Search results for: Hungarian algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3444

Search results for: Hungarian algorithm

3324 Constant Factor Approximation Algorithm for p-Median Network Design Problem with Multiple Cable Types

Authors: Chaghoub Soraya, Zhang Xiaoyan

Abstract:

This research presents the first constant approximation algorithm to the p-median network design problem with multiple cable types. This problem was addressed with a single cable type and there is a bifactor approximation algorithm for the problem. To the best of our knowledge, the algorithm proposed in this paper is the first constant approximation algorithm for the p-median network design with multiple cable types. The addressed problem is a combination of two well studied problems which are p-median problem and network design problem. The introduced algorithm is a random sampling approximation algorithm of constant factor which is conceived by using some random sampling techniques form the literature. It is based on a redistribution Lemma from the literature and a steiner tree problem as a subproblem. This algorithm is simple, and it relies on the notions of random sampling and probability. The proposed approach gives an approximation solution with one constant ratio without violating any of the constraints, in contrast to the one proposed in the literature. This paper provides a (21 + 2)-approximation algorithm for the p-median network design problem with multiple cable types using random sampling techniques.

Keywords: Approximation algorithms, buy-at-bulk, combinatorial optimization, network design, p-median.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 595
3323 Noise Reduction in Image Sequences using an Effective Fuzzy Algorithm

Authors: Mahmoud Saeidi, Khadijeh Saeidi, Mahmoud Khaleghi

Abstract:

In this paper, we propose a novel spatiotemporal fuzzy based algorithm for noise filtering of image sequences. Our proposed algorithm uses adaptive weights based on a triangular membership functions. In this algorithm median filter is used to suppress noise. Experimental results show when the images are corrupted by highdensity Salt and Pepper noise, our fuzzy based algorithm for noise filtering of image sequences, are much more effective in suppressing noise and preserving edges than the previously reported algorithms such as [1-7]. Indeed, assigned weights to noisy pixels are very adaptive so that they well make use of correlation of pixels. On the other hand, the motion estimation methods are erroneous and in highdensity noise they may degrade the filter performance. Therefore, our proposed fuzzy algorithm doesn-t need any estimation of motion trajectory. The proposed algorithm admissibly removes noise without having any knowledge of Salt and Pepper noise density.

Keywords: Image Sequences, Noise Reduction, fuzzy algorithm, triangular membership function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
3322 A New Heuristic for Improving the Performance of Genetic Algorithm

Authors: Warattapop Chainate, Peeraya Thapatsuwan, Pupong Pongcharoen

Abstract:

The hybridisation of genetic algorithm with heuristics has been shown to be one of an effective way to improve its performance. In this work, genetic algorithm hybridised with four heuristics including a new heuristic called neighbourhood improvement were investigated through the classical travelling salesman problem. The experimental results showed that the proposed heuristic outperformed other heuristics both in terms of quality of the results obtained and the computational time.

Keywords: Genetic Algorithm, Hybridisation, Metaheuristics, Travelling Salesman Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847
3321 Enhanced Ant Colony Based Algorithm for Routing in Mobile Ad Hoc Network

Authors: Cauvery N. K., K. V. Viswanatha

Abstract:

Mobile Ad hoc network consists of a set of mobile nodes. It is a dynamic network which does not have fixed topology. This network does not have any infrastructure or central administration, hence it is called infrastructure-less network. The change in topology makes the route from source to destination as dynamic fixed and changes with respect to time. The nature of network requires the algorithm to perform route discovery, maintain route and detect failure along the path between two nodes [1]. This paper presents the enhancements of ARA [2] to improve the performance of routing algorithm. ARA [2] finds route between nodes in mobile ad-hoc network. The algorithm is on-demand source initiated routing algorithm. This is based on the principles of swarm intelligence. The algorithm is adaptive, scalable and favors load balancing. The improvements suggested in this paper are handling of loss ants and resource reservation.

