

Abstract— In this paper, a new hybrid of genetic algorithm (GA)

and simulated annealing (SA), referred to as GSA, is presented. In
this algorithm, SA is incorporated into GA to escape from local
optima. The concept of hierarchical parallel GA is employed to
parallelize GSA for the optimization of multimodal functions. In
addition, multi-niche crowding is used to maintain the diversity in
the population of the parallel GSA (PGSA). The performance of the
proposed algorithms is evaluated against a standard set of multimodal
benchmark functions. The multi-niche crowding PGSA and normal
PGSA show some remarkable improvement in comparison with the
conventional parallel genetic algorithm and the breeder genetic
algorithm (BGA).

Keywords— Crowding, genetic algorithm, parallel genetic
algorithm, simulated annealing.

I. INTRODUCTION
HE simple genetic algorithm (SGA) was firstly developed
by Holland [1]. Owing to its ability to achieve global or

near global optima, this algorithm has been applied to a large
number of combinatorial optimization problems. However,
searching for extrema in a multimodal space is different from
locating the extremum of a unimodal function. When
attempting to optimize a multimodal function, SGA tends to
converge to a single solution, in some cases SGA only
converges to an optimum in the local neighborhood.

Simulated annealing (SA) is an alternative to escape from a
local optimum. However, there are many applications where
multiple optima of optimization problems need to be found.
Given multiple optimal solutions, users are able to choose the
corresponding high-quality solutions based on their
preference. These optimal solutions may also suggest
innovative alternative solutions to practical problems. Only a
limited amount of research has been conducted on the use of
GA to locate multiple optima of a multimodal function, and
the parallel subpopulation method is an effective way to solve
this type of problems [2].

When applying GA to multimodal optimization problems,

Manuscript received July 6, 2005.
Z. G. Wang is with the Department of Mechanical and Aeronautical

Engineering, University of California, Davis, CA, 95616, USA (Tel: +1-530-
752-8253; fax: +1-530-752-8253; e-mail: zgwang@ucdavis.edu).

M. Rahman, Y. S. Wong and K. S. Neo are with the Department of
Mechanical Engineering, National University of Singapore, Singapore,
119260 (e-mail: mpemusta@nus.edu.sg, mpewys@nus.edu.sg, and
mpeneoks@nus.edu.sg, respectively).

success in the application depends on the preservation of good
individuals into the next generation and the maintenance of
diversity of individual solutions in the search space. If GA
cannot hold its diversity well before the global optimum is
reached, it may prematurely converge to a local optimum. SA
is an effective way to preserve good individuals into the next
generation, and crowding strategy is an alternative approach
to maintain the diversity in the population and postpone
premature convergence.

This paper presents a hybrid algorithm of GA and SA,
referred to as genetic simulated annealing (GSA). In the
proposed method, SA is used to select the individuals for next
generation and control the mutation rate. GSA is parallelized
to find multiple optimal solutions for the multimodal
functions. Notably, multi-niche crowding strategy is also used
to maintain population diversity of parallel GSA (PGSA). The
paper aims to demonstrate that multi-niche crowding PGSA is
a powerful optimization strategy in comparison to other
advanced search algorithms.

II. RELATED WORK

A. Hybrid of GA and SA
GA and SA are both independently valid approaches

toward problem solving with certain strengths and
weaknesses. GA can begin with a population of solutions in
parallel, but it suffers from poor convergence properties. By
contrast, SA has better convergence properties if the starting
temperature is sufficiently high and the temperature cooling
rate is low. However, the higher temperature and the lower
cooling rate reduce the performance of SA. In addition,
parallelization cannot be easily exploited in SA.

Recently many researchers tried to combine GA and SA to
provide a more powerful optimization method that has both
good convergence control and efficient parallelization. Chen
and Flan [3] had shown that the hybrid of GA and SA can
perform better for ten difficult optimization problems than
either GA or SA independently. Mahfoud and Goldberg [4]
also introduced a GA and SA hybrid. Their hybrid runs SA
procedures in parallel, which uses mutation as the SA
neighborhood operator and incorporates crossover to reconcile
solutions across the processors. A similar hybrid method of
GA and SA was also used by Varanelli and Cohoon [5]. In
addition, Chen et al. [6] also proposed a hybrid method, which
maintained one solution per Processing Element (PE). Each
PE accepted a visiting solution from other PEs for crossover

Development of Heterogeneous Parallel Genetic
Simulated Annealing Using Multi-Niche Crowding

Z. G. Wang, M. Rahman, Y. S. Wong and K. S. Neo

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:10, 2007

3096International Scholarly and Scientific Research & Innovation 1(10) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

10
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

11
8.

pd
f

and mutation. For the selection process, the SA cooling
schedule and system temperature were used to decide whether
the new generated individual was accepted or not. In this
method, they used the local selection of SA to replace the
conventional selection process of GA. Recently; Hiroyasu et
al. [7] proposed an algorithm involving several processors. In
each processor, SA was employed. The genetic crossover was
used to exchange information between individuals at fixed
intervals. Based on parallel simulated annealing in [4], [7],
Baydar [8] developed a parallel simulated annealing algorithm
using the survival of the fittest method, and acceptable results
were found with this algorithm.

