Search results for: Statistical data analysis
13725 Implementation of an IoT Sensor Data Collection and Analysis Library
Authors: Jihyun Song, Kyeongjoo Kim, Minsoo Lee
Abstract:
Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.
Keywords: Clustering, data mining, DBSCAN, k-means, k-medoids, sensor data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201013724 AniMoveMineR: Animal Behavior Exploratory Analysis Using Association Rules Mining
Authors: Suelane Garcia Fontes, Silvio Luiz Stanzani, Pedro L. Pizzigatti Corrła Ronaldo G. Morato
Abstract:
Environmental changes and major natural disasters are most prevalent in the world due to the damage that humanity has caused to nature and these damages directly affect the lives of animals. Thus, the study of animal behavior and their interactions with the environment can provide knowledge that guides researchers and public agencies in preservation and conservation actions. Exploratory analysis of animal movement can determine the patterns of animal behavior and with technological advances the ability of animals to be tracked and, consequently, behavioral studies have been expanded. There is a lot of research on animal movement and behavior, but we note that a proposal that combines resources and allows for exploratory analysis of animal movement and provide statistical measures on individual animal behavior and its interaction with the environment is missing. The contribution of this paper is to present the framework AniMoveMineR, a unified solution that aggregates trajectory analysis and data mining techniques to explore animal movement data and provide a first step in responding questions about the animal individual behavior and their interactions with other animals over time and space. We evaluated the framework through the use of monitored jaguar data in the city of Miranda Pantanal, Brazil, in order to verify if the use of AniMoveMineR allows to identify the interaction level between these jaguars. The results were positive and provided indications about the individual behavior of jaguars and about which jaguars have the highest or lowest correlation.Keywords: Data mining, data science, trajectory, animal behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 91713723 Towards Development of Solution for Business Process-Oriented Data Analysis
Authors: M. Klimavicius
Abstract:
This paper proposes a modeling methodology for the development of data analysis solution. The Author introduce the approach to address data warehousing issues at the at enterprise level. The methodology covers the process of the requirements eliciting and analysis stage as well as initial design of data warehouse. The paper reviews extended business process model, which satisfy the needs of data warehouse development. The Author considers that the use of business process models is necessary, as it reflects both enterprise information systems and business functions, which are important for data analysis. The Described approach divides development into three steps with different detailed elaboration of models. The Described approach gives possibility to gather requirements and display them to business users in easy manner.Keywords: Data warehouse, data analysis, business processmanagement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139113722 Irrigation Water Quality Evaluation Based on Multivariate Statistical Analysis: A Case Study of Jiaokou Irrigation District
Authors: Panpan Xu, Qiying Zhang, Hui Qian
Abstract:
Groundwater is main source of water supply in the Guanzhong Basin, China. To investigate the quality of groundwater for agricultural purposes in Jiaokou Irrigation District located in the east of the Guanzhong Basin, 141 groundwater samples were collected for analysis of major ions (K+, Na+, Mg2+, Ca2+, SO42-, Cl-, HCO3-, and CO32-), pH, and total dissolved solids (TDS). Sodium percentage (Na%), residual sodium carbonate (RSC), magnesium hazard (MH), and potential salinity (PS) were applied for irrigation water quality assessment. In addition, multivariate statistical techniques were used to identify the underlying hydrogeochemical processes. Results show that the content of TDS mainly depends on Cl-, Na+, Mg2+, and SO42-, and the HCO3- content is generally high except for the eastern sand area. These are responsible for complex hydrogeochemical processes, such as dissolution of carbonate minerals (dolomite and calcite), gypsum, halite, and silicate minerals, the cation exchange, as well as evaporation and concentration. The average evaluation levels of Na%, RSC, MH, and PS for irrigation water quality are doubtful, good, unsuitable, and injurious to unsatisfactory, respectively. Therefore, it is necessary for decision makers to comprehensively consider the indicators and thus reasonably evaluate the irrigation water quality.