Keywords: Ad hoc networks, On-demand routing, Swarmintelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
3320 A Cost Function for Joint Blind Equalization and Phase Recovery

Authors: Reza Berangi, Morteza Babaee, Majid Soleimanipour

Abstract:

In this paper a new cost function for blind equalization is proposed. The proposed cost function, referred to as the modified maximum normalized cumulant criterion (MMNC), is an extension of the previously proposed maximum normalized cumulant criterion (MNC). While the MNC requires a separate phase recovery system after blind equalization, the MMNC performs joint blind equalization and phase recovery. To achieve this, the proposed algorithm maximizes a cost function that considers both amplitude and phase of the equalizer output. The simulation results show that the proposed algorithm has an improved channel equalization effect than the MNC algorithm and simultaneously can correct the phase error that the MNC algorithm is unable to do. The simulation results also show that the MMNC algorithm has lower complexity than the MNC algorithm. Moreover, the MMNC algorithm outperforms the MNC algorithm particularly when the symbols block size is small.

Keywords: Blind equalization, maximum normalized cumulant criterion (MNC), intersymbol interference (ISI), modified MNC criterion (MMNC), phase recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
3319 Design and Bandwidth Allocation of Embedded ATM Networks using Genetic Algorithm

Authors: H. El-Madbouly

Abstract:

In this paper, genetic algorithm (GA) is proposed for the design of an optimization algorithm to achieve the bandwidth allocation of ATM network. In Broadband ISDN, the ATM is a highbandwidth; fast packet switching and multiplexing technique. Using ATM it can be flexibly reconfigure the network and reassign the bandwidth to meet the requirements of all types of services. By dynamically routing the traffic and adjusting the bandwidth assignment, the average packet delay of the whole network can be reduced to a minimum. M/M/1 model can be used to analyze the performance.

Keywords: Bandwidth allocation, Genetic algorithm, ATMNetwork, packet delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375
3318 A Minimum Spanning Tree-Based Method for Initializing the K-Means Clustering Algorithm

Authors: J. Yang, Y. Ma, X. Zhang, S. Li, Y. Zhang

Abstract:

The traditional k-means algorithm has been widely used as a simple and efficient clustering method. However, the algorithm often converges to local minima for the reason that it is sensitive to the initial cluster centers. In this paper, an algorithm for selecting initial cluster centers on the basis of minimum spanning tree (MST) is presented. The set of vertices in MST with same degree are regarded as a whole which is used to find the skeleton data points. Furthermore, a distance measure between the skeleton data points with consideration of degree and Euclidean distance is presented. Finally, MST-based initialization method for the k-means algorithm is presented, and the corresponding time complexity is analyzed as well. The presented algorithm is tested on five data sets from the UCI Machine Learning Repository. The experimental results illustrate the effectiveness of the presented algorithm compared to three existing initialization methods.

Keywords: Degree, initial cluster center, k-means, minimum spanning tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
3317 Algorithm of Measurement of Noise Signal Power in the Presence of Narrowband Interference

Authors: Alexey V. Klyuev, Valery P. Samarin, Viktor F. Klyuev

Abstract:

A power measurement algorithm of the input mix components of the noise signal and narrowband interference is considered using functional transformations of the input mix in the postdetection processing channel. The algorithm efficiency analysis has been carried out for different interference-to-signal ratio. Algorithm performance features have been explored by numerical experiment results.

Keywords: Noise signal, continuous narrowband interference, signal power, spectrum width, detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
3316 A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects

Authors: Tayfun Çay, Yaşar İnceyol, Abdurrahman Özbeyaz

Abstract:

Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps.

