Search results for: Cosine transform
696 Oil Debris Signal Detection Based on Integral Transform and Empirical Mode Decomposition
Authors: Chuan Li, Ming Liang
Abstract:
Oil debris signal generated from the inductive oil debris monitor (ODM) is useful information for machine condition monitoring but is often spoiled by background noise. To improve the reliability in machine condition monitoring, the high-fidelity signal has to be recovered from the noisy raw data. Considering that the noise components with large amplitude often have higher frequency than that of the oil debris signal, the integral transform is proposed to enhance the detectability of the oil debris signal. To cancel out the baseline wander resulting from the integral transform, the empirical mode decomposition (EMD) method is employed to identify the trend components. An optimal reconstruction strategy including both de-trending and de-noising is presented to detect the oil debris signal with less distortion. The proposed approach is applied to detect the oil debris signal in the raw data collected from an experimental setup. The result demonstrates that this approach is able to detect the weak oil debris signal with acceptable distortion from noisy raw data.Keywords: Integral transform, empirical mode decomposition, oil debris, signal processing, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716695 Finding Approximate Tandem Repeats with the Burrows-Wheeler Transform
Authors: Agnieszka Danek, Rafał Pokrzywa
Abstract:
Approximate tandem repeats in a genomic sequence are two or more contiguous, similar copies of a pattern of nucleotides. They are used in DNA mapping, studying molecular evolution mechanisms, forensic analysis and research in diagnosis of inherited diseases. All their functions are still investigated and not well defined, but increasing biological databases together with tools for identification of these repeats may lead to discovery of their specific role or correlation with particular features. This paper presents a new approach for finding approximate tandem repeats in a given sequence, where the similarity between consecutive repeats is measured using the Hamming distance. It is an enhancement of a method for finding exact tandem repeats in DNA sequences based on the Burrows- Wheeler transform.Keywords: approximate tandem repeats, Burrows-Wheeler transform, Hamming distance, suffix array
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536694 Two Class Motor Imagery Classification via Wave Atom Sub-Bants
Authors: Nebi Gedik
Abstract:
The goal of motor image brain computer interface research is to create a link between the central nervous system and a computer or device. The most important signal for brain-computer interface is the electroencephalogram. The aim of this research is to explore a set of effective features from EEG signals, separated into frequency bands, using wave atom sub-bands to discriminate right and left-hand motor imagery signals. Over the transform coefficients, feature vectors are constructed for each frequency range and each transform sub-band, and their classification performances are tested. The method is validated using EEG signals from the BCI competition III dataset IIIa and classifiers such as support vector machine and k-nearest neighbors.
Keywords: motor imagery, EEG, Wave atom transform sub-bands, SVM, k-NN
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 598693 Combined DWT-CT Blind Digital Image Watermarking Algorithm
Authors: Nidal F. Shilbayeh, Belal AbuHaija, Zainab N. Al-Qudsy
Abstract:
In this paper, we propose a new robust and secure system that is based on the combination between two different transforms Discrete wavelet Transform (DWT) and Contourlet Transform (CT). The combined transforms will compensate the drawback of using each transform separately. The proposed algorithm has been designed, implemented and tested successfully. The experimental results showed that selecting the best sub-band for embedding from both transforms will improve the imperceptibility and robustness of the new combined algorithm. The evaluated imperceptibility of the combined DWT-CT algorithm which gave a PSNR value 88.11 and the combination DWT-CT algorithm improves robustness since it produced better robust against Gaussian noise attack. In addition to that, the implemented system shored a successful extraction method to extract watermark efficiently.Keywords: DWT, CT, Digital Image Watermarking, Copyright Protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2850692 The Use of Complex Contourlet Transform on Fusion Scheme
Authors: Dipeng Chen, Qi Li
Abstract:
Image fusion aims to enhance the perception of a scene by combining important information captured by different sensors. Dual-Tree Complex Wavelet (DT-CWT) has been thouroughly investigated for image fusion, since it takes advantages of approximate shift invariance and direction selectivity. But it can only handle limited direction information. To allow a more flexible directional expansion for images, we propose a novel fusion scheme, referred to as complex contourlet transform (CCT). It successfully incorporates directional filter banks (DFB) into DT-CWT. As a result it efficiently deal with images containing contours and textures, whereas it retains the property of shift invariance. Experimental results demonstrated that the method features high quality fusion performance and can facilitate many image processing applications.Keywords: Complex contourlet transform, Complex wavelettransform, Fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594691 Sperm Whale Signal Analysis: Comparison using the Auto Regressive model and the Daubechies 15 Wavelets Transform
