
 

 

  
Abstract— In this paper, a new hybrid of genetic algorithm (GA) 

and simulated annealing (SA), referred to as GSA, is presented. In 
this algorithm, SA is incorporated into GA to escape from local 
optima. The concept of hierarchical parallel GA is employed to 
parallelize GSA for the optimization of multimodal functions. In 
addition, multi-niche crowding is used to maintain the diversity in 
the population of the parallel GSA (PGSA). The performance of the 
proposed algorithms is evaluated against a standard set of multimodal 
benchmark functions. The multi-niche crowding PGSA and normal 
PGSA show some remarkable improvement in comparison with the 
conventional parallel genetic algorithm and the breeder genetic 
algorithm (BGA). 
 

Keywords— Crowding, genetic algorithm, parallel genetic 
algorithm, simulated annealing.  

I. INTRODUCTION 
HE simple genetic algorithm (SGA) was firstly developed 
by Holland [1]. Owing to its ability to achieve global or 

near global optima, this algorithm has been applied to a large 
number of combinatorial optimization problems. However, 
searching for extrema in a multimodal space is different from 
locating the extremum of a unimodal function. When 
attempting to optimize a multimodal function, SGA tends to 
converge to a single solution, in some cases SGA only 
converges to an optimum in the local neighborhood.  

Simulated annealing (SA) is an alternative to escape from a 
local optimum. However, there are many applications where 
multiple optima of optimization problems need to be found. 
Given multiple optimal solutions, users are able to choose the 
corresponding high-quality solutions based on their 
preference. These optimal solutions may also suggest 
innovative alternative solutions to practical problems. Only a 
limited amount of research has been conducted on the use of 
GA to locate multiple optima of a multimodal function, and 
the parallel subpopulation method is an effective way to solve 
this type of problems [2].  

When applying GA to multimodal optimization problems, 
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success in the application depends on the preservation of good 
individuals into the next generation and the maintenance of 
diversity of individual solutions in the search space. If GA 
cannot hold its diversity well before the global optimum is 
reached, it may prematurely converge to a local optimum. SA 
is an effective way to preserve good individuals into the next 
generation, and crowding strategy is an alternative approach 
to maintain the diversity in the population and postpone 
premature convergence.  

This paper presents a hybrid algorithm of GA and SA, 
referred to as genetic simulated annealing (GSA). In the 
proposed method, SA is used to select the individuals for next 
generation and control the mutation rate. GSA is parallelized 
to find multiple optimal solutions for the multimodal 
functions. Notably, multi-niche crowding strategy is also used 
to maintain population diversity of parallel GSA (PGSA). The 
paper aims to demonstrate that multi-niche crowding PGSA is 
a powerful optimization strategy in comparison to other 
advanced search algorithms.  

II. RELATED WORK 

A. Hybrid of GA and SA 
GA and SA are both independently valid approaches 

toward problem solving with certain strengths and 
weaknesses. GA can begin with a population of solutions in 
parallel, but it suffers from poor convergence properties. By 
contrast, SA has better convergence properties if the starting 
temperature is sufficiently high and the temperature cooling 
rate is low. However, the higher temperature and the lower 
cooling rate reduce the performance of SA. In addition, 
parallelization cannot be easily exploited in SA.  

Recently many researchers tried to combine GA and SA to 
provide a more powerful optimization method that has both 
good convergence control and efficient parallelization. Chen 
and Flan [3] had shown that the hybrid of GA and SA can 
perform better for ten difficult optimization problems than 
either GA or SA independently. Mahfoud and Goldberg [4] 
also introduced a GA and SA hybrid. Their hybrid runs SA 
procedures in parallel, which uses mutation as the SA 
neighborhood operator and incorporates crossover to reconcile 
solutions across the processors. A similar hybrid method of 
GA and SA was also used by Varanelli and Cohoon [5]. In 
addition, Chen et al. [6] also proposed a hybrid method, which 
maintained one solution per Processing Element (PE). Each 
PE accepted a visiting solution from other PEs for crossover 
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and mutation. For the selection process, the SA cooling 
schedule and system temperature were used to decide whether 
the new generated individual was accepted or not. In this 
method, they used the local selection of SA to replace the 
conventional selection process of GA. Recently; Hiroyasu et 
al. [7] proposed an algorithm involving several processors. In 
each processor, SA was employed. The genetic crossover was 
used to exchange information between individuals at fixed 
intervals. Based on parallel simulated annealing in [4], [7], 
Baydar [8] developed a parallel simulated annealing algorithm 
using the survival of the fittest method, and acceptable results 
were found with this algorithm. 