B. Niching Strategies in GA
De Jong [9] used a scheme called crowding for the pre-

selection technique. In crowding, selection and reproduction
are the same as in the SGA, but replacement is different. In
crowding, a group of C individuals is firstly selected randomly
from the population, where C is called the crowding factor.
Then, an individual is compared to every member of the
selected group, and the most similar member of that group is
replaced. Crowding is essentially a successive replacement
strategy, which helps to maintain the population diversity and
eliminate premature convergence. A number of means of
implementing niching in GA has also been devised in [10].

Niching was introduced into GA primarily to maintain
population diversity. Cedeno [11] indicated that multi-niche
crowding (MNC) has the ability to converge simultaneously to
multiple solutions by encouraging competition between
individuals within the same locally optimal group. This
objective is achieved by encouraging mating and replacement
within members of the same niche while allowing for some
competition for population slots among the niches. Further
details of MNC are given in Section IV.

III. PARALLEL GENETIC SIMULATED ANNEALING

A. Genetic Simulated Annealing
Each of the above approaches to hybridize GA and SA

described in Section II.A has its own strengths, because some
good characteristics of GA and SA are maintained when
combining GA and SA together. In this paper, a new GA and
SA hybrid, GSA, is presented.

After crossover and mutation for a couple of individuals,
there are four chromosomes: two parents and two offspring. In
conventional GA, two parents are replaced by their offspring.
But in GSA, two chromosomes are chosen to form the next
generation from these four individuals. The selection criterion
is based on the fitness values of these four individuals.
Individuals with higher fitness values have a greater
probability of surviving into the next generation. Those with
less fitness values are not necessarily discarded. Instead, a
local selection strategy of SA is applied to select them with a
probability related to the current temperature (as in simulated
annealing). In this selection process, a Markov chain is
executed, which is composed of two offspring. Four

parameters (fbest, fworst, Tt, fi) are involved to describe this
selection process:

fbest — the best fitness value of two parents;
fworst — the worst fitness value of two parents;
fi — the fitness value of one offspring (i= 1, 2);
Tt — control temperature;
During the course of the Markov chain at temperature Tt,

the fitness value fi (i =1, 2) of the trial chromosome is
compared with fworst. Chromosome i is accepted to replace the
worst individual, if the following requirement is met:

re tT
worstfif

≥
⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧ −

,1min

where r is a randomly generated number between 0 and 1.
If chromosome i is accepted, the worst chromosome and the

best one are updated and then the course of the Markov chain
continues until completion. After the implementation of the
Markov chain, the best and the worst individuals are survived
into the next generation.

In SGA, mutation simply changes the value for a particular
gene with a certain probability. It helps to maintain the vast
diversity of the population and also prevents the population
from stagnating. However, at later stages, it increases the
probability that good solutions will be destroyed. Normally,
the mutation rate is set to a low value (e.g., 0.01) so that
accumulated good candidates will not be destroyed. This
negative effect of mutation has been eliminated for GSA,
because the local selection of SA is applied after mutation,
such that at the later stage, only better solutions are retained
after mutation. Therefore, the initial value of mutation
probability can be larger than the recommended values in
[12]. In this study, the mutation probability pm of GSA is
initially set to a higher value, and a simple annealing process
is then used to adjust pm. After every certain generations, the
mutation probability pm is updated with pm×α until it reaches
to a certain value, where α is the cooling rate of SA. Thus, at
the initial stage, when manipulating the cooling schedule of
SA properly, the initial higher temperature can ensure that
parents will be replaced by their offspring after crossover and
mutation whether they are much fitter or not. More
importantly, the initial higher mutation probability is capable
of improving population diversity greatly, which can eliminate
the premature convergence problem of conventional GA. On
the contrary, at the later stage the mutation probability and the
temperature become lower, and the chances for the fitter
parents to be replaced decrease greatly. In this way, the
current best individuals may continue to remain in the next
generation. Thus, the possibility of removing potentially
useful individuals in the last generation because of the
mutation operation can be reduced. The pseudo-code of GSA
is illustrated in Fig. 1, where P(t) is the population of
individuals at generation t, and n is the string length of
chromosome.

In addition, good parallelizable property of GA is applied to
parallelize GSA, which will be explained in Section III.B.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:10, 2007

3097International Scholarly and Scientific Research & Innovation 1(10) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

10
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

11
8.

pd
f

Thus, GSA shows tighter coupling of GA and SA as SA
controls a number of distinct GAs running in parallel.