Authors: Olivier Adam, Maciej Lopatka, Christophe Laplanche, Jean-François Motsch
Abstract:
This article presents the results using a parametric approach and a Wavelet Transform in analysing signals emitting from the sperm whale. The extraction of intrinsic characteristics of these unique signals emitted by marine mammals is still at present a difficult exercise for various reasons: firstly, it concerns non-stationary signals, and secondly, these signals are obstructed by interfering background noise. In this article, we compare the advantages and disadvantages of both methods: Auto Regressive models and Wavelet Transform. These approaches serve as an alternative to the commonly used estimators which are based on the Fourier Transform for which the hypotheses necessary for its application are in certain cases, not sufficiently proven. These modern approaches provide effective results particularly for the periodic tracking of the signal's characteristics and notably when the signal-to-noise ratio negatively effects signal tracking. Our objectives are twofold. Our first goal is to identify the animal through its acoustic signature. This includes recognition of the marine mammal species and ultimately of the individual animal (within the species). The second is much more ambitious and directly involves the intervention of cetologists to study the sounds emitted by marine mammals in an effort to characterize their behaviour. We are working on an approach based on the recordings of marine mammal signals and the findings from this data result from the Wavelet Transform. This article will explore the reasons for using this approach. In addition, thanks to the use of new processors, these algorithms once heavy in calculation time can be integrated in a real-time system.Keywords: Autoregressive model, Daubechies Wavelet, Fourier Transform, marine mammals, signal processing, spectrogram, sperm whale, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005690 VLSI Design of 2-D Discrete Wavelet Transform for Area-Efficient and High-Speed Image Computing
Authors: Mountassar Maamoun, Mehdi Neggazi, Abdelhamid Meraghni, Daoud Berkani
Abstract:
This paper presents a VLSI design approach of a highspeed and real-time 2-D Discrete Wavelet Transform computing. The proposed architecture, based on new and fast convolution approach, reduces the hardware complexity in addition to reduce the critical path to the multiplier delay. Furthermore, an advanced twodimensional (2-D) discrete wavelet transform (DWT) implementation, with an efficient memory area, is designed to produce one output in every clock cycle. As a result, a very highspeed is attained. The system is verified, using JPEG2000 coefficients filters, on Xilinx Virtex-II Field Programmable Gate Array (FPGA) device without accessing any external memory. The resulting computing rate is up to 270 M samples/s and the (9,7) 2-D wavelet filter uses only 18 kb of memory (16 kb of first-in-first-out memory) with 256×256 image size. In this way, the developed design requests reduced memory and provide very high-speed processing as well as high PSNR quality.Keywords: Discrete Wavelet Transform (DWT), Fast Convolution, FPGA, VLSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966689 Face Recognition Using Double Dimension Reduction
Authors: M. A Anjum, M. Y. Javed, A. Basit
Abstract:
In this paper a new approach to face recognition is presented that achieves double dimension reduction making the system computationally efficient with better recognition results. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition results improve with increase in face image resolution and levels off when arriving at a certain resolution level. In the proposed model of face recognition, first image decimation algorithm is applied on face image for dimension reduction to a certain resolution level which provides best recognition results. Due to better computational speed and feature extraction potential of Discrete Cosine Transform (DCT) it is applied on face image. A subset of coefficients of DCT from low to mid frequencies that represent the face adequately and provides best recognition results is retained. A trade of between decimation factor, number of DCT coefficients retained and recognition rate with minimum computation is obtained. Preprocessing of the image is carried out to increase its robustness against variations in poses and illumination level. This new model has been tested on different databases which include ORL database, Yale database and a color database. The proposed technique has performed much better compared to other techniques. The significance of the model is two fold: (1) dimension reduction up to an effective and suitable face image resolution (2) appropriate DCT coefficients are retained to achieve best recognition results with varying image poses, intensity and illumination level.