B. Niching Strategies in GA 
De Jong [9] used a scheme called crowding for the pre-

selection technique. In crowding, selection and reproduction 
are the same as in the SGA, but replacement is different. In 
crowding, a group of C individuals is firstly selected randomly 
from the population, where C is called the crowding factor. 
Then, an individual is compared to every member of the 
selected group, and the most similar member of that group is 
replaced. Crowding is essentially a successive replacement 
strategy, which helps to maintain the population diversity and 
eliminate premature convergence. A number of means of 
implementing niching in GA has also been devised in [10]. 

Niching was introduced into GA primarily to maintain 
population diversity. Cedeno [11] indicated that multi-niche 
crowding (MNC) has the ability to converge simultaneously to 
multiple solutions by encouraging competition between 
individuals within the same locally optimal group. This 
objective is achieved by encouraging mating and replacement 
within members of the same niche while allowing for some 
competition for population slots among the niches. Further 
details of MNC are given in Section IV. 

III. PARALLEL GENETIC SIMULATED ANNEALING 

A. Genetic Simulated Annealing 
Each of the above approaches to hybridize GA and SA 

described in Section II.A has its own strengths, because some 
good characteristics of GA and SA are maintained when 
combining GA and SA together. In this paper, a new GA and 
SA hybrid, GSA, is presented. 

After crossover and mutation for a couple of individuals, 
there are four chromosomes: two parents and two offspring. In 
conventional GA, two parents are replaced by their offspring. 
But in GSA, two chromosomes are chosen to form the next 
generation from these four individuals. The selection criterion 
is based on the fitness values of these four individuals. 
Individuals with higher fitness values have a greater 
probability of surviving into the next generation. Those with 
less fitness values are not necessarily discarded. Instead, a 
local selection strategy of SA is applied to select them with a 
probability related to the current temperature (as in simulated 
annealing). In this selection process, a Markov chain is 
executed, which is composed of two offspring. Four 

parameters (fbest, fworst, Tt, fi) are involved to describe this 
selection process:  

fbest — the best fitness value of two parents; 
fworst — the worst fitness value of two parents; 
fi  — the fitness value of one offspring (i= 1, 2); 
Tt  — control temperature; 
During the course of the Markov chain at temperature Tt, 

the fitness value fi (i =1, 2) of the trial chromosome is 
compared with fworst. Chromosome i is accepted to replace the 
worst individual, if the following requirement is met: 

re tT
worstfif

≥
⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧ −

,1min  

where r is a randomly generated number between 0 and 1.  
If chromosome i is accepted, the worst chromosome and the 

best one are updated and then the course of the Markov chain 
continues until completion. After the implementation of the 
Markov chain, the best and the worst individuals are survived 
into the next generation. 

In SGA, mutation simply changes the value for a particular 
gene with a certain probability. It helps to maintain the vast 
diversity of the population and also prevents the population 
from stagnating. However, at later stages, it increases the 
probability that good solutions will be destroyed. Normally, 
the mutation rate is set to a low value (e.g., 0.01) so that 
accumulated good candidates will not be destroyed. This 
negative effect of mutation has been eliminated for GSA, 
because the local selection of SA is applied after mutation, 
such that at the later stage, only better solutions are retained 
after mutation. Therefore, the initial value of mutation 
probability can be larger than the recommended values in 
[12]. In this study, the mutation probability pm of GSA is 
initially set to a higher value, and a simple annealing process 
is then used to adjust pm. After every certain generations, the 
mutation probability pm is updated with pm×α until it reaches 
to a certain value, where α is the cooling rate of SA. Thus, at 
the initial stage, when manipulating the cooling schedule of 
SA properly, the initial higher temperature can ensure that 
parents will be replaced by their offspring after crossover and 
mutation whether they are much fitter or not. More 
importantly, the initial higher mutation probability is capable 
of improving population diversity greatly, which can eliminate 
the premature convergence problem of conventional GA. On 
the contrary, at the later stage the mutation probability and the 
temperature become lower, and the chances for the fitter 
parents to be replaced decrease greatly. In this way, the 
current best individuals may continue to remain in the next 
generation. Thus, the possibility of removing potentially 
useful individuals in the last generation because of the 
mutation operation can be reduced. The pseudo-code of GSA 
is illustrated in Fig. 1, where P(t) is the population of 
individuals at generation t, and n is the string length of 
chromosome. 