Keywords: Genetic algorithm, land consolidation, landholding, land reallocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
3315 Optimal Allocation of FACTS Devices for ATC Enhancement Using Bees Algorithm

Authors: R.Mohamad Idris, A.Khairuddin, M.W.Mustafa

Abstract:

In this paper, a novel method using Bees Algorithm is proposed to determine the optimal allocation of FACTS devices for maximizing the Available Transfer Capability (ATC) of power transactions between source and sink areas in the deregulated power system. The algorithm simultaneously searches the FACTS location, FACTS parameters and FACTS types. Two types of FACTS are simulated in this study namely Thyristor Controlled Series Compensator (TCSC) and Static Var Compensator (SVC). A Repeated Power Flow with FACTS devices including ATC is used to evaluate the feasible ATC value within real and reactive power generation limits, line thermal limits, voltage limits and FACTS operation limits. An IEEE30 bus system is used to demonstrate the effectiveness of the algorithm as an optimization tool to enhance ATC. A Genetic Algorithm technique is used for validation purposes. The results clearly indicate that the introduction of FACTS devices in a right combination of location and parameters could enhance ATC and Bees Algorithm can be efficiently used for this kind of nonlinear integer optimization.

Keywords: ATC, Bees Algorithm, TCSC, SVC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3165
3314 On the Solution of the Towers of Hanoi Problem

Authors: Hayedeh Ahrabian, Comfar Badamchi, Abbass Nowzari-Dalini

Abstract:

In this paper, two versions of an iterative loopless algorithm for the classical towers of Hanoi problem with O(1) storage complexity and O(2n) time complexity are presented. Based on this algorithm the number of different moves in each of pegs with its direction is formulated.

Keywords: Loopless algorithm, Binary tree, Towers of Hanoi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4834
3313 Neural Network Learning Based on Chaos

Authors: Truong Quang Dang Khoa, Masahiro Nakagawa

Abstract:

Chaos and fractals are novel fields of physics and mathematics showing up a new way of universe viewpoint and creating many ideas to solve several present problems. In this paper, a novel algorithm based on the chaotic sequence generator with the highest ability to adapt and reach the global optima is proposed. The adaptive ability of proposal algorithm is flexible in 2 steps. The first one is a breadth-first search and the second one is a depth-first search. The proposal algorithm is examined by 2 functions, the Camel function and the Schaffer function. Furthermore, the proposal algorithm is applied to optimize training Multilayer Neural Networks.

Keywords: learning and evolutionary computing, Chaos Optimization Algorithm, Artificial Neural Networks, nonlinear optimization, intelligent computational technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
3312 Automatic Clustering of Gene Ontology by Genetic Algorithm

Authors: Razib M. Othman, Safaai Deris, Rosli M. Illias, Zalmiyah Zakaria, Saberi M. Mohamad

Abstract:

Nowadays, Gene Ontology has been used widely by many researchers for biological data mining and information retrieval, integration of biological databases, finding genes, and incorporating knowledge in the Gene Ontology for gene clustering. However, the increase in size of the Gene Ontology has caused problems in maintaining and processing them. One way to obtain their accessibility is by clustering them into fragmented groups. Clustering the Gene Ontology is a difficult combinatorial problem and can be modeled as a graph partitioning problem. Additionally, deciding the number k of clusters to use is not easily perceived and is a hard algorithmic problem. Therefore, an approach for solving the automatic clustering of the Gene Ontology is proposed by incorporating cohesion-and-coupling metric into a hybrid algorithm consisting of a genetic algorithm and a split-and-merge algorithm. Experimental results and an example of modularized Gene Ontology in RDF/XML format are given to illustrate the effectiveness of the algorithm.

Keywords: Automatic clustering, cohesion-and-coupling metric, gene ontology; genetic algorithm, split-and-merge algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
3311 Development of Heterogeneous Parallel Genetic Simulated Annealing Using Multi-Niche Crowding

Authors: Z. G. Wang, M. Rahman, Y. S. Wong, K. S. Neo

Abstract:

In this paper, a new hybrid of genetic algorithm (GA) and simulated annealing (SA), referred to as GSA, is presented. In this algorithm, SA is incorporated into GA to escape from local optima. The concept of hierarchical parallel GA is employed to parallelize GSA for the optimization of multimodal functions. In addition, multi-niche crowding is used to maintain the diversity in the population of the parallel GSA (PGSA). The performance of the proposed algorithms is evaluated against a standard set of multimodal benchmark functions. The multi-niche crowding PGSA and normal PGSA show some remarkable improvement in comparison with the conventional parallel genetic algorithm and the breeder genetic algorithm (BGA).