Keywords: Irrigation water quality, multivariate statistical analysis, groundwater, hydrogeochemical process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56613721 Arabic Character Recognition using Artificial Neural Networks and Statistical Analysis
Authors: Ahmad M. Sarhan, Omar I. Al Helalat
Abstract:
In this paper, an Arabic letter recognition system based on Artificial Neural Networks (ANNs) and statistical analysis for feature extraction is presented. The ANN is trained using the Least Mean Squares (LMS) algorithm. In the proposed system, each typed Arabic letter is represented by a matrix of binary numbers that are used as input to a simple feature extraction system whose output, in addition to the input matrix, are fed to an ANN. Simulation results are provided and show that the proposed system always produces a lower Mean Squared Error (MSE) and higher success rates than the current ANN solutions.Keywords: ANN, Backpropagation, Gaussian, LMS, MSE, Neuron, standard deviation, Widrow-Hoff rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201313720 Analyzing Data on Breastfeeding Using Dispersed Statistical Models
Authors: Naushad Mamode Khan, Cheika Jahangeer, Maleika Heenaye-Mamode Khan
Abstract:
Exclusive breastfeeding is the feeding of a baby on no other milk apart from breast milk. Exclusive breastfeeding during the first 6 months of life is very important as it supports optimal growth and development during infancy and reduces the risk of obliterating diseases and problems. Moreover, it helps to reduce the incidence and/or severity of diarrhea, lower respiratory infection and urinary tract infection. In this paper, we make a survey of the factors that influence exclusive breastfeeding and use two dispersed statistical models to analyze data. The models are the Generalized Poisson regression model and the Com-Poisson regression models.
Keywords: Exclusive breastfeeding, regression model, generalized poisson, com-poisson.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156113719 Strategic Investment in Infrastructure Development to Facilitate Economic Growth in the United States
Authors: Arkaprabha Bhattacharyya, Makarand Hastak
Abstract:
The COVID-19 pandemic is unprecedented in terms of its global reach and economic impacts. Historically, investment in infrastructure development projects has been touted to boost the economic growth of a nation. The State and Local governments responsible for delivering infrastructure assets work under tight budgets. Therefore, it is important to understand which infrastructure projects have the highest potential of boosting economic growth in the post-pandemic era. This paper presents relationships between infrastructure projects and economic growth. Statistical relationships between investment in different types of infrastructure projects (transit, water and wastewater, highways, power, manufacturing etc.) and indicators of economic growth are presented using historic data between 2002 and 2020 from the U.S. Census Bureau and U.S. Bureau of Economic Analysis (BEA). The outcome of the paper is the comparison of statistical correlations between investment in different types of infrastructure projects and indicators of economic growth. The comparison of the statistical correlations is useful in ranking the types of infrastructure projects based on their ability to influence economic prosperity. Therefore, investment in the infrastructures with the higher rank will have a better chance of boosting the economic growth. Once, the ranks are derived, they can be used by the decision-makers in infrastructure investment related decision-making process.
Keywords: Economic growth, infrastructure development, infrastructure projects, strategic investment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66913718 A Optimal Subclass Detection Method for Credit Scoring
Authors: Luciano Nieddu, Giuseppe Manfredi, Salvatore D'Acunto, Katia La Regina
Abstract:
In this paper a non-parametric statistical pattern recognition algorithm for the problem of credit scoring will be presented. The proposed algorithm is based on a clustering k- means algorithm and allows for the determination of subclasses of homogenous elements in the data. The algorithm will be tested on two benchmark datasets and its performance compared with other well known pattern recognition algorithm for credit scoring.
