activity of malondialdehyde (MDA) and Ferric Reducing Ability of Plasma (FRAP), taking into account the characteristics of natural drought of this region. The possibility of using some indicators which characterized the antioxidant status of the plant was concluded. The criteria for assessing the extent of environmental pollution could be HMs. This fact can be used for the early diagnosis of diseases in the population who lives in these areas and uses corn as the main food.

Keywords: Antioxidant status, maize corn, drought stress, heavy metal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
4213 Ways to Define the Most Sustainable Actions for Water Shortage Prevention in Mega Cities, Especially in Developing Countries

Authors: Keivan Karimlou, Nemat Hassani, Abdollah Rashidi Mehrabadi

Abstract:

Climate change, industrial bloom, population growth and mismanagement are the most important factors that lead to water shortages around the world. Water shortages often lead to forced immigration, war, and thirst and hunger, especially in developing countries. One of the simplest solutions to solve the water shortage issues around the world is transferring water from one watershed to another; however it may not be a suitable solution. Water managers around the world use supply and demand management methods to decrease the incidence of water shortage in a sustainable manner. But as a matter of economic constraints, they must define a method to select the best possible action to reduce and limit water shortages. The following paper recognizes different kinds of criteria to select the best possible policy for reducing water shortage in mega cities by examining a comprehensive literature review.

Keywords: Criteria, management, shortage, sustainable, water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1122
4212 Taguchi Robust Design for Optimal Setting of Process Wastes Parameters in an Automotive Parts Manufacturing Company

Authors: Charles Chikwendu Okpala, Christopher Chukwutoo Ihueze

Abstract:

As a technique that reduces variation in a product by lessening the sensitivity of the design to sources of variation, rather than by controlling their sources, Taguchi Robust Design entails the designing of ideal goods, by developing a product that has minimal variance in its characteristics and also meets the desired exact performance. This paper examined the concept of the manufacturing approach and its application to brake pad product of an automotive parts manufacturing company. Although the firm claimed that only defects, excess inventory, and over-production were the few wastes that grossly affect their productivity and profitability, a careful study and analysis of their manufacturing processes with the application of Single Minute Exchange of Dies (SMED) tool showed that the waste of waiting is the fourth waste that bedevils the firm. The selection of the Taguchi L9 orthogonal array which is based on the four parameters and the three levels of variation for each parameter revealed that with a range of 2.17, that waiting is the major waste that the company must reduce in order to continue to be viable. Also, to enhance the company’s throughput and profitability, the wastes of over-production, excess inventory, and defects with ranges of 2.01, 1.46, and 0.82, ranking second, third, and fourth respectively must also be reduced to the barest minimum. After proposing -33.84 as the highest optimum Signal-to-Noise ratio to be maintained for the waste of waiting, the paper advocated for the adoption of all the tools and techniques of Lean Production System (LPS), and Continuous Improvement (CI), and concluded by recommending SMED in order to drastically reduce set up time which leads to unnecessary waiting.

Keywords: Taguchi Robust Design, signal to noise ratio, Single Minute Exchange of Dies, lean production system, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 976
4211 Stochastic Learning Algorithms for Modeling Human Category Learning

Authors: Toshihiko Matsuka, James E. Corter

Abstract:

Most neural network (NN) models of human category learning use a gradient-based learning method, which assumes that locally-optimal changes are made to model parameters on each learning trial. This method tends to under predict variability in individual-level cognitive processes. In addition many recent models of human category learning have been criticized for not being able to replicate rapid changes in categorization accuracy and attention processes observed in empirical studies. In this paper we introduce stochastic learning algorithms for NN models of human category learning and show that use of the algorithms can result in (a) rapid changes in accuracy and attention allocation, and (b) different learning trajectories and more realistic variability at the individual-level.

Keywords: category learning, cognitive modeling, radial basis function, stochastic optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
4210 Laboratory Experimentation for Supporting Collaborative Working in Engineering Education over the Internet

Authors: S. Odeh, E. Abdelghani

Abstract:

Collaborative working environments for distance education can be considered as a more generic form of contemporary remote labs. At present, the majority of existing real laboratories are not constructed to allow the involved participants to collaborate in real time. To make this revolutionary learning environment possible we must allow the different users to carry out an experiment simultaneously. In recent times, multi-user environments are successfully applied in many applications such as air traffic control systems, team-oriented military systems, chat-text tools, multi-player games etc. Thus, understanding the ideas and techniques behind these systems could be of great importance in the contribution of ideas to our e-learning environment for collaborative working. In this investigation, collaborative working environments from theoretical and practical perspectives are considered in order to build an effective collaborative real laboratory, which allows two students or more to conduct remote experiments at the same time as a team. In order to achieve this goal, we have implemented distributed system architecture, enabling students to obtain an automated help by either a human tutor or a rule-based e-tutor.