Keywords: Crowding, genetic algorithm, parallel geneticalgorithm, simulated annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
3310 A New Heuristic Algorithm for the Classical Symmetric Traveling Salesman Problem

Authors: S. B. Liu, K. M. Ng, H. L. Ong

Abstract:

This paper presents a new heuristic algorithm for the classical symmetric traveling salesman problem (TSP). The idea of the algorithm is to cut a TSP tour into overlapped blocks and then each block is improved separately. It is conjectured that the chance of improving a good solution by moving a node to a position far away from its original one is small. By doing intensive search in each block, it is possible to further improve a TSP tour that cannot be improved by other local search methods. To test the performance of the proposed algorithm, computational experiments are carried out based on benchmark problem instances. The computational results show that algorithm proposed in this paper is efficient for solving the TSPs.

Keywords: Local search, overlapped neighborhood, travelingsalesman problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
3309 Investigation on Novel Based Naturally-Inspired Swarm Intelligence Algorithms for Optimization Problems in Mobile Ad Hoc Networks

Authors: C. Rajan, K. Geetha, C. Rasi Priya, S. Geetha

Abstract:

Nature is the immense gifted source for solving complex problems. It always helps to find the optimal solution to solve the problem. Mobile Ad Hoc NETwork (MANET) is a wide research area of networks which has set of independent nodes. The characteristics involved in MANET’s are Dynamic, does not depend on any fixed infrastructure or centralized networks, High mobility. The Bio-Inspired algorithms are mimics the nature for solving optimization problems opening a new era in MANET. The typical Swarm Intelligence (SI) algorithms are Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO), Modified Termite Algorithm, Bat Algorithm (BA), Wolf Search Algorithm (WSA) and so on. This work mainly concentrated on nature of MANET and behavior of nodes. Also it analyses various performance metrics such as throughput, QoS and End-to-End delay etc.

Keywords: Ant Colony Algorithm, Artificial Bee Colony algorithm, Bio-Inspired algorithm, Modified Termite Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
3308 A Genetic Algorithm to Schedule the Flow Shop Problem under Preventive Maintenance Activities

Authors: J. Kaabi, Y. Harrath

Abstract:

This paper studied the flow shop scheduling problem under machine availability constraints. The machines are subject to flexible preventive maintenance activities. The nonresumable scenario for the jobs was considered. That is, when a job is interrupted by an unavailability period of a machine it should be restarted from the beginning. The objective is to minimize the total tardiness time for the jobs and the advance/tardiness for the maintenance activities. To solve the problem, a genetic algorithm was developed and successfully tested and validated on many problem instances. The computational results showed that the new genetic algorithm outperforms another earlier proposed algorithm. 

Keywords: Flow shop scheduling, maintenance, genetic algorithm, priority rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922
3307 Joint Adaptive Block Matching Search (JABMS) Algorithm

Authors: V.K.Ananthashayana, Pushpa.M.K

Abstract:

In this paper a new Joint Adaptive Block Matching Search (JABMS) algorithm is proposed to generate motion vector and search a best match macro block by classifying the motion vector movement based on prediction error. Diamond Search (DS) algorithm generates high estimation accuracy when motion vector is small and Adaptive Rood Pattern Search (ARPS) algorithm can handle large motion vector but is not very accurate. The proposed JABMS algorithm which is capable of considering both small and large motions gives improved estimation accuracy and the computational cost is reduced by 15.2 times compared with Exhaustive Search (ES) algorithm and is 1.3 times less compared with Diamond search algorithm.