1: t = 0
2: initialize P(t) and temperature Tt
3: evaluate P(t)
4: while not termination-condition do
5: t = t + 1
6: select P(t) from P(t-1)
7: select individuals for reproduction from P(t)
8: repeat
9: select two unused individuals P1, P2

10: crossover & mutation; generate two children C1,C2
11: evaluate C1,C2
12: for all i = 1 to 2 do
13: if min{1, exp((fi-fworst)/Tt)}> random[0,1) then
14: accept Ci and replace the corresponding parent
15: update the new best and worst points
16: end if
17: end for
18: until all selected parents finish reproduction
19: Tt+1 = Tt × α; 0 <α < 1
20: if the modulus of t divided by 10 == 0&& pm > 1/n then
21: pm = pm×α
22: end if
23: end while

Fig. 1 Pseudo code of genetic simulated annealing

B. Parallel Genetic Simulated Annealing
 There are several ways to parallelize GA [13], and the

parallel GA (PGA) has been developed and successfully
applied to optimize many practical problems [14]. According
to the nature of the population structure and recombination
mechanisms used, PGA can be classified into four categories:
single-population master-slave PGA, coarse-grained PGA,
fine-grained PGA and hierarchical hybrids [13]. In single-
population master-slave PGA, there is a single population, and
the evaluation of fitness values is distributed among several
processors. The fine-grained PGA treats each individual as a
separate breeding unit; and the individuals may mate with
those selected from a small local neighborhood. Since the
neighborhoods overlap, fit individuals will migrate through
the population. The coarse-grained PGA is very popular and
widely used. In a coarse-grained PGA, the entire population is
divided into several subpopulations. Each subpopulation runs
a conventional GA independently and concurrently on its own
subpopulation. After several epochs, best individuals migrate
from one subpopulation to another according to a migration
topology. The hierarchical PGA combines coarse-grained
PGA with master-slave or fine-grained PGA, so that it has the
benefits of its components [13]. In this paper, the idea to
parallelize GA is borrowed to implement the parallelization of
GSA. A master-slave/coarse-grained PGA, which combines
master-slave PGA and coarse-grained PGA together, is used
to parallelize GSA.

In the master-slave/coarse-grained PGSA, the host program

runs on the master processor, which decides on the global
termination criterion. The whole population is equally divided
into several subpopulations among the slave processors. Each
slave processor runs a sequential GSA independently within
its own subpopulation on one processor. The pseudo code of
PGSA is shown in Fig. 2, where P(t) is the population of
individuals of generation t, myrank is the rank of the
processor, slnsmigrate, slnsrecv and slnsdelete are the migrants,
received individuals and the individuals to be replaced,
respectively. If the migration conditions are satisfied, each
processor, such as the source processor, implements the
function neighbor to find the destination processors according
to a migration topology. The migrant individuals (slnsmigrate)
are selected and sent to the destination processors. After the
migrant individuals (slnsrecv) are received on the destination
processor, the individuals to be deleted (slnsdelete) are
determined and replaced by received individuals (slnsrecv). The
same program is executed on each processor, but on different
data (their own population) until the global optimum is
achieved.

1: t = 0
2: initialize P(t)
3: evaluate P(t)
4: while not termination-condition do
5: reproduction process of GSA
6: if migration-condition satisfies then
7: dest = neighbor(myrank)
8: slnsmigrate = migrant_individual(P(t))
9: send_string(dest, xmigrate)

10: slnsrecv = recv_string()
11: slnsdelete = delete_individual(P(t))
12: replace_string (xdelete, xrecv, P(t))
13: end if
14: end while

Fig. 2 Pseudo code of parallel genetic simulated annealing

Although PGSA is related to the parallel hybrid method
developed by Chen et al. [6], there are some important
differences between PGSA in this paper and Chen’s PGSA
(C-PGSA). In C-PGSA, each PE maintained one solution, and
each PE accepted a visiting solution from other PEs for
crossover and mutation. In PGSA, each processor maintains
its own subpopulation of solutions and different processors
exchange their best solutions after certain number of epochs.
Thus, the communication overhead between processors is
much smaller. In C-PGSA, a normal SA-type probabilistic
selection procedure is used to retain the proof of convergence
of SA. In PGSA, a Markov chain is used to realize the local
selection of SA, which can improve the selection performance
of SA.

C. Implementation Details of PGSA
In this study, optimization problems of real-valued

functions are considered. And the real-value coding scheme is
employed to represent the chromosome. Each chromosome
vector is coded as a vector of real-value point numbers of the

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:10, 2007

3098International Scholarly and Scientific Research & Innovation 1(10) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

10
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

11
8.

pd
f

same length as the solution vector. Let x = (x1, x2, …, xn) be
the encoding of a solution, where xi (∈ R) represents the value
of the ith gene in the chromosome x. Initially, xi is selected
within the desired domain, and reproduction operators of GA
are carefully designed to preserve this constraint. In the
reproduction process of PGSA, a tournament selection
approach is used to select individuals for the next generation.
In the tournament approach, a sub-group is initially selected
randomly from the population. Then, a ‘tournament’
competition takes place in this sub-group, and the winner is
inserted into the next population. Other implementation details
of PGSA are described in the following sections.

1) Crossover and mutation
The conventional crossover operator combines substrings

belonging to their parents. For real-value encoding, this type
of crossover does not change the value of each variable; so it
cannot perform the search with respect to each variable.
Therefore, it is not suitable in this study and consequently, a
modified crossover operator, called convex recombination
[15], is used. It operates as follows.