Keywords: Collaboration environment, e-tutor, multi-user environments, socio-technical system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
4209 Minimizing Makespan Subject to Budget Limitation in Parallel Flow Shop

Authors: Amin Sahraeian

Abstract:

One of the criteria in production scheduling is Make Span, minimizing this criteria causes more efficiently use of the resources specially machinery and manpower. By assigning some budget to some of the operations the operation time of these activities reduces and affects the total completion time of all the operations (Make Span). In this paper this issue is practiced in parallel flow shops. At first we convert parallel flow shop to a network model and by using a linear programming approach it is identified in order to minimize make span (the completion time of the network) which activities (operations) are better to absorb the predetermined and limited budget. Minimizing the total completion time of all the activities in the network is equivalent to minimizing make span in production scheduling.

Keywords: parallel flow shop, make span, linear programming, budget

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
4208 Elastic and Plastic Collision Comparison Using Finite Element Method

Authors: Gustavo Rodrigues, Hans Weber, Larissa Driemeier

Abstract:

The prevision of post-impact conditions and the behavior of the bodies during the impact have been object of several collision models. The formulation from Hertz’s theory is generally used dated from the 19th century. These models consider the repulsive force as proportional to the deformation of the bodies under contact and may consider it proportional to the rate of deformation. The objective of the present work is to analyze the behavior of the bodies during impact using the Finite Element Method (FEM) with elastic and plastic material models. The main parameters to evaluate are, the contact force, the time of contact and the deformation of the bodies. An advantage of using the FEM approach is the possibility to apply a plastic deformation to the model according to the material definition: there will be used Johnson–Cook plasticity model whose parameters are obtained through empirical tests of real materials. This model allows analyzing the permanent deformation caused by impact, phenomenon observed in real world depending on the forces applied to the body. These results are compared between them and with the model-based Hertz theory.

Keywords: Collision, finite element method, Hertz’s Theory, impact models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
4207 Cardiovascular Modeling Software Tools in Medicine

Authors: J. Fernandez, R. Fernandez de Canete, J. Perea-Paizal, J. C. Ramos-Diaz

Abstract:

The high prevalence of cardiovascular diseases has provoked a raising interest in the development of mathematical models in order to evaluate the cardiovascular function both under physiological and pathological conditions. In this paper, a physical model of the cardiovascular system with intrinsic regulation is presented and implemented by using the object-oriented Modelica simulation software tools.  For this task, a multi-compartmental system previously validated with physiological data has been built, based on the interconnection of cardiovascular elements such as resistances, capacitances and pumping among others, by following an electrohydraulic analogy. The results obtained under both physiological and pathological scenarios provide an easy interpretative key to analyze the hemodynamic behavior of the patient. The described approach represents a valuable tool in the teaching of physiology for graduate medical and nursing students among others.

Keywords: Cardiovascular system, Modelica simulation software, physical modeling, teaching tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
4206 Analytical and Experimental Study on the Effect of Air-Core Coil Parameters on Magnetic Force Used in a Linear Optical Scanner

Authors: Loke Kean Koay, Horizon Gitano-Briggs, Mani Maran Ratnam

Abstract:

Today air-core coils (ACC) are a viable alternative to ferrite-core coils in a range of applications due to their low induction effect. An analytical study was carried out and the results were used as a guide to understand the relationship between the magnet-coil distance and the resulting attractive magnetic force. Four different ACC models were fabricated for experimental study. The variation in the models included the dimensions, the number of coil turns and the current supply to the coil. Comparison between the analytical and experimental results for all the models shows an average discrepancy of less than 10%. An optimized ACC design was selected for the scanner which can provide maximum magnetic force.

Keywords: Air-Core Coils, Electromagnetic, Linear Optical Scanner

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
4205 Model Predictive Control of Turbocharged Diesel Engine with Exhaust Gas Recirculation

Authors: U. Yavas, M. Gokasan

Abstract:

Control of diesel engine’s air path has drawn a lot of attention due to its multi input-multi output, closed coupled, non-linear relation. Today, precise control of amount of air to be combusted is a must in order to meet with tight emission limits and performance targets. In this study, passenger car size diesel engine is modeled by AVL Boost RT, and then simulated with standard, industry level PID controllers. Finally, linear model predictive control is designed and simulated. This study shows the importance of modeling and control of diesel engines with flexible algorithm development in computer based systems.