Keywords: Constrained clustering, Credit scoring, Statistical pattern recognition, Supervised classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204913717 Analysis and Classification of Hiv-1 Sub- Type Viruses by AR Model through Artificial Neural Networks
Authors: O. Yavuz, L. Ozyilmaz
Abstract:
HIV-1 genome is highly heterogeneous. Due to this variation, features of HIV-I genome is in a wide range. For this reason, the ability to infection of the virus changes depending on different chemokine receptors. From this point of view, R5 HIV viruses use CCR5 coreceptor while X4 viruses use CXCR5 and R5X4 viruses can utilize both coreceptors. Recently, in Bioinformatics, R5X4 viruses have been studied to classify by using the experiments on HIV-1 genome. In this study, R5X4 type of HIV viruses were classified using Auto Regressive (AR) model through Artificial Neural Networks (ANNs). The statistical data of R5X4, R5 and X4 viruses was analyzed by using signal processing methods and ANNs. Accessible residues of these virus sequences were obtained and modeled by AR model since the dimension of residues is large and different from each other. Finally the pre-processed data was used to evolve various ANN structures for determining R5X4 viruses. Furthermore ROC analysis was applied to ANNs to show their real performances. The results indicate that R5X4 viruses successfully classified with high sensitivity and specificity values training and testing ROC analysis for RBF, which gives the best performance among ANN structures.Keywords: Auto-Regressive Model, HIV, Neural Networks, ROC Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117913716 Spatial-Temporal Clustering Characteristics of Dengue in the Northern Region of Sri Lanka, 2010-2013
Authors: Sumiko Anno, Keiji Imaoka, Takeo Tadono, Tamotsu Igarashi, Subramaniam Sivaganesh, Selvam Kannathasan, Vaithehi Kumaran, Sinnathamby Noble Surendran
Abstract:
Dengue outbreaks are affected by biological, ecological, socio-economic and demographic factors that vary over time and space. These factors have been examined separately and still require systematic clarification. The present study aimed to investigate the spatial-temporal clustering relationships between these factors and dengue outbreaks in the northern region of Sri Lanka. Remote sensing (RS) data gathered from a plurality of satellites were used to develop an index comprising rainfall, humidity and temperature data. RS data gathered by ALOS/AVNIR-2 were used to detect urbanization, and a digital land cover map was used to extract land cover information. Other data on relevant factors and dengue outbreaks were collected through institutions and extant databases. The analyzed RS data and databases were integrated into geographic information systems, enabling temporal analysis, spatial statistical analysis and space-time clustering analysis. Our present results showed that increases in the number of the combination of ecological factor and socio-economic and demographic factors with above the average or the presence contribute to significantly high rates of space-time dengue clusters.
Keywords: ALOS/AVNIR-2, Dengue, Space-time clustering analysis, Sri Lanka.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 228413715 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery
Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene
Abstract:
Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.
Keywords: Multi-objective decision support, analysis, data validation, freight delivery, multi-modal transportation, genetic programming methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48413714 Time Series Simulation by Conditional Generative Adversarial Net
Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto
Abstract:
Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.
Keywords: Conditional Generative Adversarial Net, market and credit risk management, neural network, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119913713 Pakistan Sign Language Recognition Using Statistical Template Matching
Authors: Aleem Khalid Alvi, M. Yousuf Bin Azhar, Mehmood Usman, Suleman Mumtaz, Sameer Rafiq, RaziUr Rehman, Israr Ahmed
Abstract:
Sign language recognition has been a topic of research since the first data glove was developed. Many researchers have attempted to recognize sign language through various techniques. However none of them have ventured into the area of Pakistan Sign Language (PSL). The Boltay Haath project aims at recognizing PSL gestures using Statistical Template Matching. The primary input device is the DataGlove5 developed by 5DT. Alternative approaches use camera-based recognition which, being sensitive to environmental changes are not always a good choice.This paper explains the use of Statistical Template Matching for gesture recognition in Boltay Haath. The system recognizes one handed alphabet signs from PSL.Keywords: Gesture Recognition, Pakistan Sign Language, DataGlove, Human Computer Interaction, Template Matching, BoltayHaath
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 302313712 Statistical Relation between Vegetation Cover and Land Surface Temperature in Phnom Penh City
Authors: Gulam Mohiuddin, Jan-Peter Mund
Abstract:
This study assessed the correlation between Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) in Phnom Penh City (Cambodia) from 2016 to 2020. Understanding the LST and NDVI can be helpful to understand the Urban Heat Island (UHI) scenario, and it can contribute to planning urban greening and combating the effects of UHI. The study used Landsat-8 images as the data for analysis. They have 100 m spatial resolution (per pixel) in the thermal band. The current study used an approach for the statistical analysis that considers every pixel from the study area instead of taking few sample points or analyzing descriptive statistics. Also, this study is examining the correlation between NDVI and LST with a spatially explicit approach. The study found a strong negative correlation between NDVI and LST (coefficient range -0.56 to -0.59), and this relationship is linear. This study showed a way to avoid the probable error from the sample-based approach in examining two spatial variables. The method is reproducible for a similar type of analysis on the correlation between spatial phenomena. The findings of this study will be used further to understand the causation behind LST change in that area triangulating LST, NDVI and land-use changes.