Consider that the crossover takes place at the positions i and
j (i < j), let x = (x1, …, xn) and y = (y1, …, yn) be the parent
strings. Then, the offspring u and v are of the form:

⎩
⎨
⎧ <<−+

=
otherwise ,
 ,)1(

k

kk
k x

jkiyaax
u (1)

⎩
⎨
⎧ <<−+

=
otherwise ,

 ,)1(

k

kk
k y

jkixaay
v (2)

where a is a random number in the interval [0, 1]. In this
paper, the two-point crossover is applied to each couple of
individuals.

For the real-value coding scheme, different mutation
operators can be used, such as uniformly distributed mutation,
Gaussian mutation, range mutation and non-uniform mutation.
The first two mutation methods were used in this study. In the
uniformly distributed mutation, the mutation operator
randomly chooses a number z in the interval defined by [-A,
A], where A is called the mutation range. The new point is
given by: xm = x + z [16]. In Gaussian mutation, a random
value z is chosen from a normal Gaussian distribution N (0, σ),
where σ is the standard deviation [17]. Uniformly distributed
mutation is more commonly used for searches in a large
region. The Gaussian mutation performs better searches in a
small local area [15]. In this study, at the initial stage,
uniformly distributed mutation is used. When the decreasing
rate of the average fitness values is less than 0.01, Gaussian
mutation is used.

2) Migration policy, migration rate, migration topology
and migration frequency

In the implementation of PGSA, some parameters of
concern are: migration policy which determines how to select
individuals to migrate, migration rate or the number of
individuals to migrate, the frequency of migration, and the
migration topology.

Cantú-Paz [13] indicated that the elitist strategy performed

better than tournament selection. Thus, the elitist strategy is
used to choose the migration individuals. The top 1% of the
best individuals are migrated to replace the worst individuals
of other subpopulations. If 1% of population size is not an
integer, it will be rounded off to the next integer that is greater
than its fractional value. A ladder neighborhood relation is
used to implement PGSA, and the 8-processor structure of this
relation is shown in Fig. 3, which shows that every slave
processor is connected with other five slave processors. The
advantage of this topology is that it can spread the migrant
individuals quickly among the slave processors. The
frequency of migrating individuals is given in Section V.A.

Fig. 3 Schematic diagram of the implementation of PGSA

IV. MULTI-NICHE CROWDING IN PGSA

A. Similarity Metric
Phenotypic distance metric is used here as the similarity

metric. For the real-value coding scheme, the Euclidean
distance between two individuals is employed to measure their
similarity. The smaller the distance between two individuals,
the more similar they are.

For the given two individuals: x = (x1, …, xn) and y = (y1,
…, yn), the distance between them is defined by:

∑
= −

−
=

n

t
l
i

u
i

ii

xx
yx

yxd
1

2)(),((3)

where n is the length of the chromosome, u
ix and l

ix are the
upper and lower bounds of variable xi, which is used here to
normalize the distance d(x, y).

B. Multi-niche Crowding in PGSA
The concept of MNC [11] is briefly reviewed here. In

MNC, not only the selection but also replacement has been
modified with some type of crowding. There are two steps for
this crowding selection approach. Firstly, an individual A is
selected for mating. Secondly, its mate M is chosen with the
crowding selection instead of the fitness proportionate
reproduction (FPR) of SGA. Based on the similarity to A, M is
selected from a group of Cs individuals, which is composed of
randomly chosen individuals from the population. The mate M
must be the most similar one to A in the selected group.

4 1

2 3

8 5

6 7

Master

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:10, 2007

3099International Scholarly and Scientific Research & Innovation 1(10) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

10
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

11
8.

pd
f

After picking the mater of A, the genetic operators of
crossover and mutation are then applied; one pair of offspring
is generated. For each of these two offspring, MNC is again
used to select an individual from the population for
replacement by this offspring. During the replacement step, a
replacement policy called “worst among the most similar” is
used in MNC [11]. Firstly, from the population, Cf groups are
created by randomly choosing s individuals per group. Then,
in each group, the individual which is most similar to the
offspring is identified. Finally, Cf individuals are identified as
the most ‘similar’ to the offspring. These Cf individuals are
candidates for replacement by virtue of their similarity to the
offspring. From this group of most similar individuals, the one
with the lowest fitness has been replaced with the offspring.
The offspring could possibly have a lower fitness than the
individual being replaced. In the implementation of MNC,
based on the values used in [11], the following parameter
settings are used: Cs = 2, Cf = 6, and s = 3.

Because of selection pressure caused by FPR, sometimes
PGSA still cannot maintain good diversity in the population,
especially for some difficult to solve multimodal functions. So
MNC has been considered to maintain population diversity for
PGSA. In implementation of PGSA, MNC was only applied
among half the number of slave processors to select mating
individuals and the individuals to be replaced by offspring.
Among the other half number of slave processors, normal
PGSA as described in section III.B was used in order to
maintain the good local selection ability of SA. With the
incorporation of MNC into PGSA, a new heterogeneous
parallel algorithm, called MNC-PGSA, is obtained. This
MNC-PGSA algorithm maintains good diversity in the
population and inherits good convergence from PGSA.