Keywords: Biometrics, DCT, Face Recognition, Feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492688 Lower Bound of Time Span Product for a General Class of Signals in Fractional Fourier Domain
Authors: Sukrit Shankar, Chetana Shanta Patsa, Jaydev Sharma
Abstract:
Fractional Fourier Transform is a generalization of the classical Fourier Transform which is often symbolized as the rotation in time- frequency plane. Similar to the product of time and frequency span which provides the Uncertainty Principle for the classical Fourier domain, there has not been till date an Uncertainty Principle for the Fractional Fourier domain for a generalized class of finite energy signals. Though the lower bound for the product of time and Fractional Fourier span is derived for the real signals, a tighter lower bound for a general class of signals is of practical importance, especially for the analysis of signals containing chirps. We hence formulate a mathematical derivation that gives the lower bound of time and Fractional Fourier span product. The relation proves to be utmost importance in taking the Fractional Fourier Transform with adaptive time and Fractional span resolutions for a varied class of complex signals.
Keywords: Fractional Fourier Transform, uncertainty principle, Fractional Fourier Span, amplitude, phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192687 Comparison of Compression Ability Using DCT and Fractal Technique on Different Imaging Modalities
Authors: Sumathi Poobal, G. Ravindran
Abstract:
Image compression is one of the most important applications Digital Image Processing. Advanced medical imaging requires storage of large quantities of digitized clinical data. Due to the constrained bandwidth and storage capacity, however, a medical image must be compressed before transmission and storage. There are two types of compression methods, lossless and lossy. In Lossless compression method the original image is retrieved without any distortion. In lossy compression method, the reconstructed images contain some distortion. Direct Cosine Transform (DCT) and Fractal Image Compression (FIC) are types of lossy compression methods. This work shows that lossy compression methods can be chosen for medical image compression without significant degradation of the image quality. In this work DCT and Fractal Compression using Partitioned Iterated Function Systems (PIFS) are applied on different modalities of images like CT Scan, Ultrasound, Angiogram, X-ray and mammogram. Approximately 20 images are considered in each modality and the average values of compression ratio and Peak Signal to Noise Ratio (PSNR) are computed and studied. The quality of the reconstructed image is arrived by the PSNR values. Based on the results it can be concluded that the DCT has higher PSNR values and FIC has higher compression ratio. Hence in medical image compression, DCT can be used wherever picture quality is preferred and FIC is used wherever compression of images for storage and transmission is the priority, without loosing picture quality diagnostically.Keywords: DCT, FIC, PIFS, PSNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824686 Fault Detection of Pipeline in Water Distribution Network System
Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee
Abstract:
Water pipe network is installed underground and once equipped, it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using MATLAB. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342685 Improvements in Edge Detection Based on Mathematical Morphology and Wavelet Transform using Fuzzy Rules
Authors: Masrour Dowlatabadi, Jalil Shirazi
Abstract:
In this paper, an improved edge detection algorithm based on fuzzy combination of mathematical morphology and wavelet transform is proposed. The combined method is proposed to overcome the limitation of wavelet based edge detection and mathematical morphology based edge detection in noisy images. Experimental results show superiority of the proposed method, as compared to the traditional Prewitt, wavelet based and morphology based edge detection methods. The proposed method is an effective edge detection method for noisy image and keeps clear and continuous edges.Keywords: Edge detection, Wavelet transform, Mathematical morphology, Fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2403684 Improved Power Spectrum Estimation for RR-Interval Time Series
Authors: B. S. Saini, Dilbag Singh, Moin Uddin, Vinod Kumar
Abstract:
The RR interval series is non-stationary and unevenly spaced in time. For estimating its power spectral density (PSD) using traditional techniques like FFT, require resampling at uniform intervals. The researchers have used different interpolation techniques as resampling methods. All these resampling methods introduce the low pass filtering effect in the power spectrum. The lomb transform is a means of obtaining PSD estimates directly from irregularly sampled RR interval series, thus avoiding resampling. In this work, the superiority of Lomb transform method has been established over FFT based approach, after applying linear and cubicspline interpolation as resampling methods, in terms of reproduction of exact frequency locations as well as the relative magnitudes of each spectral component.Keywords: HRV, Lomb Transform, Resampling, RR-intervals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3236683 Detecting Abnormal ECG Signals Utilising Wavelet Transform and Standard Deviation
Authors: Dejan Stantic, Jun Jo
Abstract:
ECG contains very important clinical information about the cardiac activities of the heart. Often the ECG signal needs to be captured for a long period of time in order to identify abnormalities in certain situations. Such signal apart of a large volume often is characterised by low quality due to the noise and other influences. In order to extract features in the ECG signal with time-varying characteristics at first need to be preprocessed with the best parameters. Also, it is useful to identify specific parts of the long lasting signal which have certain abnormalities and to direct the practitioner to those parts of the signal. In this work we present a method based on wavelet transform, standard deviation and variable threshold which achieves 100% accuracy in identifying the ECG signal peaks and heartbeat as well as identifying the standard deviation, providing a quick reference to abnormalities.