In addition, good parallelizable property of GA is applied to 
parallelize GSA, which will be explained in Section III.B. 
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Thus, GSA shows tighter coupling of GA and SA as SA 
controls a number of distinct GAs running in parallel. 

1: t = 0 
2: initialize P(t) and temperature Tt 
3: evaluate P(t) 
4: while not termination-condition do 
5:    t = t + 1 
6:    select P(t) from P(t-1) 
7:    select individuals for reproduction from P(t) 
8:    repeat 
9:       select two unused individuals P1, P2 

10:       crossover & mutation; generate two children C1,C2 
11:       evaluate C1,C2 
12:       for all i = 1 to 2 do 
13:          if min{1, exp((fi-fworst)/Tt)}> random[0,1) then 
14:             accept Ci and replace the corresponding parent 
15:             update the new best and worst points 
16:          end if 
17:       end for 
18:    until all selected parents finish reproduction 
19:    Tt+1 = Tt × α; 0 <α < 1 
20:    if the modulus of t divided by 10 == 0&& pm > 1/n then
21:       pm = pm×α 
22:    end if 
23: end while 

Fig. 1 Pseudo code of genetic simulated annealing 
 

B. Parallel Genetic Simulated Annealing 
 There are several ways to parallelize GA [13], and the 

parallel GA (PGA) has been developed and successfully 
applied to optimize many practical problems [14]. According 
to the nature of the population structure and recombination 
mechanisms used, PGA can be classified into four categories: 
single-population master-slave PGA, coarse-grained PGA, 
fine-grained PGA and hierarchical hybrids [13]. In single-
population master-slave PGA, there is a single population, and 
the evaluation of fitness values is distributed among several 
processors. The fine-grained PGA treats each individual as a 
separate breeding unit; and the individuals may mate with 
those selected from a small local neighborhood. Since the 
neighborhoods overlap, fit individuals will migrate through 
the population. The coarse-grained PGA is very popular and 
widely used. In a coarse-grained PGA, the entire population is 
divided into several subpopulations. Each subpopulation runs 
a conventional GA independently and concurrently on its own 
subpopulation. After several epochs, best individuals migrate 
from one subpopulation to another according to a migration 
topology. The hierarchical PGA combines coarse-grained 
PGA with master-slave or fine-grained PGA, so that it has the 
benefits of its components [13]. In this paper, the idea to 
parallelize GA is borrowed to implement the parallelization of 
GSA. A master-slave/coarse-grained PGA, which combines 
master-slave PGA and coarse-grained PGA together, is used 
to parallelize GSA. 

In the master-slave/coarse-grained PGSA, the host program 

runs on the master processor, which decides on the global 
termination criterion. The whole population is equally divided 
into several subpopulations among the slave processors. Each 
slave processor runs a sequential GSA independently within 
its own subpopulation on one processor. The pseudo code of 
PGSA is shown in Fig. 2, where P(t) is the population of 
individuals of generation t, myrank is the rank of the 
processor, slnsmigrate, slnsrecv and slnsdelete are the migrants, 
received individuals and the individuals to be replaced, 
respectively. If the migration conditions are satisfied, each 
processor, such as the source processor, implements the 
function neighbor to find the destination processors according 
to a migration topology. The migrant individuals (slnsmigrate) 
are selected and sent to the destination processors. After the 
migrant individuals (slnsrecv) are received on the destination 
processor, the individuals to be deleted (slnsdelete) are 
determined and replaced by received individuals (slnsrecv). The 
same program is executed on each processor, but on different 
data (their own population) until the global optimum is 
achieved. 

1: t = 0 
2: initialize P(t) 
3: evaluate P(t) 
4: while not termination-condition do 
5:    reproduction process of GSA 
6:    if migration-condition satisfies then 
7:       dest = neighbor(myrank) 
8:       slnsmigrate = migrant_individual(P(t))
9:       send_string(dest, xmigrate) 

10:       slnsrecv = recv_string( ) 
11:       slnsdelete = delete_individual(P(t)) 
12:       replace_string (xdelete, xrecv, P(t)) 
13:    end if 
14: end while 

Fig. 2 Pseudo code of parallel genetic simulated annealing 
 

Although PGSA is related to the parallel hybrid method 
developed by Chen et al. [6], there are some important 
differences between PGSA in this paper and Chen’s PGSA 
(C-PGSA). In C-PGSA, each PE maintained one solution, and 
each PE accepted a visiting solution from other PEs for 
crossover and mutation. In PGSA, each processor maintains 
its own subpopulation of solutions and different processors 
exchange their best solutions after certain number of epochs. 
Thus, the communication overhead between processors is 
much smaller. In C-PGSA, a normal SA-type probabilistic 
selection procedure is used to retain the proof of convergence 
of SA. In PGSA, a Markov chain is used to realize the local 
selection of SA, which can improve the selection performance 
of SA. 