V. RESULTS AND DISCUSSION
Trafalis and Kasap [18] used 19 well-known global

optimization problems to evaluate the performance of their
global search functions. Recently, Wang et al [19] attempted a
well-established set of nine functions to test their search
algorithms. With focus on the search ability and scalability of
the algorithm proposed in this paper, three more complex
multimodal benchmark functions from available literatures
[19], [20] have been used to compare the performance of
MNC-PGSA and PGSA with other algorithms, shown in
Table I. All tests were run on SUN Workstation network
consisting of 42 SUN Blade 2000 workstations with a fast
Ethernet interconnect (100 M-Bytes/sec). The main hardware
and software of the Sun Blade 2000 consists of an Ultra-
SPARC III Cu 900 MHz processor, 2 G-Bytes memory, 4 G-
Bytes swap memory, and Solaris 8 operating system.

An extensive performance evaluation for functions F1-F3
has been done for PGA by Mühlenbein et al. [21]. In their
investigation, the efficiency of the search method was
demonstrated by varying the problem size n. Mühlenbein and
Schlierkamp-Voosen [16] increased the problem size n further
to investigate the advantage of scaling their search method.
The number of function evaluations was defined as efficiency

criterion in [16] and [21]. For comparison, in this section, the
efficiency of search methods is also defined by the number of
function evaluations needed to obtain the optimal solutions.
When the minimal value of each function on the master
processor is reached, it will send the termination signal to all
slave processors. After these processors have received the
termination signal, they stop running and send the number of
function evaluations done so far to the master processor to
sum them up.

TABLE I
MULTIMODAL BENCHMARK FUNCTIONS

Function Function equation Parameter
intervals

F1)]2cos([)(2

1
1 ii

n

i
xAxnAxf π−∑+=

=
 12.512.5 ≤≤− ix

F2)]sin([)(
1

2 ii
n

i
xxxf −∑=

=
 500500 ≤≤− ix

F3 1)cos(]4000[)(
1

2

1
3 +∏−−∑=

==
ixxxf i

n

i
i

n

i
 600600 ≤≤− ix

In the implementation of PGSA, the host program, which

runs on the master processor, decides on the global
termination criterion. After certain iterations, each slave
processor sends its top 1% of the best individuals to the
master processor. After receiving best individuals from all
slave processors, the stop flag of PGSA is set on the master
processor, if the following criterion is fulfilled:

k
best

kk
best

k
best fff ε≤− ∆− (4)

or ε≤− best
k

best ff (5)

where k
bestf is the best fitness value of an individual on the

master processor at generation k, and the stop criterion is
checked at every k∆ generations; fbest is the global minimum
and ε is a constant value 10-3. For F1 and F2, Inequality (4)
was used as the termination criterion. For F3, Inequality (2)
was chosen as the termination criterion, where fbest = 0. After
setting the termination flag, the master processor sends it to
every slave one. According to the termination flag, each slave
processor decides whether GSA continues to run or not.

A. Experiment Setup
Both GA and SA have many internal control parameters.

Thus, PGSA, which is composed of GA and SA, also has
many control parameters, which can be described as follows:

PGSA = (P0, λ, µ, σ, δ, τ, GSA, T0, α, t) (4)
where P0 is the initial population, λ is the number of
subpopulations, µ is the population size of each
subpopulation, σ is the migration interval in number of
generations, δ is the number of neighbors, T0 is the initial
temperature, α is the cooling rate and t is the termination
criterion.

In order to show the robustness of PGSA, there is no need
to tune all these parameters to a specific function. Based on
the recommended values from previous work [13], [21], the
parameter settings for F1 and F2 are shown in Tables II and
III, respectively, where pm is the mutation probability. For all

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:10, 2007

3100International Scholarly and Scientific Research & Innovation 1(10) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

10
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

11
8.

pd
f

experiments, the crossover probability is 0.65, and δ = 5.
In case of Function F3, it is comparatively much more

difficult to get the global minimal value. The parameter
settings for F3 are as follows: λ =16, σ = 20, pm = 0.3, T0 =
600, α = 0.85 and crossover rate is 0.65. The population size
on each processor µ is equal to 50 when the problem size n <
100, and µ =100 when n ≥ 100.

TABLE II
PARAMETER SETTINGS FOR RASTRIGIN’S FUNCTION F1

Problem size (n)
Parameters

20 50 100 200 400 500 1000
λ 8 8 16 16 16 16 32
µ 20 20 20 40 40 100 100
σ 10 20 20 40 40 50 50
pm 0.1 0.05 0.05 0.05 0.65 0.80 0.80
T0 200 400 500 1000 2000 2000 2000

α 0.85 0.85 0.85 0.85 0.85 0.85 0.85

TABLE III
PARAMETER SETTINGS FOR SCHWEFEL’S FUNCTION F2

Problem size (n)
Parameters

10 50 100 150 200 400
λ 8 16 16 16 16 32
µ 20 50 100 150 200 200
σ 10 30 50 50 50 50
pm 0.1 0.05 0.05 0.05 0.05 0.05
T0 200 400 600 800 1000 1200
α 0.85 0.85 0.85 0.85 0.85 0.85