Keywords: Predictive control, engine control, engine modeling, PID control, feedforward compensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
4204 Early-Warning Lights Classification Management System for Industrial Parks in Taiwan

Authors: Yu-Min Chang, Kuo-Sheng Tsai, Hung-Te Tsai, Chia-Hsin Li

Abstract:

This paper presents the early-warning lights classification management system for industrial parks promoted by the Taiwan Environmental Protection Administration (EPA) since 2011, including the definition of each early-warning light, objectives, action program and accomplishments. All of the 151 industrial parks in Taiwan were classified into four early-warning lights, including red, orange, yellow and green, for carrying out respective pollution management according to the monitoring data of soil and groundwater quality, regulatory compliance, and regulatory listing of control site or remediation site. The Taiwan EPA set up a priority list for high potential polluted industrial parks and investigated their soil and groundwater qualities based on the results of the light classification and pollution potential assessment. In 2011-2013, there were 44 industrial parks selected and carried out different investigation, such as the early warning groundwater well networks establishment and pollution investigation/verification for the red and orange-light industrial parks and the environmental background survey for the yellow-light industrial parks. Among them, 22 industrial parks were newly or continuously confirmed that the concentrations of pollutants exceeded those in soil or groundwater pollution control standards. Thus, the further investigation, groundwater use restriction, listing of pollution control site or remediation site, and pollutant isolation measures were implemented by the local environmental protection and industry competent authorities; the early warning lights of those industrial parks were proposed to adjust up to orange or red-light. Up to the present, the preliminary positive effect of the soil and groundwater quality management system for industrial parks has been noticed in several aspects, such as environmental background information collection, early warning of pollution risk, pollution investigation and control, information integration and application, and inter-agency collaboration. Finally, the work and goal of self-initiated quality management of industrial parks will be carried out on the basis of the inter-agency collaboration by the classified lights system of early warning and management as well as the regular announcement of the status of each industrial park.

Keywords: Industrial park, soil and groundwater quality management, early-warning lights classification, SOP for reporting and treatment of monitored abnormal events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
4203 A Hybrid Scheme for on-Line Diagnostic Decision Making Using Optimal Data Representation and Filtering Technique

Authors: Hyun-Woo Cho

Abstract:

The early diagnostic decision making in industrial processes is absolutely necessary to produce high quality final products. It helps to provide early warning for a special event in a process, and finding its assignable cause can be obtained. This work presents a hybrid diagnostic schmes for batch processes. Nonlinear representation of raw process data is combined with classification tree techniques. The nonlinear kernel-based dimension reduction is executed for nonlinear classification decision boundaries for fault classes. In order to enhance diagnosis performance for batch processes, filtering of the data is performed to get rid of the irrelevant information of the process data. For the diagnosis performance of several representation, filtering, and future observation estimation methods, four diagnostic schemes are evaluated. In this work, the performance of the presented diagnosis schemes is demonstrated using batch process data.

Keywords: Diagnostics, batch process, nonlinear representation, data filtering, multivariate statistical approach

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1317
4202 Multi-Agent System for Irrigation Using Fuzzy Logic Algorithm and Open Platform Communication Data Access

Authors: T. Wanyama, B. Far

Abstract:

Automatic irrigation systems usually conveniently protect landscape investment. While conventional irrigation systems are known to be inefficient, automated ones have the potential to optimize water usage. In fact, there is a new generation of irrigation systems that are smart in the sense that they monitor the weather, soil conditions, evaporation and plant water use, and automatically adjust the irrigation schedule. In this paper, we present an agent based smart irrigation system. The agents are built using a mix of commercial off the shelf software, including MATLAB, Microsoft Excel and KEPServer Ex5 OPC server, and custom written code. The Irrigation Scheduler Agent uses fuzzy logic to integrate the information that affect the irrigation schedule. In addition, the Multi-Agent system uses Open Platform Connectivity (OPC) technology to share data. OPC technology enables the Irrigation Scheduler Agent to communicate over the Internet, making the system scalable to a municipal or regional agent based water monitoring, management, and optimization system. Finally, this paper presents simulation and pilot installation test result that show the operational effectiveness of our system.