C. Implementation Details of PGSA 
In this study, optimization problems of real-valued 

functions are considered. And the real-value coding scheme is 
employed to represent the chromosome. Each chromosome 
vector is coded as a vector of real-value point numbers of the 
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same length as the solution vector. Let x = (x1, x2, …, xn) be 
the encoding of a solution, where xi (∈ R) represents the value 
of the ith gene in the chromosome x. Initially, xi is selected 
within the desired domain, and reproduction operators of GA 
are carefully designed to preserve this constraint. In the 
reproduction process of PGSA, a tournament selection 
approach is used to select individuals for the next generation. 
In the tournament approach, a sub-group is initially selected 
randomly from the population. Then, a ‘tournament’ 
competition takes place in this sub-group, and the winner is 
inserted into the next population. Other implementation details 
of PGSA are described in the following sections. 

1) Crossover and mutation 
The conventional crossover operator combines substrings 

belonging to their parents. For real-value encoding, this type 
of crossover does not change the value of each variable; so it 
cannot perform the search with respect to each variable. 
Therefore, it is not suitable in this study and consequently, a 
modified crossover operator, called convex recombination 
[15], is used. It operates as follows. 

Consider that the crossover takes place at the positions i and 
j (i < j), let x = (x1, …, xn) and y = (y1, …, yn) be the parent 
strings. Then, the offspring u and v are of the form: 

⎩
⎨
⎧ <<−+

=
otherwise                     ,
  ,)1(

k

kk
k x

jkiyaax
u         (1) 

⎩
⎨
⎧ <<−+

=
otherwise                     ,

  ,)1(

k

kk
k y

jkixaay
v         (2) 

where a is a random number in the interval [0, 1]. In this 
paper, the two-point crossover is applied to each couple of 
individuals. 

For the real-value coding scheme, different mutation 
operators can be used, such as uniformly distributed mutation, 
Gaussian mutation, range mutation and non-uniform mutation. 
The first two mutation methods were used in this study. In the 
uniformly distributed mutation, the mutation operator 
randomly chooses a number z in the interval defined by [-A, 
A], where A is called the mutation range. The new point is 
given by: xm = x + z [16]. In Gaussian mutation, a random 
value z is chosen from a normal Gaussian distribution N (0, σ), 
where σ is the standard deviation [17]. Uniformly distributed 
mutation is more commonly used for searches in a large 
region. The Gaussian mutation performs better searches in a 
small local area [15]. In this study, at the initial stage, 
uniformly distributed mutation is used. When the decreasing 
rate of the average fitness values is less than 0.01, Gaussian 
mutation is used. 

2) Migration policy, migration rate, migration topology 
and migration frequency 

In the implementation of PGSA, some parameters of 
concern are: migration policy which determines how to select 
individuals to migrate, migration rate or the number of 
individuals to migrate, the frequency of migration, and the 
migration topology. 

Cantú-Paz [13] indicated that the elitist strategy performed 

better than tournament selection. Thus, the elitist strategy is 
used to choose the migration individuals. The top 1% of the 
best individuals are migrated to replace the worst individuals 
of other subpopulations. If 1% of population size is not an 
integer, it will be rounded off to the next integer that is greater 
than its fractional value. A ladder neighborhood relation is 
used to implement PGSA, and the 8-processor structure of this 
relation is shown in Fig. 3, which shows that every slave 
processor is connected with other five slave processors. The 
advantage of this topology is that it can spread the migrant 
individuals quickly among the slave processors. The 
frequency of migrating individuals is given in Section V.A. 

 
 

Fig. 3 Schematic diagram of the implementation of PGSA 

IV. MULTI-NICHE CROWDING IN PGSA 

A. Similarity Metric 
Phenotypic distance metric is used here as the similarity 

metric. For the real-value coding scheme, the Euclidean 
distance between two individuals is employed to measure their 
similarity. The smaller the distance between two individuals, 
the more similar they are. 

