Search results for: COVID-19 prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1025

Search results for: COVID-19 prediction

905 Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural

Authors: Baeza S. Roberto

Abstract:

The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes is included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation.

Keywords: Neural network, dry relaxation, knitting, linear regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
904 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine

Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen

Abstract:

Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.

Keywords: Cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849
903 Aerodynamic Coefficients Prediction from Minimum Computation Combinations Using OpenVSP Software

Authors: Marine Segui, Ruxandra Mihaela Botez

Abstract:

OpenVSP is an aerodynamic solver developed by National Aeronautics and Space Administration (NASA) that allows building a reliable model of an aircraft. This software performs an aerodynamic simulation according to the angle of attack of the aircraft makes between the incoming airstream, and its speed. A reliable aerodynamic model of the Cessna Citation X was designed but it required a lot of computation time. As a consequence, a prediction method was established that allowed predicting lift and drag coefficients for all Mach numbers and for all angles of attack, exclusively for stall conditions, from a computation of three angles of attack and only one Mach number. Aerodynamic coefficients given by the prediction method for a Cessna Citation X model were finally compared with aerodynamics coefficients obtained using a complete OpenVSP study.

Keywords: Aerodynamic, coefficient, cruise, improving, longitudinal, OpenVSP, solver, time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
902 Designing Early Warning System: Prediction Accuracy of Currency Crisis by Using k-Nearest Neighbour Method

Authors: Nor Azuana Ramli, Mohd Tahir Ismail, Hooy Chee Wooi

Abstract:

Developing a stable early warning system (EWS) model that is capable to give an accurate prediction is a challenging task. This paper introduces k-nearest neighbour (k-NN) method which never been applied in predicting currency crisis before with the aim of increasing the prediction accuracy. The proposed k-NN performance depends on the choice of a distance that is used where in our analysis; we take the Euclidean distance and the Manhattan as a consideration. For the comparison, we employ three other methods which are logistic regression analysis (logit), back-propagation neural network (NN) and sequential minimal optimization (SMO). The analysis using datasets from 8 countries and 13 macro-economic indicators for each country shows that the proposed k-NN method with k = 4 and Manhattan distance performs better than the other methods.

Keywords: Currency crisis, k-nearest neighbour method, logit, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2297
901 Sequence-based Prediction of Gamma-turn Types using a Physicochemical Property-based Decision Tree Method

Authors: Chyn Liaw, Chun-Wei Tung, Shinn-Jang Ho, Shinn-Ying Ho

Abstract:

The γ-turns play important roles in protein folding and molecular recognition. The prediction and analysis of γ-turn types are important for both protein structure predictions and better understanding the characteristics of different γ-turn types. This study proposed a physicochemical property-based decision tree (PPDT) method to interpretably predict γ-turn types. In addition to the good prediction performance of PPDT, three simple and human interpretable IF-THEN rules are extracted from the decision tree constructed by PPDT. The identified informative physicochemical properties and concise rules provide a simple way for discriminating and understanding γ-turn types.

Keywords: Classification and regression tree (CART), γ-turn, Physicochemical properties, Protein secondary structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
900 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction

Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju

Abstract:

The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.

Keywords: Comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
899 Combining Similarity and Dissimilarity Measurements for the Development of QSAR Models Applied to the Prediction of Antiobesity Activity of Drugs

Authors: Irene Luque Ruiz, Manuel Urbano Cuadrado, Miguel Ángel Gómez-Nieto

Abstract:

In this paper we study different similarity based approaches for the development of QSAR model devoted to the prediction of activity of antiobesity drugs. Classical similarity approaches are compared regarding to dissimilarity models based on the consideration of the calculation of Euclidean distances between the nonisomorphic fragments extracted in the matching process. Combining the classical similarity and dissimilarity approaches into a new similarity measure, the Approximate Similarity was also studied, and better results were obtained. The application of the proposed method to the development of quantitative structure-activity relationships (QSAR) has provided reliable tools for predicting of inhibitory activity of drugs. Acceptable results were obtained for the models presented here.

Keywords: Graph similarity, Nonisomorphic dissimilarity, Approximate similarity, Drugs activity prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
898 Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering

Authors: Hamza Nejib, Okba Taouali

Abstract:

This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one.

Keywords: KLMS, online prediction, KAF, signal processing, RKHS, Kernel methods, KRLS, KLMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052
897 Fatigue Life Prediction on Steel Beam Bridges under Variable Amplitude Loading

Authors: M. F. V. Montezuma, E. P. Deus, M. C. Carvalho

Abstract:

Steel bridges are normally subjected to random loads with different traffic frequencies. They are structures with dynamic behavior and are subject to fatigue failure process, where the nucleation of a crack, growth and failure can occur. After locating and determining the size of an existing fault, it is important to predict the crack propagation and the convenient time for repair. Therefore, fracture mechanics and fatigue concepts are essential to the right approach to the problem. To study the fatigue crack growth, a computational code was developed by using the root mean square (RMS) and the cycle-by-cycle models. One observes the variable amplitude loading influence on the life structural prediction. Different loads histories and initial crack length were considered as input variables. Thus, it was evaluated the dispersion of results of the expected structural life choosing different initial parameters.