Keywords: Adaptive rood pattern search, Block matching, Diamond search, Joint Adaptive search, Motion estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
3306 Optimizing of Fuzzy C-Means Clustering Algorithm Using GA

Authors: Mohanad Alata, Mohammad Molhim, Abdullah Ramini

Abstract:

Fuzzy C-means Clustering algorithm (FCM) is a method that is frequently used in pattern recognition. It has the advantage of giving good modeling results in many cases, although, it is not capable of specifying the number of clusters by itself. In FCM algorithm most researchers fix weighting exponent (m) to a conventional value of 2 which might not be the appropriate for all applications. Consequently, the main objective of this paper is to use the subtractive clustering algorithm to provide the optimal number of clusters needed by FCM algorithm by optimizing the parameters of the subtractive clustering algorithm by an iterative search approach and then to find an optimal weighting exponent (m) for the FCM algorithm. In order to get an optimal number of clusters, the iterative search approach is used to find the optimal single-output Sugenotype Fuzzy Inference System (FIS) model by optimizing the parameters of the subtractive clustering algorithm that give minimum least square error between the actual data and the Sugeno fuzzy model. Once the number of clusters is optimized, then two approaches are proposed to optimize the weighting exponent (m) in the FCM algorithm, namely, the iterative search approach and the genetic algorithms. The above mentioned approach is tested on the generated data from the original function and optimal fuzzy models are obtained with minimum error between the real data and the obtained fuzzy models.

Keywords: Fuzzy clustering, Fuzzy C-Means, Genetic Algorithm, Sugeno fuzzy systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3255
3305 The Two Layers of Food Safety and GMOs in the Hungarian Agricultural Law

Authors: Gergely Horváth

Abstract:

The study presents the complexity of food safety dividing it into two layers. Beyond the basic layer of requirements, there is a more demanding higher level linked with quality and purity aspects. It would be important to give special prominence to both layers, given that massive illnesses are caused by foods even though officially licensed. Then the study discusses an exciting safety challenge stemming from the risks of genetically modified organisms (GMOs). Furthermore, it features legal case examples that illustrate how certain liability questions are solved or not yet decided in connection with the production of genetically modified crops. In addition, a special kind of land grabbing, more precisely land grabbing from non-GMO farming systems can also be noticed as well as a new phenomenon eroding food sovereignty. Coexistence, the state where organic, conventional, and GM farming systems are standing alongside each other is an unsuitable experiment that cannot be successful, because of biophysical reasons (such as cross-pollination). Agricultural and environmental lawyers both try to find the optimal solution. Agri-environmental measures are introduced as a special subfield of law maintaining also food safety. The important steps of agri-environmental legislation are aiming at the protection of natural values, the environmental media and strengthening food safety as well, practically the quality of agricultural products intended for human consumption. The major findings of the study focus on searching for the appropriate approach capable of solving the security and safety problems of food production. The most interesting concepts of the Hungarian national and EU food law legislation are analyzed in more detail with descriptive, analytic and comparative methods.

Keywords: Food law, food safety, food security, GMO, agri-environmental measures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220
3304 Optimization of Distribution Network Configuration for Loss Reduction Using Artificial Bee Colony Algorithm

Authors: R. Srinivasa Rao, S.V.L. Narasimham, M. Ramalingaraju

Abstract:

Network reconfiguration in distribution system is realized by changing the status of sectionalizing switches to reduce the power loss in the system. This paper presents a new method which applies an artificial bee colony algorithm (ABC) for determining the sectionalizing switch to be operated in order to solve the distribution system loss minimization problem. The ABC algorithm is a new population based metaheuristic approach inspired by intelligent foraging behavior of honeybee swarm. The advantage of ABC algorithm is that it does not require external parameters such as cross over rate and mutation rate as in case of genetic algorithm and differential evolution and it is hard to determine these parameters in prior. The other advantage is that the global search ability in the algorithm is implemented by introducing neighborhood source production mechanism which is a similar to mutation process. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on 14, 33, and 119-bus systems and compared with different approaches available in the literature. The proposed method has outperformed the other methods in terms of the quality of solution and computational efficiency.