For the given two individuals: x = (x1, …, xn) and y = (y1, 
…, yn), the distance between them is defined by: 

∑
= −

−
=

n

t
l
i

u
i

ii

xx
yx

yxd
1

2)(),(             (3) 

where n is the length of the chromosome, u
ix  and l

ix  are the 
upper and lower bounds of variable xi, which is used here to 
normalize the distance d(x, y). 

B. Multi-niche Crowding in PGSA 
The concept of MNC [11] is briefly reviewed here. In 

MNC, not only the selection but also replacement has been 
modified with some type of crowding. There are two steps for 
this crowding selection approach. Firstly, an individual A is 
selected for mating. Secondly, its mate M is chosen with the 
crowding selection instead of the fitness proportionate 
reproduction (FPR) of SGA. Based on the similarity to A, M is 
selected from a group of Cs individuals, which is composed of 
randomly chosen individuals from the population. The mate M 
must be the most similar one to A in the selected group. 

4 1 

2 3

8 5 

6 7

Master
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After picking the mater of A, the genetic operators of 
crossover and mutation are then applied; one pair of offspring 
is generated. For each of these two offspring, MNC is again 
used to select an individual from the population for 
replacement by this offspring. During the replacement step, a 
replacement policy called “worst among the most similar” is 
used in MNC [11]. Firstly, from the population, Cf groups are 
created by randomly choosing s individuals per group. Then, 
in each group, the individual which is most similar to the 
offspring is identified. Finally, Cf individuals are identified as 
the most ‘similar’ to the offspring. These Cf individuals are 
candidates for replacement by virtue of their similarity to the 
offspring. From this group of most similar individuals, the one 
with the lowest fitness has been replaced with the offspring. 
The offspring could possibly have a lower fitness than the 
individual being replaced. In the implementation of MNC, 
based on the values used in [11], the following parameter 
settings are used: Cs = 2, Cf = 6, and s = 3. 

Because of selection pressure caused by FPR, sometimes 
PGSA still cannot maintain good diversity in the population, 
especially for some difficult to solve multimodal functions. So 
MNC has been considered to maintain population diversity for 
PGSA. In implementation of PGSA, MNC was only applied 
among half the number of slave processors to select mating 
individuals and the individuals to be replaced by offspring. 
Among the other half number of slave processors, normal 
PGSA as described in section III.B was used in order to 
maintain the good local selection ability of SA. With the 
incorporation of MNC into PGSA, a new heterogeneous 
parallel algorithm, called MNC-PGSA, is obtained. This 
MNC-PGSA algorithm maintains good diversity in the 
population and inherits good convergence from PGSA. 

V. RESULTS AND DISCUSSION 
Trafalis and Kasap [18] used 19 well-known global 

optimization problems to evaluate the performance of their 
global search functions. Recently, Wang et al [19] attempted a 
well-established set of nine functions to test their search 
algorithms. With focus on the search ability and scalability of 
the algorithm proposed in this paper, three more complex 
multimodal benchmark functions from available literatures 
[19], [20] have been used to compare the performance of 
MNC-PGSA and PGSA with other algorithms, shown in 
Table I. All tests were run on SUN Workstation network 
consisting of 42 SUN Blade 2000 workstations with a fast 
Ethernet interconnect (100 M-Bytes/sec). The main hardware 
and software of the Sun Blade 2000 consists of an Ultra-
SPARC III Cu 900 MHz processor, 2 G-Bytes memory, 4 G-
Bytes swap memory, and Solaris 8 operating system. 

An extensive performance evaluation for functions F1-F3 
has been done for PGA by Mühlenbein et al. [21]. In their 
investigation, the efficiency of the search method was 
demonstrated by varying the problem size n. Mühlenbein and 
Schlierkamp-Voosen [16] increased the problem size n further 
to investigate the advantage of scaling their search method. 
The number of function evaluations was defined as efficiency 

criterion in [16] and [21]. For comparison, in this section, the 
efficiency of search methods is also defined by the number of 
function evaluations needed to obtain the optimal solutions. 
When the minimal value of each function on the master 
processor is reached, it will send the termination signal to all 
slave processors. After these processors have received the 
termination signal, they stop running and send the number of 
function evaluations done so far to the master processor to 
sum them up. 