Keywords: Land Surface Temperature, NDVI, Normalized Difference Vegetation Index, remote sensing, methodological development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47013711 Body Mass Index and Dietary Habits among Nursing College Students Living in the University Residence in Kirkuk City, Iraq
Authors: Jenan Shakoor
Abstract:
Obesity prevalence is increasing worldwide. University life is a challenging period especially for students who have to leave their familiar surroundings and settle in a new environment. The current study aimed to assess the diet and exercise habits and their association with body mass index (BMI) among nursing college students living at Kirkuk University residence. This was a descriptive study. A non-probability (purposive) sample of 101 students living in Kirkuk University residence was recruited during the period from the 15th November 2015 to the 5th May 2016. A questionnaire was constructed for the purpose of the study which consisted of four parts: the demographic characteristics of the study sample, eating habits, eating at college and healthy habits. The data were collected by interviewing the study sample and the weight and height were measured by a trained researcher at the college. Descriptive statistical analysis was undertaken. Data were prepared, organized and entered into the computer file; the Statistical Package for Social Science (SPSS 20) was used for data analysis. A p value≤ 0.05 was accepted as statistical significant. A total of 63 (62.4%) of the sample were aged20-21with a mean age of 22.1 (SD±0.653). A third of the sample 38 (37.6%) were from level four at college, 67 (66.3%) were female and 46 45.5% of participants were from a middle socio-economic status. 14 (13.9%) of the study sample were overweight (BMI =25-29.9kg/m2) and 6 (5.9%) were obese (BMI≥30kg/m2) compared to 73 (72.3%) were of normal weight (BMI =18.5-24.9kg/m2). With regard to eating habits and exercise, 42 (41.6%) of the students rarely ate breakfast, 79 (78.2%) eat lunch at university residence, 77 (78.2%) of the students reported rarely doing exercise and 62 (61.4%) of them were sleeping for less than eight hours. No significant association was found between the variables age, sex, level of college and socio-economic status and BMI, while there was a significant association between eating lunch at university and BMI (p =0.03). No significant association was found between eating habits, healthy habits and BMI. The prevalence of overweight and obesity among the study sample was 19.8% with female students being more obese than males. Further studies are needed to identify BMI among residence students in other colleges and increasing the awareness of undergraduate students to healthy food habits.
Keywords: Body mass index, diet, obesity, university residence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 127813710 Development of Greenhouse Analysis Tools for Home Agriculture Project
Authors: M. Amir Abas, M. Dahlui
Abstract:
This paper presents the development of analysis tools for Home Agriculture project. The tools are required for monitoring the condition of greenhouse which involves two components: measurement hardware and data analysis engine. Measurement hardware is functioned to measure environment parameters such as temperature, humidity, air quality, dust and etc while analysis tool is used to analyse and interpret the integrated data against the condition of weather, quality of health, irradiance, quality of soil and etc. The current development of the tools is completed for off-line data recorded technique. The data is saved in MMC and transferred via ZigBee to Environment Data Manager (EDM) for data analysis. EDM converts the raw data and plot three combination graphs. It has been applied in monitoring three months data measurement for irradiance, temperature and humidity of the greenhouse..Keywords: Monitoring, Environment, Greenhouse, Analysis tools
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201813709 What is the Key Element for the Territory's State of Development?