Keywords: Distribution system, Network reconfiguration, Loss reduction, Artificial Bee Colony Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3761
3303 Voltage Stability Enhancement Using Cat Swarm Optimization Algorithm

Authors: P. Suryakumari, P. Kantarao

Abstract:

Optimal Power Flow (OPF) problem in electrical power system is considered as a static, non-linear, multi-objective or a single objective optimization problem. This paper presents an algorithm for solving the voltage stability objective reactive power dispatch problem in a power system .The proposed approach employs cat swarm optimization algorithm for optimal settings of RPD control variables. Generator terminal voltages, reactive power generation of the capacitor banks and tap changing transformer setting are taken as the optimization variables. CSO algorithm is tested on standard IEEE 30 bus system and the results are compared with other methods to prove the effectiveness of the new algorithm. As a result, the proposed method is the best for solving optimal reactive power dispatch problem.

Keywords: RPD problem, voltage stability enhancement, CSO algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438
3302 Improved Algorithms for Construction of Interface Agent Interaction Model

Authors: Huynh Quyet Thang, Le Hai Quan

Abstract:

Interaction Model plays an important role in Modelbased Intelligent Interface Agent Architecture for developing Intelligent User Interface. In this paper we are presenting some improvements in the algorithms for development interaction model of interface agent including: the action segmentation algorithm, the action pair selection algorithm, the final action pair selection algorithm, the interaction graph construction algorithm and the probability calculation algorithm. The analysis of the algorithms also presented. At the end of this paper, we introduce an experimental program called “Personal Transfer System".

Keywords: interface agent, interaction model, user model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194
3301 Semi-Blind Two-Dimensional Code Acquisition in CDMA Communications

Authors: Rui Wu, Tapani Ristaniemi

Abstract:

In this paper, we propose a new algorithm for joint time-delay and direction-of-arrival (DOA) estimation, here called two-dimensional code acquisition, in an asynchronous directsequence code-division multiple-access (DS-CDMA) array system. This algorithm depends on eigenvector-eigenvalue decomposition of sample correlation matrix, and requires to know desired user-s training sequence. The performance of the algorithm is analyzed both analytically and numerically in uncorrelated and coherent multipath environment. Numerical examples show that the algorithm is robust with unknown number of coherent signals.

Keywords: Two-Dimensional Code Acquisition, EV-t, DSCDMA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
3300 An Improved Conjugate Gradient Based Learning Algorithm for Back Propagation Neural Networks

Authors: N. M. Nawi, R. S. Ransing, M. R. Ransing

Abstract:

The conjugate gradient optimization algorithm is combined with the modified back propagation algorithm to yield a computationally efficient algorithm for training multilayer perceptron (MLP) networks (CGFR/AG). The computational efficiency is enhanced by adaptively modifying initial search direction as described in the following steps: (1) Modification on standard back propagation algorithm by introducing a gain variation term in the activation function, (2) Calculation of the gradient descent of error with respect to the weights and gains values and (3) the determination of a new search direction by using information calculated in step (2). The performance of the proposed method is demonstrated by comparing accuracy and computation time with the conjugate gradient algorithm used in MATLAB neural network toolbox. The results show that the computational efficiency of the proposed method was better than the standard conjugate gradient algorithm.

Keywords: Adaptive gain variation, back-propagation, activation function, conjugate gradient, search direction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
3299 Target Signal Detection Using MUSIC Spectrum in Noise Environment

Authors: Sangjun Park, Sangbae Jeong, Moonsung Han, Minsoo hahn

Abstract:

In this paper, a target signal detection method using multiple signal classification (MUSIC) algorithm is proposed. The MUSIC algorithm is a subspace-based direction of arrival (DOA) estimation method. The algorithm detects the DOAs of multiple sources using the inverse of the eigenvalue-weighted eigen spectra. To apply the algorithm to target signal detection for GSC-based beamforming, we utilize its spectral response for the target DOA in noisy conditions. For evaluation of the algorithm, the performance of the proposed target signal detection method is compared with that of the normalized cross-correlation (NCC), the fixed beamforming, and the power ratio method. Experimental results show that the proposed algorithm significantly outperforms the conventional ones in receiver operating characteristics(ROC) curves.