TABLE I 
MULTIMODAL BENCHMARK FUNCTIONS 

Function Function equation Parameter 
intervals 

F1 )]2cos([)( 2

1
1 ii

n

i
xAxnAxf π−∑+=

=
 12.512.5 ≤≤− ix  

F2 )]sin([)(
1

2 ii
n

i
xxxf −∑=

=
 500500 ≤≤− ix  

F3 1)cos(]4000[)(
1

2

1
3 +∏−−∑=

==
ixxxf i

n

i
i

n

i
 600600 ≤≤− ix  

  
In the implementation of PGSA, the host program, which 

runs on the master processor, decides on the global 
termination criterion. After certain iterations, each slave 
processor sends its top 1% of the best individuals to the 
master processor. After receiving best individuals from all 
slave processors, the stop flag of PGSA is set on the master 
processor, if the following criterion is fulfilled: 

k
best

kk
best

k
best fff ε≤− ∆−             (4) 

or ε≤− best
k

best ff              (5) 

where k
bestf  is the best fitness value of an individual on the 

master processor at generation k, and the stop criterion is 
checked at every k∆ generations;  fbest is the global minimum 
and ε is a constant value 10-3. For F1 and F2, Inequality (4) 
was used as the termination criterion. For F3, Inequality (2) 
was chosen as the termination criterion, where fbest = 0. After 
setting the termination flag, the master processor sends it to 
every slave one. According to the termination flag, each slave 
processor decides whether GSA continues to run or not. 

A. Experiment Setup 
Both GA and SA have many internal control parameters. 

Thus, PGSA, which is composed of GA and SA, also has 
many control parameters, which can be described as follows:  

PGSA = (P0, λ, µ, σ, δ, τ, GSA, T0, α, t)  (4)  
where P0 is the initial population, λ is the number of 
subpopulations, µ is the population size of each 
subpopulation, σ is the migration interval in number of 
generations, δ is the number of neighbors, T0 is the initial 
temperature, α is the cooling rate and t is the termination 
criterion. 

In order to show the robustness of PGSA, there is no need 
to tune all these parameters to a specific function. Based on 
the recommended values from previous work [13], [21], the 
parameter settings for F1 and F2 are shown in Tables II and 
III, respectively, where pm is the mutation probability. For all 
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experiments, the crossover probability is 0.65, and δ = 5. 
In case of Function F3, it is comparatively much more 

difficult to get the global minimal value. The parameter 
settings for F3 are as follows: λ =16, σ = 20, pm = 0.3, T0 = 
600, α = 0.85 and crossover rate is 0.65. The population size 
on each processor µ is equal to 50 when the problem size n < 
100, and µ =100 when n ≥ 100. 

TABLE II 
PARAMETER SETTINGS FOR RASTRIGIN’S FUNCTION F1 

Problem size (n) 
Parameters 

20 50 100 200 400 500 1000
λ 8 8 16 16 16 16 32 
µ 20 20 20 40 40 100 100 
σ 10 20 20 40 40 50 50 
pm 0.1 0.05 0.05 0.05 0.65 0.80 0.80
T0 200 400 500 1000 2000 2000 2000

α 0.85 0.85 0.85 0.85 0.85 0.85 0.85
 

TABLE III 
PARAMETER SETTINGS FOR SCHWEFEL’S FUNCTION F2 

Problem size (n) 
Parameters 

10 50 100 150 200 400 
λ 8 16 16 16 16 32 
µ 20 50 100 150 200 200 
σ 10 30 50 50 50 50 
pm 0.1 0.05 0.05 0.05 0.05 0.05 
T0 200 400 600 800 1000 1200 
α 0.85 0.85 0.85 0.85 0.85 0.85 

B. Results and Discussion for Lower Dimension Problems 
Functions F1 and F2 with lower dimensions are easily 

solved by MNC-PGSA, PGSA and PGA as shown in Figs. 4 
and 5. But in [21], the global optimum of F2 was not found in 
4 of the 50 runs. In this study, MNC-PGSA and PGSA have 
found the optimum of F2 in all 50 runs. Because PGSA can 
maintain a good diversity with a higher mutation probability at 
the initial stage, it can eliminate premature convergence to 
suboptimal minima. At the later stage, the local selection 
strategy of SA can ensure that best solutions are not discarded 
after crossover and mutation operators. Therefore, PGSA can 
approach or converge on the global minimum with less 
number of function evaluations than PGA. In addition to the 
advantages of PGSA, MNC-PGSA can also maintain good 
population diversity with the crowding strategy. 