Keywords: Community water usage, fuzzy logic, irrigation, multi-agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338
4201 Unearthing Decisional Patterns of Air Traffic Control Officers from Simulator Data

Authors: Z. Zakaria, S. W. Lye, S. Endy

Abstract:

Despite the continuous advancements in automated conflict resolution tools, there is still a low rate of adoption of automation from Air Traffic Control Officers (ATCOs). Trust or acceptance in these tools and conformance to the individual ATCO preferences in strategy execution for conflict resolution are two key factors that impact their use. This paper proposes a methodology to unearth and classify ATCO conflict resolution strategies from simulator data of trained and qualified ATCOs. The methodology involves the extraction of ATCO executive control actions and the establishment of a system of strategy resolution classification based on ATCO radar commands and prevailing flight parameters in deconflicting a pair of aircraft. Six main strategies used to handle various categories of conflict were identified and discussed. It was found that ATCOs were about twice more likely to choose only vertical maneuvers in conflict resolution compared to horizontal maneuvers or a combination of both vertical and horizontal maneuvers.

Keywords: Air traffic control strategies, conflict resolution, simulator data, strategy classification system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62
4200 Real-time Laser Monitoring based on Pipe Detective Operation

Authors: Mongkorn Klingajay, Tawatchai Jitson

Abstract:

The pipe inspection operation is the difficult detective performance. Almost applications are mainly relies on a manual recognition of defective areas that have carried out detection by an engineer. Therefore, an automation process task becomes a necessary in order to avoid the cost incurred in such a manual process. An automated monitoring method to obtain a complete picture of the sewer condition is proposed in this work. The focus of the research is the automated identification and classification of discontinuities in the internal surface of the pipe. The methodology consists of several processing stages including image segmentation into the potential defect regions and geometrical characteristic features. Automatic recognition and classification of pipe defects are carried out by means of using an artificial neural network technique (ANN) based on Radial Basic Function (RBF). Experiments in a realistic environment have been conducted and results are presented.

Keywords: Artificial neural network, Radial basic function, Curve fitting, CCTV, Image segmentation, Data acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
4199 Grid Independence Study of Flow Past a Square Cylinder Using the Multi-Relaxation-Time Lattice Boltzmann Method

Authors: Shams-Ul-Islam, Hamid Rahman, Waqas Sarwar Abbasi

Abstract:

Numerical calculations of flow around a square cylinder are presented using the multi-relaxation-time lattice Boltzmann method at Reynolds number 150. The effects of upstream locations, downstream locations and blockage are investigated systematically. A detail analysis are given in terms of time-trace analysis of drag and lift coefficients, power spectra analysis of lift coefficient, vorticity contours visualizations and phase diagrams. A number of physical quantities mean drag coefficient, drag coefficient, Strouhal number and root-mean-square values of drag and lift coefficients are calculated and compared with the well resolved experimental data and numerical results available in open literature. The results had shown that the upstream, downstream and height of the computational domain are at least 7.5, 37.5 and 12 diameters of the cylinder, respectively.

Keywords: Grid independence, Multi-relaxation-time lattice Boltzmann method, Physical quantities, Square cylinder, Vorticity contours visualizations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3339
4198 Functional Near Infrared Spectroscope for Cognition Brain Tasks by Wavelets Analysis and Neural Networks

Authors: Truong Quang Dang Khoa, Masahiro Nakagawa

Abstract:

Brain Computer Interface (BCI) has been recently increased in research. Functional Near Infrared Spectroscope (fNIRs) is one the latest technologies which utilize light in the near-infrared range to determine brain activities. Because near infrared technology allows design of safe, portable, wearable, non-invasive and wireless qualities monitoring systems, fNIRs monitoring of brain hemodynamics can be value in helping to understand brain tasks. In this paper, we present results of fNIRs signal analysis indicating that there exist distinct patterns of hemodynamic responses which recognize brain tasks toward developing a BCI. We applied two different mathematics tools separately, Wavelets analysis for preprocessing as signal filters and feature extractions and Neural networks for cognition brain tasks as a classification module. We also discuss and compare with other methods while our proposals perform better with an average accuracy of 99.9% for classification.

Keywords: functional near infrared spectroscope (fNIRs), braincomputer interface (BCI), wavelets, neural networks, brain activity, neuroimaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
4197 Image Spam Detection Using Color Features and K-Nearest Neighbor Classification

Authors: T. Kumaresan, S. Sanjushree, C. Palanisamy

Abstract:

Image spam is a kind of email spam where the spam text is embedded with an image. It is a new spamming technique being used by spammers to send their messages to bulk of internet users. Spam email has become a big problem in the lives of internet users, causing time consumption and economic losses. The main objective of this paper is to detect the image spam by using histogram properties of an image. Though there are many techniques to automatically detect and avoid this problem, spammers employing new tricks to bypass those techniques, as a result those techniques are inefficient to detect the spam mails. In this paper we have proposed a new method to detect the image spam. Here the image features are extracted by using RGB histogram, HSV histogram and combination of both RGB and HSV histogram. Based on the optimized image feature set classification is done by using k- Nearest Neighbor(k-NN) algorithm. Experimental result shows that our method has achieved better accuracy. From the result it is known that combination of RGB and HSV histogram with k-NN algorithm gives the best accuracy in spam detection.