Keywords: Electrocardiogram-ECG, Arrhythmia, Signal Processing, Wavelet Transform, Standard Deviation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2909682 The Application of Hadamard Matrixes in the SNR Enhancement of Optical Time-Domain Reflectometry(OTDR)
Authors: Mingyu Zhong, Yi Xie
Abstract:
Results in one field necessarily give insight into the others, and all have much potential for scientific and technological application. The Hadamard-transform technique once been applied to the spectrometry also has its use in the SNR Enhancement of OTDR. In this report, a new set of code (Simplex-codes) is discussed and where the addition gain of SNR come from is implied.Keywords: Hadamard-transform, matrixes, averaging, opticaltime-domain reflectometry (OTDR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312681 Support Vector Machine Prediction Model of Early-stage Lung Cancer Based on Curvelet Transform to Extract Texture Features of CT Image
Authors: Guo Xiuhua, Sun Tao, Wu Haifeng, He Wen, Liang Zhigang, Zhang Mengxia, Guo Aimin, Wang Wei
Abstract:
Purpose: To explore the use of Curvelet transform to extract texture features of pulmonary nodules in CT image and support vector machine to establish prediction model of small solitary pulmonary nodules in order to promote the ratio of detection and diagnosis of early-stage lung cancer. Methods: 2461 benign or malignant small solitary pulmonary nodules in CT image from 129 patients were collected. Fourteen Curvelet transform textural features were as parameters to establish support vector machine prediction model. Results: Compared with other methods, using 252 texture features as parameters to establish prediction model is more proper. And the classification consistency, sensitivity and specificity for the model are 81.5%, 93.8% and 38.0% respectively. Conclusion: Based on texture features extracted from Curvelet transform, support vector machine prediction model is sensitive to lung cancer, which can promote the rate of diagnosis for early-stage lung cancer to some extent.Keywords: CT image, Curvelet transform, Small pulmonary nodules, Support vector machines, Texture extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2766680 Detection and Classification of Faults on Parallel Transmission Lines Using Wavelet Transform and Neural Network
Authors: V.S.Kale, S.R.Bhide, P.P.Bedekar, G.V.K.Mohan
Abstract:
The protection of parallel transmission lines has been a challenging task due to mutual coupling between the adjacent circuits of the line. This paper presents a novel scheme for detection and classification of faults on parallel transmission lines. The proposed approach uses combination of wavelet transform and neural network, to solve the problem. While wavelet transform is a powerful mathematical tool which can be employed as a fast and very effective means of analyzing power system transient signals, artificial neural network has a ability to classify non-linear relationship between measured signals by identifying different patterns of the associated signals. The proposed algorithm consists of time-frequency analysis of fault generated transients using wavelet transform, followed by pattern recognition using artificial neural network to identify the type of the fault. MATLAB/Simulink is used to generate fault signals and verify the correctness of the algorithm. The adaptive discrimination scheme is tested by simulating different types of fault and varying fault resistance, fault location and fault inception time, on a given power system model. The simulation results show that the proposed scheme for fault diagnosis is able to classify all the faults on the parallel transmission line rapidly and correctly.