Griewank’s function F3 is regarded as one of the most 
difficult test functions. It has its global minimum fbest = 0 at xk 
= 0, and the local minima are located approximately at xk = 

kmπ , where k = 1, …, n, and m is any integer value. Four 

suboptimal minima (≈0.0074) exist at )0,...0,2,( ππ ±±=xv in 
ten dimensions. The average number of function evaluations 

is 6600 by Griewank [20], but only one of the four sub-
minima was found. An average of 59520 evaluations is 
needed to solve this problem by Mühlenbein et al. [21], but 
they did not comment on their results. MNC-PGSA and PGSA 
found the minimum values (< 0.001) of F3 with less than half 
of the number of function evaluations using PGA, as shown in 
Fig. 6. More importantly, in all 50 runs, these minimum values 
were found. Therefore, MNC-PGSA and PGSA are able to 
obtain much better solutions with a higher convergence speed 
than PGA. Fig. 6 shows that less number of function 
evaluations with MNC-PGSA was needed to converge to 
global optima for Function F3 than that for PGSA with the 
same problem size. Thus, MNC-PGSA performs better than 
PGSA. 
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Fig. 4 Performance comparison between PGA [21], PGSA and MNC-

PGSA for Rastrigin’s Function 
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Fig. 5 Performance comparison between PGA [21], PGSA and MNC-

PGSA for Schwefel’s Function 

C. Results and Discussion for Higher Dimension Problems 
1) Computation results for F1 & F2 with high dimension 

Mühlenbein et al. [21] found the global minimum of F1 
with a dimension of 400 and F2 with a dimension of 150 on a 
64-processor computer using PGA. For comparison in this 
paper, F1 and F2 with much higher dimension have also been 
attempted using PGSA. The parameter settings are listed in 
Tables II and III. The same termination criterion, Inequality 
(4), was used in order to directly compare the efficiency of 
MNC-PGSA, PGSA and PGA. 

Function F1 with dimension 500 and 1000 and Function F2 
with dimension 200 and 400 have also been investigated, 
which were not tried using PGA in [21]. It can be seen that the 
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number of function evaluations using MNC-PGSA and PGSA 
is much smaller than that using PGA. The performance of 
MNC-PGSA and PGSA gets better with the higher problem 
size n. In all cases, MNC-PGSA performs better than PGSA, 
but the difference in function evaluations between them is not 
so obvious; perhaps both of these two algorithms are effective 
for these two multimodal functions. 
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 MNC-PGSA
 PGSA
 BGA

Fig. 6 Performance comparison between BGA [16], PGSA and 
MNC-PGSA for Griewank’s Function 

A typical run for Function F1 when n = 100 is shown in 
Fig. 7. Initially, the difference in performance between MNC-
PGSA and PGSA is very small, but after 400 generations, it 
becomes larger. MNC-PGSA can converge to better optima 
with a faster speed. For PGSA, initially, the individuals of the 
subpopulation become more similar to one another than those 
in MNC-PGSA. In some cases, PGSA even converges around 
suboptimal minima. For PGSA, after 100 generations, the 
average and best values of the objective functions are much 
more similar. This means that less diversity exists in the 
population. However, for MNC-PGSA, the difference 
between the average and the best evaluation values is larger 
than that of PGSA, which indicates that more diverse 
individuals exist in subpopulations of MNC-PGSA. This can 
be attributed to the use of MNC, which can help to maintain 
better diversity in the population.  As the optimization process 
proceeds for MNC-PGSA, owing to the better population 
diversity, it can converge to the different optimal solution 
within much smaller number of generations. 

2) Computation results for F3 with higher dimension 
Mühlenbein and Schlierkamp-Voosen [16] used breeder 

genetic algorithm (BGA) to optimize Functions F1 and F2 in 
higher dimension too. However, the number of function 
evaluations cannot be directly compared because a different 
termination criterion was used for BGA. In order to compare 
the efficiency of PGSA with that of BGA, the same 
termination criterion as that for BGA was used for Function 
F3. The computation results using BGA, PGSA and MNC-
PGSA are listed in Fig. 6, which shows that less number of 
function evaluations is needed with PGSA and MNC-PGSA. 
Thus, the performance of PGSA and MNC-PGSA is better 

than that of BGA. The difference in performance between 
MNC-PGSA and PGSA for solving F3 is much more obvious 
than that for solving F1 and F2 with these two algorithms. 
Because it is much more difficult to obtain the global optima 
of F3 than F1 and F2, MNC-PGSA shows its higher efficiency 
in this case. This reiterates that MNC-PGSA is a powerful 
optimization method in comparison to PGSA and BGA. In 
[16], the number of function evaluations scales almost exactly 
with n·ln(n) for Function F3. With such scaling ability, the 
number of function evaluations increases quickly with the 
problem size. However, in this study, the increase rate of the 
number of function evaluations with the problem size for 
PGSA and MNC-PGSA is obviously smaller than that with 
BGA. With such scaling ability, the advantage of investigating 
the scaling of PGSA and MNC-PGSA has been demonstrated, 
i.e., PGSA and MNC-PGSA have better scalability.  