Keywords: File Type, HSV Histogram, k-NN, RGB Histogram, Spam Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2142
4196 Earthquake Classification in Molluca Collision Zone Using Conventional Statistical Methods

Authors: H. J. Wattimanela, U. S. Passaribu, N. T. Puspito, S. W. Indratno

Abstract:

Molluca Collision Zone is located at the junction of the Eurasian, Australian, Pacific and the Philippines plates. Between the Sangihe arc, west of the collision zone, and to the east of Halmahera arc is active collision and convex toward the Molluca Sea. This research will analyze the behavior of earthquake occurrence in Molluca Collision Zone related to the distributions of an earthquake in each partition regions, determining the type of distribution of a occurrence earthquake of partition regions, and the mean occurence of earthquakes each partition regions, and the correlation between the partitions region. We calculate number of earthquakes using partition method and its behavioral using conventional statistical methods. In this research, we used data of shallow earthquakes type and its magnitudes ≥4 SR (period 1964-2013). From the results, we can classify partitioned regions based on the correlation into two classes: strong and very strong. This classification can be used for early warning system in disaster management.

Keywords: Molluca Collision Zone, partition regions, conventional statistical methods, Earthquakes, classifications, disaster management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
4195 Towards Real-Time Classification of Finger Movement Direction Using Encephalography Independent Components

Authors: Mohamed Mounir Tellache, Hiroyuki Kambara, Yasuharu Koike, Makoto Miyakoshi, Natsue Yoshimura

Abstract:

This study explores the practicality of using electroencephalographic (EEG) independent components to predict eight-direction finger movements in pseudo-real-time. Six healthy participants with individual-head MRI images performed finger movements in eight directions with two different arm configurations. The analysis was performed in two stages. The first stage consisted of using independent component analysis (ICA) to separate the signals representing brain activity from non-brain activity signals and to obtain the unmixing matrix. The resulting independent components (ICs) were checked, and those reflecting brain-activity were selected. Finally, the time series of the selected ICs were used to predict eight finger-movement directions using Sparse Logistic Regression (SLR). The second stage consisted of using the previously obtained unmixing matrix, the selected ICs, and the model obtained by applying SLR to classify a different EEG dataset. This method was applied to two different settings, namely the single-participant level and the group-level. For the single-participant level, the EEG dataset used in the first stage and the EEG dataset used in the second stage originated from the same participant. For the group-level, the EEG datasets used in the first stage were constructed by temporally concatenating each combination without repetition of the EEG datasets of five participants out of six, whereas the EEG dataset used in the second stage originated from the remaining participants. The average test classification results across datasets (mean ± S.D.) were 38.62 ± 8.36% for the single-participant, which was significantly higher than the chance level (12.50 ± 0.01%), and 27.26 ± 4.39% for the group-level which was also significantly higher than the chance level (12.49% ± 0.01%). The classification accuracy within [–45°, 45°] of the true direction is 70.03 ± 8.14% for single-participant and 62.63 ± 6.07% for group-level which may be promising for some real-life applications. Clustering and contribution analyses further revealed the brain regions involved in finger movement and the temporal aspect of their contribution to the classification. These results showed the possibility of using the ICA-based method in combination with other methods to build a real-time system to control prostheses.

Keywords: Brain-computer interface, BCI, electroencephalography, EEG, finger motion decoding, independent component analysis, pseudo-real-time motion decoding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599
4194 Machine Learning Methods for Flood Hazard Mapping

Authors: S. Zappacosta, C. Bove, M. Carmela Marinelli, P. di Lauro, K. Spasenovic, L. Ostano, G. Aiello, M. Pietrosanto

Abstract:

This paper proposes a neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The classification capability was compared with the flood hazard mapping River Basin Plans (Piani Assetto Idrogeologico, acronimed as PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), encoding four different increasing flood hazard levels. The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.

Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
4193 Spatial Data Mining by Decision Trees

Authors: S. Oujdi, H. Belbachir

Abstract:

Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.

Keywords: C4.5 Algorithm, Decision trees, S-CART, Spatial data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2986