Keywords: Artificial neural network, fault detection and classification, parallel transmission lines, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3011679 A Hybrid Differential Transform Approach for Laser Heating of a Double-Layered Thin Film
Authors: Cheng-Ying Lo
Abstract:
This paper adopted the hybrid differential transform approach for studying heat transfer problems in a gold/chromium thin film with an ultra-short-pulsed laser beam projecting on the gold side. The physical system, formulated based on the hyperbolic two-step heat transfer model, covers three characteristics: (i) coupling effects between the electron/lattice systems, (ii) thermal wave propagation in metals, and (iii) radiation effects along the interface. The differential transform method is used to transfer the governing equations in the time domain into the spectrum equations, which is further discretized in the space domain by the finite difference method. The results, obtained through a recursive process, show that the electron temperature in the gold film can rise up to several thousand degrees before its electron/lattice systems reach equilibrium at only several hundred degrees. The electron and lattice temperatures in the chromium film are much lower than those in the gold film.
Keywords: Differential transform, hyperbolic heat transfer, thin film, ultrashort-pulsed laser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591678 Lifting Wavelet Transform and Singular Values Decomposition for Secure Image Watermarking
Authors: Siraa Ben Ftima, Mourad Talbi, Tahar Ezzedine
Abstract:
In this paper, we present a technique of secure watermarking of grayscale and color images. This technique consists in applying the Singular Value Decomposition (SVD) in LWT (Lifting Wavelet Transform) domain in order to insert the watermark image (grayscale) in the host image (grayscale or color image). It also uses signature in the embedding and extraction steps. The technique is applied on a number of grayscale and color images. The performance of this technique is proved by the PSNR (Pick Signal to Noise Ratio), the MSE (Mean Square Error) and the SSIM (structural similarity) computations.Keywords: Color image, grayscale image, singular values decomposition, lifting wavelet transform, image watermarking, watermark, secure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1028677 A Scheme of Model Verification of the Concurrent Discrete Wavelet Transform (DWT) for Image Compression
Authors: Kamrul Hasan Talukder, Koichi Harada
Abstract:
The scientific community has invested a great deal of effort in the fields of discrete wavelet transform in the last few decades. Discrete wavelet transform (DWT) associated with the vector quantization has been proved to be a very useful tool for the compression of image. However, the DWT is very computationally intensive process requiring innovative and computationally efficient method to obtain the image compression. The concurrent transformation of the image can be an important solution to this problem. This paper proposes a model of concurrent DWT for image compression. Additionally, the formal verification of the model has also been performed. Here the Symbolic Model Verifier (SMV) has been used as the formal verification tool. The system has been modeled in SMV and some properties have been verified formally.
Keywords: Computation Tree Logic, Discrete WaveletTransform, Formal Verification, Image Compression, Symbolic Model Verifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749676 Watermark Bit Rate in Diverse Signal Domains
Authors: Nedeljko Cvejic, Tapio Sepp
Abstract:
A study of the obtainable watermark data rate for information hiding algorithms is presented in this paper. As the perceptual entropy for wideband monophonic audio signals is in the range of four to five bits per sample, a significant amount of additional information can be inserted into signal without causing any perceptual distortion. Experimental results showed that transform domain watermark embedding outperforms considerably watermark embedding in time domain and that signal decompositions with a high gain of transform coding, like the wavelet transform, are the most suitable for high data rate information hiding. Keywords?Digital watermarking, information hiding, audio watermarking, watermark data rate.
Keywords: Digital watermarking, information hiding, audio watermarking, watermark data rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628675 Wavelet-Based ECG Signal Analysis and Classification
Authors: Madina Hamiane, May Hashim Ali
Abstract:
This paper presents the processing and analysis of ECG signals. The study is based on wavelet transform and uses exclusively the MATLAB environment. This study includes removing Baseline wander and further de-noising through wavelet transform and metrics such as signal-to noise ratio (SNR), Peak signal-to-noise ratio (PSNR) and the mean squared error (MSE) are used to assess the efficiency of the de-noising techniques. Feature extraction is subsequently performed whereby signal features such as heart rate, rise and fall levels are extracted and the QRS complex was detected which helped in classifying the ECG signal. The classification is the last step in the analysis of the ECG signals and it is shown that these are successfully classified as Normal rhythm or Abnormal rhythm. The final result proved the adequacy of using wavelet transform for the analysis of ECG signals.