Authors: J. Lonska, V. Boronenko
Abstract:
The result of process of territory-s development is the territory-s state of development (TSoD), which is pointed towards the provision and improvement of people-s life conditions. The authors offer to measure the TSoD according to their own developed model. Using the available statistical data regarding the values of model-s elements, the authors empirically show which element mainly determines the TSoD. The findings of the research showed that the key elements of the TSoD are the “Material welfare of people" and “People-s health". Performing a deeper statistical analysis of correlation between these elements, it turned out that it is not so necessary for a country to be bent on trying to increase the material growth of a territory, because a relatively high index of life expectancy at birth could be ensured also by much more modest material resources. On the other hand, the economical feedback of longer lifespan within countries with lower material performance is also relatively low.
Keywords: Development indices, health, territory's state of development, wealth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119313708 Statistical Modeling of Mandarin Tone Sandhi: Neutralization of Underlying Pitch Targets
Authors: Si Chen, Caroline Wiltshire, Bin Li
Abstract:
This study statistically models the surface f0 contour and the underlying pitch target of a well-studied third sandhi tone of Mandarin Chinese. Although the growth curve analysis on the surface f0 contours indicates non-neutralization of this sandhi tone (T3) and the base T2, their underlying pitch targets do show neutralization. These results in Mandarin are also consistent with the perception of native speakers, where they cannot distinguish the third T3 from the base T2, compensating contextual variation. It is possible to use the proposed statistical procedure of testing underlying pitch targets to verify tone sandhi processes in other tonal languages.
Keywords: Growth curve analysis, tone sandhi, underlying pitch targets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 97413707 Independent Component Analysis to Mass Spectra of Aluminium Sulphate
Authors: M. Heikkinen, A. Sarpola, H. Hellman, J. Rämö, Y. Hiltunen
Abstract:
Independent component analysis (ICA) is a computational method for finding underlying signals or components from multivariate statistical data. The ICA method has been successfully applied in many fields, e.g. in vision research, brain imaging, geological signals and telecommunications. In this paper, we apply the ICA method to an analysis of mass spectra of oligomeric species emerged from aluminium sulphate. Mass spectra are typically complex, because they are linear combinations of spectra from different types of oligomeric species. The results show that ICA can decomposite the spectral components for useful information. This information is essential in developing coagulation phases of water treatment processes.
Keywords: Independent component analysis, massspectroscopy, water treatment, aluminium sulphate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 236913706 Monitoring Patents Using the Statistical Process Control
Authors: Stephanie Russo Fabris, Edmara Thays Neres Menezes, Ruirogeres dos Santos Cruz, Lucio Leonardo Siqueira Santos, Suzana Leitao Russo
Abstract:
The statistical process control (SPC) is one of the most powerful tools developed to assist ineffective control of quality, involves collecting, organizing and interpreting data during production. This article aims to show how the use of CEP industries can control and continuously improve product quality through monitoring of production that can detect deviations of parameters representing the process by reducing the amount of off-specification products and thus the costs of production. This study aimed to conduct a technological forecasting in order to characterize the research being done related to the CEP. The survey was conducted in the databases Spacenet, WIPO and the National Institute of Industrial Property (INPI). Among the largest are the United States depositors and deposits via PCT, the classification section that was presented in greater abundance to F.