B. Results and Discussion for Lower Dimension Problems
Functions F1 and F2 with lower dimensions are easily

solved by MNC-PGSA, PGSA and PGA as shown in Figs. 4
and 5. But in [21], the global optimum of F2 was not found in
4 of the 50 runs. In this study, MNC-PGSA and PGSA have
found the optimum of F2 in all 50 runs. Because PGSA can
maintain a good diversity with a higher mutation probability at
the initial stage, it can eliminate premature convergence to
suboptimal minima. At the later stage, the local selection
strategy of SA can ensure that best solutions are not discarded
after crossover and mutation operators. Therefore, PGSA can
approach or converge on the global minimum with less
number of function evaluations than PGA. In addition to the
advantages of PGSA, MNC-PGSA can also maintain good
population diversity with the crowding strategy.

Griewank’s function F3 is regarded as one of the most
difficult test functions. It has its global minimum fbest = 0 at xk
= 0, and the local minima are located approximately at xk =

kmπ , where k = 1, …, n, and m is any integer value. Four

suboptimal minima (≈0.0074) exist at)0,...0,2,(ππ ±±=xv in
ten dimensions. The average number of function evaluations

is 6600 by Griewank [20], but only one of the four sub-
minima was found. An average of 59520 evaluations is
needed to solve this problem by Mühlenbein et al. [21], but
they did not comment on their results. MNC-PGSA and PGSA
found the minimum values (< 0.001) of F3 with less than half
of the number of function evaluations using PGA, as shown in
Fig. 6. More importantly, in all 50 runs, these minimum values
were found. Therefore, MNC-PGSA and PGSA are able to
obtain much better solutions with a higher convergence speed
than PGA. Fig. 6 shows that less number of function
evaluations with MNC-PGSA was needed to converge to
global optima for Function F3 than that for PGSA with the
same problem size. Thus, MNC-PGSA performs better than
PGSA.

1000

10000

100000

1000000

10000000

10 50 100 200 400 500 1000
Problem dimension size (n)

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

MNC-PGSA
PGSA
PGA

Fig. 4 Performance comparison between PGA [21], PGSA and MNC-

PGSA for Rastrigin’s Function

1000

10000

100000

1000000

10000000

10 50 100 150 200 400
Problem dimension size (n)

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

MNC-PGSA
PGSA
PGA

Fig. 5 Performance comparison between PGA [21], PGSA and MNC-

PGSA for Schwefel’s Function

C. Results and Discussion for Higher Dimension Problems
1) Computation results for F1 & F2 with high dimension

Mühlenbein et al. [21] found the global minimum of F1
with a dimension of 400 and F2 with a dimension of 150 on a
64-processor computer using PGA. For comparison in this
paper, F1 and F2 with much higher dimension have also been
attempted using PGSA. The parameter settings are listed in
Tables II and III. The same termination criterion, Inequality
(4), was used in order to directly compare the efficiency of
MNC-PGSA, PGSA and PGA.

Function F1 with dimension 500 and 1000 and Function F2
with dimension 200 and 400 have also been investigated,
which were not tried using PGA in [21]. It can be seen that the

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:10, 2007

3101International Scholarly and Scientific Research & Innovation 1(10) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

10
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

11
8.

pd
f

number of function evaluations using MNC-PGSA and PGSA
is much smaller than that using PGA. The performance of
MNC-PGSA and PGSA gets better with the higher problem
size n. In all cases, MNC-PGSA performs better than PGSA,
but the difference in function evaluations between them is not
so obvious; perhaps both of these two algorithms are effective
for these two multimodal functions.

10 20 100 200 400
10000

100000

1000000

N
um

be
r o

f f
un

ct
io

n
ev

al
ua

tio
ns

Problem dimension size (n)

 MNC-PGSA
 PGSA
 BGA

Fig. 6 Performance comparison between BGA [16], PGSA and
MNC-PGSA for Griewank’s Function

A typical run for Function F1 when n = 100 is shown in
Fig. 7. Initially, the difference in performance between MNC-
PGSA and PGSA is very small, but after 400 generations, it
becomes larger. MNC-PGSA can converge to better optima
with a faster speed. For PGSA, initially, the individuals of the
subpopulation become more similar to one another than those
in MNC-PGSA. In some cases, PGSA even converges around
suboptimal minima. For PGSA, after 100 generations, the
average and best values of the objective functions are much
more similar. This means that less diversity exists in the
population. However, for MNC-PGSA, the difference
between the average and the best evaluation values is larger
than that of PGSA, which indicates that more diverse
individuals exist in subpopulations of MNC-PGSA. This can
be attributed to the use of MNC, which can help to maintain
better diversity in the population. As the optimization process
proceeds for MNC-PGSA, owing to the better population
diversity, it can converge to the different optimal solution
within much smaller number of generations.