Keywords: ECG Signal, QRS detection, thresholding, wavelet decomposition, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273674 Image Rotation Using an Augmented 2-Step Shear Transform
Authors: Hee-Choul Kwon, Heeyong Kwon
Abstract:
Image rotation is one of main pre-processing steps for image processing or image pattern recognition. It is implemented with a rotation matrix multiplication. It requires a lot of floating point arithmetic operations and trigonometric calculations, so it takes a long time to execute. Therefore, there has been a need for a high speed image rotation algorithm without two major time-consuming operations. However, the rotated image has a drawback, i.e. distortions. We solved the problem using an augmented two-step shear transform. We compare the presented algorithm with the conventional rotation with images of various sizes. Experimental results show that the presented algorithm is superior to the conventional rotation one.Keywords: High speed rotation operation, image rotation, transform matrix, image processing, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2653673 A Local Invariant Generalized Hough Transform Method for Integrated Circuit Visual Positioning
Authors: Fei Long Wei, Hua Yang, Hai Tao Zhang, Zhou Ping Yin
Abstract:
In this study, an local invariant generalized Houghtransform (LI-GHT) method is proposed for integrated circuit (IC) visual positioning. The original generalized Hough transform (GHT) is robust to external noise; however, it is not suitable for visual positioning of IC chips due to the four-dimensionality (4D) of parameter space which leads to the substantial storage requirement and high computational complexity. The proposed LI-GHT method can reduce the dimensionality of parameter space to 2D thanks to the rotational invariance of local invariant geometric feature and it can estimate the accuracy position and rotation angle of IC chips in real-time under noise and blur influence. The experiment results show that the proposed LI-GHT can estimate position and rotation angle of IC chips with high accuracy and fast speed. The proposed LI-GHT algorithm was implemented in IC visual positioning system of radio frequency identification (RFID) packaging equipment.
Keywords: Integrated Circuit Visual Positioning, Generalized Hough Transform, Local invariant Generalized Hough Transform, ICpacking equipment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208672 Digital Cinema Watermarking State of Art and Comparison
Authors: H. Kelkoul, Y. Zaz
Abstract:
Nowadays, the vigorous popularity of video processing techniques has resulted in an explosive growth of multimedia data illegal use. So, watermarking security has received much more attention. The purpose of this paper is to explore some watermarking techniques in order to observe their specificities and select the finest methods to apply in digital cinema domain against movie piracy by creating an invisible watermark that includes the date, time and the place where the hacking was done. We have studied three principal watermarking techniques in the frequency domain: Spread spectrum, Wavelet transform domain and finally the digital cinema watermarking transform domain. In this paper, a detailed technique is presented where embedding is performed using direct sequence spread spectrum technique in DWT transform domain. Experiment results shows that the algorithm provides high robustness and good imperceptibility.Keywords: Digital cinema, watermarking, wavelet, spread spectrum, JPEG2000.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1186671 BPNN Based Processing for End Effects of HHT
Authors: Chun-Yao Lee, Yao-chen Lee
Abstract:
This paper describes a method of signal process applied on an end effects of Hilbert-Huang transform (HHT) to provide an improvement in the reality of spectrum. The method is based on back-propagation network (BPN). To improve the effect, the end extension of the original signal is obtained by back-propagation network. A full waveform including origin and its extension is decomposed by using empirical mode decomposition (EMD) to obtain intrinsic mode functions (IMFs) of the waveform. Then, the Hilbert transform (HT) is applied to the IMFs to obtain the Hilbert spectrum of the waveform. As a result, the method is superiority of the processing of end effect of HHT to obtain the real frequency spectrum of signals.Keywords: Neural network, back-propagation network, Hilbert-Huang transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790670 Medical Image Fusion Based On Redundant Wavelet Transform and Morphological Processing
Authors: P. S. Gomathi, B. Kalaavathi
Abstract:
The process in which the complementary information from multiple images is integrated to provide composite image that contains more information than the original input images is called image fusion. Medical image fusion provides useful information from multimodality medical images that provides additional information to the doctor for diagnosis of diseases in a better way. This paper represents the wavelet based medical image fusion algorithm on different multimodality medical images. In order to fuse the medical images, images are decomposed using Redundant Wavelet Transform (RWT). The high frequency coefficients are convolved with morphological operator followed by the maximum-selection (MS) rule. The low frequency coefficients are processed by MS rule. The reconstructed image is obtained by inverse RWT. The quantitative measures which includes Mean, Standard Deviation, Average Gradient, Spatial frequency, Edge based Similarity Measures are considered for evaluating the fused images. The performance of this proposed method is compared with Pixel averaging, PCA, and DWT fusion methods. When compared with conventional methods, the proposed framework provides better performance for analysis of multimodality medical images.