Keywords: Beamforming, direction of arrival, multiple signal classification, target signal detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541
3298 An Estimation of the Performance of HRLS Algorithm

Authors: Shazia Javed, Noor Atinah Ahmad

Abstract:

The householder RLS (HRLS) algorithm is an O(N2) algorithm which recursively updates an arbitrary square-root of the input data correlation matrix and naturally provides the LS weight vector. A data dependent householder matrix is applied for such an update. In this paper a recursive estimate of the eigenvalue spread and misalignment of the algorithm is presented at a very low computational cost. Misalignment is found to be highly sensitive to the eigenvalue spread of input signals, output noise of the system and exponential window. Simulation results show noticeable degradation in the misalignment by increase in eigenvalue spread as well as system-s output noise, while exponential window was kept constant.

Keywords: HRLS algorithm, eigenvalue spread, misalignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
3297 A Quantum Algorithm of Constructing Image Histogram

Authors: Yi Zhang, Kai Lu, Ying-hui Gao, Mo Wang

Abstract:

Histogram plays an important statistical role in digital image processing. However, the existing quantum image models are deficient to do this kind of image statistical processing because different gray scales are not distinguishable. In this paper, a novel quantum image representation model is proposed firstly in which the pixels with different gray scales can be distinguished and operated simultaneously. Based on the new model, a fast quantum algorithm of constructing histogram for quantum image is designed. Performance comparison reveals that the new quantum algorithm could achieve an approximately quadratic speedup than the classical counterpart. The proposed quantum model and algorithm have significant meanings for the future researches of quantum image processing.

Keywords: Quantum Image Representation, Quantum Algorithm, Image Histogram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2356
3296 A Fault Tolerant Token-based Algorithm for Group Mutual Exclusion in Distributed Systems

Authors: Abhishek Swaroop, Awadhesh Kumar Singh

Abstract:

The group mutual exclusion (GME) problem is a variant of the mutual exclusion problem. In the present paper a token-based group mutual exclusion algorithm, capable of handling transient faults, is proposed. The algorithm uses the concept of dynamic request sets. A time out mechanism is used to detect the token loss; also, a distributed scheme is used to regenerate the token. The worst case message complexity of the algorithm is n+1. The maximum concurrency and forum switch complexity of the algorithm are n and min (n, m) respectively, where n is the number of processes and m is the number of groups. The algorithm also satisfies another desirable property called smooth admission. The scheme can also be adapted to handle the extended group mutual exclusion problem.

Keywords: Dynamic request sets, Fault tolerance, Smoothadmission, Transient faults.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
3295 Reformulations of Big Bang-Big Crunch Algorithm for Discrete Structural Design Optimization

Authors: O. Hasançebi, S. Kazemzadeh Azad

Abstract:

In the present study the efficiency of Big Bang-Big Crunch (BB-BC) algorithm is investigated in discrete structural design optimization. It is shown that a standard version of the BB-BC algorithm is sometimes unable to produce reasonable solutions to problems from discrete structural design optimization. Two reformulations of the algorithm, which are referred to as modified BB-BC (MBB-BC) and exponential BB-BC (EBB-BC), are introduced to enhance the capability of the standard algorithm in locating good solutions for steel truss and frame type structures, respectively. The performances of the proposed algorithms are experimented and compared to its standard version as well as some other algorithms over several practical design examples. In these examples, steel structures are sized for minimum weight subject to stress, stability and displacement limitations according to the provisions of AISC-ASD.

Keywords: Structural optimization, discrete optimization, metaheuristics, big bang-big crunch (BB-BC) algorithm, design optimization of steel trusses and frames.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2389