2) Computation results for F3 with higher dimension
Mühlenbein and Schlierkamp-Voosen [16] used breeder

genetic algorithm (BGA) to optimize Functions F1 and F2 in
higher dimension too. However, the number of function
evaluations cannot be directly compared because a different
termination criterion was used for BGA. In order to compare
the efficiency of PGSA with that of BGA, the same
termination criterion as that for BGA was used for Function
F3. The computation results using BGA, PGSA and MNC-
PGSA are listed in Fig. 6, which shows that less number of
function evaluations is needed with PGSA and MNC-PGSA.
Thus, the performance of PGSA and MNC-PGSA is better

than that of BGA. The difference in performance between
MNC-PGSA and PGSA for solving F3 is much more obvious
than that for solving F1 and F2 with these two algorithms.
Because it is much more difficult to obtain the global optima
of F3 than F1 and F2, MNC-PGSA shows its higher efficiency
in this case. This reiterates that MNC-PGSA is a powerful
optimization method in comparison to PGSA and BGA. In
[16], the number of function evaluations scales almost exactly
with n·ln(n) for Function F3. With such scaling ability, the
number of function evaluations increases quickly with the
problem size. However, in this study, the increase rate of the
number of function evaluations with the problem size for
PGSA and MNC-PGSA is obviously smaller than that with
BGA. With such scaling ability, the advantage of investigating
the scaling of PGSA and MNC-PGSA has been demonstrated,
i.e., PGSA and MNC-PGSA have better scalability.

Fig. 7 Average and best function evaluation values for Rastrigin’s

function (n = 100)
D. Analysis of the speedup
Generally, when comparing the program performance

between the parallel programs with the serial program,
speedup is commonly used, which is defined as the ratio of the
runtime to achieve a serial solution to a problem to the parallel
runtime. Measurement of the speedup of PGSA on parallel
processors is very difficult because of its probabilistic nature
[21]. In this study, the speedup of PGSA was estimated based
on average computation times of 50 runs, as shown in Table
IV. When more processors are involved in computation,
communication among processors causes the overhead, which
will slowdown the speedup of parallel programs. Table IV
shows that PGSA achieved almost linear speedup. Since the
whole population is equally divided into several
subpopulations among the slave processors, less computation
time is needed to obtain the optimum. And the reduced
computation time can even compensate for communication
overhead among processors.

For F2 with a dimension 400, the global optimum could not
be found for each case with the serial GSA. For Function F3,
when the problem size was greater than 20, in most cases the
serial GSA was not able to find the global optimum. Therefore
the speedup analysis for F3 is not discussed in this section.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:10, 2007

3102International Scholarly and Scientific Research & Innovation 1(10) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

10
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

11
8.

pd
f

But PGSA could find the optimum for F2 and F3 with higher
dimension within reasonable time; this demonstrates the
significantly stronger global search ability of PGSA.

TABLE IV
AVERAGE COMPUTATION TIME WITH GSA AND PGSA

Computation time (s)
Function n

GSA PGSA
λ speedup

F1 50 1.011351 0.110184 8 9.1787
 100 4.192071 0.218913 16 19.1495
 200 18.004712 1.005423 16 17.9076
 400 119.460274 7.451222 16 16.0323
 500 266.188604 14.167722 16 18.7884
 1000 1383.947593 36.713556 32 37.6958

F2 50 7.785258 0.446771 16 17.4256
 100 36.553699 2.155516 16 16.9582
 150 108.308197 5.264115 16 20.5748
 200 292.366368 14.096044 16 20.7410
 400 913.128460 30.328364 32 30.1081

F2 (n = 400): Global optimum was not found in 8 of 50 runs
for the serial GSA.

VI. CONCLUSIONS
In this paper, a new GA and SA hybrid (GSA) is firstly

presented, which inherits the strengths of GA and SA and
overcomes their weaknesses. The extended ideas of simulated
annealing were used in the adjustment of the mutation rate and
the local selection of individuals which are retained in the next
population after crossover and mutation. In GSA, at the initial
stage, the higher mutation rate is helpful for maintaining
population diversity. After crossover and mutation, the local
selection of SA can ensure that good candidates still exist in
the next generation at the later stage. Therefore by
maintaining more diverse subpopulations at the initial stage,
GSA mitigates the premature convergence of the standard GA.
On the other hand, at the later stage, local selection strategy of
SA ensures that increasing number of good candidates exists
in the next generation. It can narrow the search space so that
fast convergence can be achieved. PGSA is then described by
implementing the parallelization of GSA. In addition, MNC
has been incorporated into PGSA for the selection and
replacement in reproduction process of PGSA. In MNC-
PGSA, MNC can help to maintain population diversity
throughout the search and converge to different local optima.

The numerical results show that MNC-PGSA has faster
convergence to global optimum solution than PGSA and
PGA. The better performance of MNC-PGSA is attributed to
the better population diversity than PGSA; thus, less number
of function evaluations is needed to converge to the different
optimal solution. In comparison to the other advanced search
method such as BGA [16] using the same termination
criterion, the performance of MNC-PGSA and PGSA is better.