Keywords: Discrete Wavelet Transform (DWT), Image Fusion, Morphological Processing, Redundant Wavelet Transform (RWT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157669 Extended Constraint Mask Based One-Bit Transform for Low-Complexity Fast Motion Estimation
Authors: Oğuzhan Urhan
Abstract:
In this paper, an improved motion estimation (ME) approach based on weighted constrained one-bit transform is proposed for block-based ME employed in video encoders. Binary ME approaches utilize low bit-depth representation of the original image frames with a Boolean exclusive-OR based hardware efficient matching criterion to decrease computational burden of the ME stage. Weighted constrained one-bit transform (WC‑1BT) based approach improves the performance of conventional C-1BT based ME employing 2-bit depth constraint mask instead of a 1-bit depth mask. In this work, the range of constraint mask is further extended to increase ME performance of WC-1BT approach. Experiments reveal that the proposed method provides better ME accuracy compared existing similar ME methods in the literature.
Keywords: Fast motion estimation, low-complexity motion estimation, video coding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 854668 A Copyright Protection Scheme for Color Images using Secret Sharing and Wavelet Transform
Authors: Shang-Lin Hsieh, Lung-Yao Hsu, I-Ju Tsai
Abstract:
This paper proposes a copyright protection scheme for color images using secret sharing and wavelet transform. The scheme contains two phases: the share image generation phase and the watermark retrieval phase. In the generation phase, the proposed scheme first converts the image into the YCbCr color space and creates a special sampling plane from the color space. Next, the scheme extracts the features from the sampling plane using the discrete wavelet transform. Then, the scheme employs the features and the watermark to generate a principal share image. In the retrieval phase, an expanded watermark is first reconstructed using the features of the suspect image and the principal share image. Next, the scheme reduces the additional noise to obtain the recovered watermark, which is then verified against the original watermark to examine the copyright. The experimental results show that the proposed scheme can resist several attacks such as JPEG compression, blurring, sharpening, noise addition, and cropping. The accuracy rates are all higher than 97%.
Keywords: Color image, copyright protection, discrete wavelet transform, secret sharing, watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842667 Synchrotron X-Ray Based Investigation of As and Fe Bonding Environment in Collard Green Tissue Samples at Different Growth Stages
Authors: Sunil Dehipawala, Aregama Sirisumana, P. Schneider, G. Tremberger Jr, D. Lieberman, Todd Holden T. Cheung
Abstract:
The arsenic and iron environments in different growth stages have been studied with EXAFS and XANES using Brookhaven Synchrotron Light Source. Collard Greens plants were grown and tissue samples were harvested. The project studied the EXAFS and XANES of tissue samples using As and Fe K-edges. The Fe absorption and the Fourier transform bond length information were used as a control comparison. The Fourier transform of the XAFS data revealed the coexistence of As (III) and As (V) in the As bonding environment inside the studied plant tissue samples, although the soil only had As (III). The data suggests that Collard Greens has a novel pathway to handle arsenic absorption in soil.Keywords: EXAFS, Fourier Transform, metalloproteins, XANES.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938