Keywords: Statistical Process Control, Industries
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153513705 The Effect of Damping Treatment for Noise Control on Offshore Platforms Using Statistical Energy Analysis
Authors: Ji Xi, Cheng Song Chin, Ehsan Mesbahi
Abstract:
Structure-borne noise is an important aspect of offshore platform sound field. It can be generated either directly by vibrating machineries induced mechanical force, indirectly by the excitation of structure or excitation by incident airborne noise. Therefore, limiting of the transmission of vibration energy throughout the offshore platform is the key to control the structureborne noise. This is usually done by introducing damping treatment to the steel structures. Two types of damping treatment using onboard are presented. By conducting a Statistical Energy Analysis (SEA) simulation on a jack-up rig, the noise level in the source room, the neighboring rooms, and remote living quarter cabins are compared before and after the damping treatments been applied. The results demonstrated that, in the source neighboring room and living quarter area, there is a significant noise reduction with the damping treatment applied, whereas in the source room where air-borne sound predominates that of structure-borne sound, the impact is not obvious. The conclusion on effective damping treatment in the offshore platform is made which enable acoustic professionals to implement noise control during the design stage for offshore crews’ hearing protection and habitant comfortability.Keywords: Statistical energy analysis, damping treatment, noise control, offshore platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212213704 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences
Authors: C. Xavier Mendieta, J. J McArthur
Abstract:
Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.Keywords: Building archetypes, data analysis, energy benchmarks, GHG emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 102413703 Statistical (Radio) Path Loss Modelling: For RF Propagations within localized Indoor and Outdoor Environments of the Academic Building of INTI University College (Laureate International Universities)
Authors: Emmanuel O.O. Ojakominor, Tian F. Lai
Abstract:
A handful of propagation textbooks that discuss radio frequency (RF) propagation models merely list out the models and perhaps discuss them rather briefly; this may well be frustrating for the potential first time modeller who's got no idea on how these models could have been derived. This paper fundamentally provides an overture in modelling the radio channel. Explicitly, for the modelling practice discussed here, signal strength field measurements had to be conducted beforehand (this was done at 469 MHz); to be precise, this paper primarily concerns empirically/statistically modelling the radio channel, and thus provides results obtained from empirically modelling the environments in question. This paper, on the whole, proposes three propagation models, corresponding to three experimented environments. Perceptibly, the models have been derived by way of making the most use of statistical measures. Generally speaking, the first two models were derived via simple linear regression analysis, whereas the third have been originated using multiple regression analysis (with five various predictors). Additionally, as implied by the title of this paper, both indoor and outdoor environments have been experimented; however, (somewhat) two of the environments are neither entirely indoor nor entirely outdoor. The other environment, however, is completely indoor.
Keywords: RF propagation, radio channel modelling, statistical methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 243213702 Mathematical Modeling to Predict Surface Roughness in CNC Milling
Authors: Ab. Rashid M.F.F., Gan S.Y., Muhammad N.Y.
Abstract:
Surface roughness (Ra) is one of the most important requirements in machining process. In order to obtain better surface roughness, the proper setting of cutting parameters is crucial before the process take place. This research presents the development of mathematical model for surface roughness prediction before milling process in order to evaluate the fitness of machining parameters; spindle speed, feed rate and depth of cut. 84 samples were run in this study by using FANUC CNC Milling α-Τ14ιE. Those samples were randomly divided into two data sets- the training sets (m=60) and testing sets(m=24). ANOVA analysis showed that at least one of the population regression coefficients was not zero. Multiple Regression Method was used to determine the correlation between a criterion variable and a combination of predictor variables. It was established that the surface roughness is most influenced by the feed rate. By using Multiple Regression Method equation, the average percentage deviation of the testing set was 9.8% and 9.7% for training data set. This showed that the statistical model could predict the surface roughness with about 90.2% accuracy of the testing data set and 90.3% accuracy of the training data set.
Keywords: Surface roughness, regression analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 213013701 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm
Authors: Ameur Abdelkader, Abed Bouarfa Hafida
Abstract:
Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.
Keywords: Predictive analysis, big data, predictive analysis algorithms. CART algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 107513700 Informal Inferential Reasoning Using a Modelling Approach within a Computer-Based Simulation
Authors: Theodosia Prodromou
Abstract:
The article investigates how 14- to 15- year-olds build informal conceptions of inferential statistics as they engage in a modelling process and build their own computer simulations with dynamic statistical software. This study proposes four primary phases of informal inferential reasoning for the students in the statistical modeling and simulation process. Findings show shifts in the conceptual structures across the four phases and point to the potential of all of these phases for fostering the development of students- robust knowledge of the logic of inference when using computer based simulations to model and investigate statistical questions.
Keywords: Inferential reasoning, learning, modelling, statistical inference, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147413699 Analysis of a Population of Diabetic Patients Databases with Classifiers
Authors: Murat Koklu, Yavuz Unal
Abstract:
Data mining can be called as a technique to extract information from data. It is the process of obtaining hidden information and then turning it into qualified knowledge by statistical and artificial intelligence technique. One of its application areas is medical area to form decision support systems for diagnosis just by inventing meaningful information from given medical data. In this study a decision support system for diagnosis of illness that make use of data mining and three different artificial intelligence classifier algorithms namely Multilayer Perceptron, Naive Bayes Classifier and J.48. Pima Indian dataset of UCI Machine Learning Repository was used. This dataset includes urinary and blood test results of 768 patients. These test results consist of 8 different feature vectors. Obtained classifying results were compared with the previous studies. The suggestions for future studies were presented.