More importantly, MNC-PGSA performs better with the
larger problem size. Thus, MNC-PGSA has a good scalability.
In this study, three different functions have been tried with the
proposed algorithms. The only difference between them lies in
the objective function. The aforementioned PGSA and MNC-
PGSA algorithms are applicable to new multimodal problems,
needing basically incorporating appropriate objective
functions and changing some parameters if necessary. So
PGSA and MNC-PGSA have a good programmability.

REFERENCES
[1] J.H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor:

University of Michigan Press, 1975, ch.1.
[2] J.P. Li, M.E. Balazs, G.T. Parks, and P.J. Clarkson, “A species

conserving genetic algorithm for multimodal function optimization,”
Evolutionary Computation, vol. 10, no. 3, pp. 207-234, Fall 2002.

[3] H. Chen, and N. Flann, “Parallel Simulated Annealing and Genetic
Algorithms: A Space of Hybrid Methods,” In Proc. Int’l Conf.
Evolutionary computation − PPSN III, Lecture Notes in Computer
Science, vol. 866, Berlin: Springer-Verlag, 1994, pp. 428-438.

[4] S.W. Mahfoud, and D.E. Goldberg, “Parallel recombinative simulated
annealing: A genetic algorithm,” Parallel Computing, vol. 21, no. 1, pp.
1-28, Jan. 1995.

[5] J.V. Varanelli, and J.C. Cohoon, “Population-Oriented Simulated
Annealing: A Genetic/Thermodynamic Hybrid Approach to
Optimization,” in Proc. 6th Int’l Conf. Genetic Algorithms, M. Kaufman,
San Francisco, Calif., 1995, pp. 174-181.

[6] H. Chen, N.S. Flann, and D.W. Watson, “Parallel genetic simulated
annealing: a massively parallel SIMD algorithm,” IEEE Transactions on
Parallel and Distributed Systems, vol. 9, pp. 126-136, 1998.

[7] T. Hiroyasu, M. Miki, and M. Ogura, “Parallel Simulated Annealing
using Genetic Crossover,” in Proc. IASTED Int’l Conf. on Parallel and
Distributed Computing Systems, Las Vegas, 2000, pp. 145-150.

[8] C. Baydar, “A hybrid parallel simulated annealing algorithm to optimize
store performance,” in Workshop on GECCO 2002, New York, 2002.

[9] K.A. De Jong, “An Analysis of the Behavior of a Class of Genetic
Adaptive Systems,” Ph.D. Thesis, University of Michigan, MI, 1975.

[10] D.E. Goldberg, Genetic algorithms in search, optimization and machine
learning, Reading, Massachusetts: Addison –Wesley, 1989, pp. 1-145.

[11] W. Cedeno, and V.R. Vemuri, “Analysis of speciation and niching in the
multi-niche crowding GA,” Theoretical Computer Science, vol. 229, no.
1-2, pp. 177-197, 1999.

[12] J. Hesser, and R. Männer, “Towards an optimal mutation probability for
genetic algorithms,” in Proc. Parallel problem solving from nature: 1st
workshop, PPSN I, Lecture Notes in Computer Science, vol. 496, Berlin:
Springer-Verlag, 1991, pp. 23-32.

[13] E. Cantú-Paz, Efficient and accurate parallel genetic algorithms,
Boston: Kluwer Academic Publishers, 2000, pp. 1-119.

[14] E. Alba, and J.M. Troya, “A survey of parallel distributed genetic
algorithms,” Complexity, vol. 4, no. 4, pp. 31-52, 1999.

[15] D. Dumitrescu, B. Lazzerini, L.C. Jain, and A. Dumitrescu, Evolutionary
computation. Boca Raton: CRC Press, 2000, pp. 187-211.

[16] H. Mühlenbein, and D. Schlierkamp-Voosen, “Predictive models for the
breeder genetic algorithm I. Continuous parameter optimization,”
Evolutionary Computation, vol. 1, no. 1, pp. 25-49, 1993.

[17] Th. Bäck, F. Hoffmeister, and H.-P. Schwefel, “A Survey of evolution
strategies,” in Proc. Fourth Int’l Conf. Genetic Algorithms. M.
Kaufmann, San Mateo, Calif., 1991, pp. 2-9.

[18] T.B. Trafalis, and S. Kasap, “A novel metaheuristics approach for
continuous global optimization,” Journal of Global Optimization, vol.
23, no. 2, pp. 171-190, 2002.

[19] Z.G. Wang, Y.S. Wong and M. Rahman, “Development of a parallel
optimization method based on genetic simulated annealing algorithm,”
Parallel Computing, vol. 31, no. 8-9, pp. 839-857, 2005.

[20] A.O. Griewank, “Generalized descent for global optimization,” Journal
of Optimization Theory and Applications, vol. 34, pp. 11-39, 1981.

[21] H. Mühlenbein, M. Schomisch, and J. Born, “The parallel genetic
algorithm as function optimizer,” Parallel Computing, vol. 17, pp. 619-
632, 1991.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:10, 2007

3103International Scholarly and Scientific Research & Innovation 1(10) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

10
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

11
8.

pd
f