 
Fig. 7 Average and best function evaluation values for Rastrigin’s 

function (n = 100) 
D. Analysis of the speedup 
Generally, when comparing the program performance 

between the parallel programs with the serial program, 
speedup is commonly used, which is defined as the ratio of the 
runtime to achieve a serial solution to a problem to the parallel 
runtime. Measurement of the speedup of PGSA on parallel 
processors is very difficult because of its probabilistic nature 
[21]. In this study, the speedup of PGSA was estimated based 
on average computation times of 50 runs, as shown in Table 
IV. When more processors are involved in computation, 
communication among processors causes the overhead, which 
will slowdown the speedup of parallel programs. Table IV 
shows that PGSA achieved almost linear speedup. Since the 
whole population is equally divided into several 
subpopulations among the slave processors, less computation 
time is needed to obtain the optimum. And the reduced 
computation time can even compensate for communication 
overhead among processors.  

For F2 with a dimension 400, the global optimum could not 
be found for each case with the serial GSA. For Function F3, 
when the problem size was greater than 20, in most cases the 
serial GSA was not able to find the global optimum. Therefore 
the speedup analysis for F3 is not discussed in this section. 
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But PGSA could find the optimum for F2 and F3 with higher 
dimension within reasonable time; this demonstrates the 
significantly stronger global search ability of PGSA. 

TABLE IV 
AVERAGE COMPUTATION TIME WITH GSA AND PGSA 

Computation time (s) 
Function n 

GSA PGSA 
λ speedup 

F1 50 1.011351 0.110184 8 9.1787
 100 4.192071 0.218913 16 19.1495 
 200 18.004712 1.005423 16 17.9076 
 400 119.460274 7.451222 16 16.0323 
 500 266.188604 14.167722 16 18.7884 
 1000 1383.947593 36.713556 32 37.6958 

F2 50 7.785258 0.446771 16 17.4256 
 100 36.553699 2.155516 16 16.9582 
 150 108.308197 5.264115 16 20.5748 
 200 292.366368 14.096044 16 20.7410 
 400 913.128460 30.328364 32 30.1081 

F2 (n = 400): Global optimum was not found in 8 of 50 runs 
for the serial GSA. 

VI. CONCLUSIONS 
In this paper, a new GA and SA hybrid (GSA) is firstly 

presented, which inherits the strengths of GA and SA and 
overcomes their weaknesses. The extended ideas of simulated 
annealing were used in the adjustment of the mutation rate and 
the local selection of individuals which are retained in the next 
population after crossover and mutation. In GSA, at the initial 
stage, the higher mutation rate is helpful for maintaining 
population diversity. After crossover and mutation, the local 
selection of SA can ensure that good candidates still exist in 
the next generation at the later stage. Therefore by 
maintaining more diverse subpopulations at the initial stage, 
GSA mitigates the premature convergence of the standard GA. 
On the other hand, at the later stage, local selection strategy of 
SA ensures that increasing number of good candidates exists 
in the next generation. It can narrow the search space so that 
fast convergence can be achieved. PGSA is then described by 
implementing the parallelization of GSA. In addition, MNC 
has been incorporated into PGSA for the selection and 
replacement in reproduction process of PGSA. In MNC-
PGSA, MNC can help to maintain population diversity 
throughout the search and converge to different local optima. 

The numerical results show that MNC-PGSA has faster 
convergence to global optimum solution than PGSA and 
PGA. The better performance of MNC-PGSA is attributed to 
the better population diversity than PGSA; thus, less number 
of function evaluations is needed to converge to the different 
optimal solution. In comparison to the other advanced search 
method such as BGA [16] using the same termination 
criterion, the performance of MNC-PGSA and PGSA is better. 

More importantly, MNC-PGSA performs better with the 
larger problem size. Thus, MNC-PGSA has a good scalability. 
In this study, three different functions have been tried with the 
proposed algorithms. The only difference between them lies in 
the objective function. The aforementioned PGSA and MNC-
PGSA algorithms are applicable to new multimodal problems, 
needing basically incorporating appropriate objective 
functions and changing some parameters if necessary. So 
PGSA and MNC-PGSA have a good programmability.  
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