Keywords: Artificial Intelligence, Classifiers, Data Mining, Diabetic Patients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 543113698 Impact of Fixation Time on Subjective Video Quality Metric: a New Proposal for Lossy Compression Impairment Assessment
Authors: M. G. Albanesi, R. Amadeo
Abstract:
In this paper, a new approach for quality assessment tasks in lossy compressed digital video is proposed. The research activity is based on the visual fixation data recorded by an eye tracker. The method involved both a new paradigm for subjective quality evaluation and the subsequent statistical analysis to match subjective scores provided by the observer to the data obtained from the eye tracker experiments. The study brings improvements to the state of the art, as it solves some problems highlighted in literature. The experiments prove that data obtained from an eye tracker can be used to classify videos according to the level of impairment due to compression. The paper presents the methodology, the experimental results and their interpretation. Conclusions suggest that the eye tracker can be useful in quality assessment, if data are collected and analyzed in a proper way.Keywords: eye tracker, video compression, video qualityassessment, visual attention
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160513697 Studies of Rule Induction by STRIM from the Decision Table with Contaminated Attribute Values from Missing Data and Noise — In the Case of Critical Dataset Size —
Authors: Tetsuro Saeki, Yuichi Kato, Shoutarou Mizuno
Abstract:
STRIM (Statistical Test Rule Induction Method) has been proposed as a method to effectively induct if-then rules from the decision table which is considered as a sample set obtained from the population of interest. Its usefulness has been confirmed by simulation experiments specifying rules in advance, and by comparison with conventional methods. However, scope for future development remains before STRIM can be applied to the analysis of real-world data sets. The first requirement is to determine the size of the dataset needed for inducting true rules, since finding statistically significant rules is the core of the method. The second is to examine the capacity of rule induction from datasets with contaminated attribute values created by missing data and noise, since real-world datasets usually contain such contaminated data. This paper examines the first problem theoretically, in connection with the rule length. The second problem is then examined in a simulation experiment, utilizing the critical size of dataset derived from the first step. The experimental results show that STRIM is highly robust in the analysis of datasets with contaminated attribute values, and hence is applicable to real-world data
Keywords: Rule induction, decision table, missing data, noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146313696 Statistical Analysis and Impact Forecasting of Connected and Autonomous Vehicles on the Environment: Case Study in the State of Maryland
Authors: Alireza Ansariyar, Safieh Laaly
Abstract:
Over the last decades, the vehicle industry has shown increased interest in integrating autonomous, connected, and electrical technologies in vehicle design with the primary hope of improving mobility and road safety while reducing transportation’s environmental impact. Using the State of Maryland (M.D.) in the United States as a pilot study, this research investigates Connected and Autonomous Vehicles (CAVs) fuel consumption and air pollutants including Carbon Monoxide (CO), Particulate Matter (PM), and Nitrogen Oxides (NOx) and utilizes meaningful linear regression models to predict CAV’s environmental effects. Maryland transportation network was simulated in VISUM software, and data on a set of variables were collected through a comprehensive survey. The number of pollutants and fuel consumption were obtained for the time interval 2010 to 2021 from the macro simulation. Eventually, four linear regression models were proposed to predict the amount of C.O., NOx, PM pollutants, and fuel consumption in the future. The results highlighted that CAVs’ pollutants and fuel consumption have a significant correlation with the income, age, and race of the CAV customers. Furthermore, the reliability of four statistical models was compared with the reliability of macro simulation model outputs in the year 2030. The error of three pollutants and fuel consumption was obtained at less than 9% by statistical models in SPSS. This study is expected to assist researchers and policymakers with planning decisions to reduce CAV environmental impacts in M.D.
Keywords: Connected and autonomous vehicles, statistical model, environmental effects, pollutants and fuel consumption, VISUM, linear regression models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 461