Keywords: Fatigue crack propagation, life prediction, variable loadings, steel bridges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 529
896 Stock Market Prediction by Regression Model with Social Moods

Authors: Masahiro Ohmura, Koh Kakusho, Takeshi Okadome

Abstract:

This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model, where document topics are extracted using LDA. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models.

Keywords: Regression model, social mood, stock market prediction, Twitter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2434
895 Software Maintenance Severity Prediction with Soft Computing Approach

Authors: E. Ardil, Erdem Uçar, Parvinder S. Sandhu

Abstract:

As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done on time especially for the critical applications. In this paper, we have explored the different predictor models to NASA-s public domain defect dataset coded in Perl programming language. Different machine learning algorithms belonging to the different learner categories of the WEKA project including Mamdani Based Fuzzy Inference System and Neuro-fuzzy based system have been evaluated for the modeling of maintenance severity or impact of fault severity. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provides relatively better prediction accuracy as compared to other models and hence, can be used for the maintenance severity prediction of the software.

Keywords: Software Metrics, Fuzzy, Neuro-Fuzzy, SoftwareFaults, Accuracy, MAE, RMSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
894 The Effect of Maximum Strain on Fatigue Life Prediction for Natural Rubber Material

Authors: Chang S. Woo, Hyun S. Park, Wan D. Kim

Abstract:

Fatigue life prediction and evaluation are the key technologies to assure the safety and reliability of automotive rubber components. The objective of this study is to develop the fatigue analysis process for vulcanized rubber components, which is applicable to predict fatigue life at initial product design step. Fatigue life prediction methodology of vulcanized natural rubber was proposed by incorporating the finite element analysis and fatigue damage parameter of maximum strain appearing at the critical location determined from fatigue test. In order to develop an appropriate fatigue damage parameter of the rubber material, a series of displacement controlled fatigue test was conducted using threedimensional dumbbell specimen with different levels of mean displacement. It was shown that the maximum strain was a proper damage parameter, taking the mean displacement effects into account. Nonlinear finite element analyses of three-dimensional dumbbell specimens were performed based on a hyper-elastic material model determined from the uni-axial tension, equi-biaxial tension and planar test. Fatigue analysis procedure employed in this study could be used approximately for the fatigue design.

Keywords: Rubber, Material test, Finite element analysis, Strain, Fatigue test, Fatigue life prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4663
893 Virulent-GO: Prediction of Virulent Proteins in Bacterial Pathogens Utilizing Gene Ontology Terms

Authors: Chia-Ta Tsai, Wen-Lin Huang, Shinn-Jang Ho, Li-Sun Shu, Shinn-Ying Ho

Abstract:

Prediction of bacterial virulent protein sequences can give assistance to identification and characterization of novel virulence-associated factors and discover drug/vaccine targets against proteins indispensable to pathogenicity. Gene Ontology (GO) annotation which describes functions of genes and gene products as a controlled vocabulary of terms has been shown effectively for a variety of tasks such as gene expression study, GO annotation prediction, protein subcellular localization, etc. In this study, we propose a sequence-based method Virulent-GO by mining informative GO terms as features for predicting bacterial virulent proteins. Each protein in the datasets used by the existing method VirulentPred is annotated by using BLAST to obtain its homologies with known accession numbers for retrieving GO terms. After investigating various popular classifiers using the same five-fold cross-validation scheme, Virulent-GO using the single kind of GO term features with an accuracy of 82.5% is slightly better than VirulentPred with 81.8% using five kinds of sequence-based features. For the evaluation of independent test, Virulent-GO also yields better results (82.0%) than VirulentPred (80.7%). When evaluating single kind of feature with SVM, the GO term feature performs much well, compared with each of the five kinds of features.

Keywords: Bacterial virulence factors, GO terms, prediction, protein sequence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189
892 Active Intra-ONU Scheduling with Cooperative Prediction Mechanism in EPONs

Authors: Chuan-Ching Sue, Shi-Zhou Chen, Ting-Yu Huang

Abstract:

Dynamic bandwidth allocation in EPONs can be generally separated into inter-ONU scheduling and intra-ONU scheduling. In our previous work, the active intra-ONU scheduling (AS) utilizes multiple queue reports (QRs) in each report message to cooperate with the inter-ONU scheduling and makes the granted bandwidth fully utilized without leaving unused slot remainder (USR). This scheme successfully solves the USR problem originating from the inseparability of Ethernet frame. However, without proper setting of threshold value in AS, the number of QRs constrained by the IEEE 802.3ah standard is not enough, especially in the unbalanced traffic environment. This limitation may be solved by enlarging the threshold value. The large threshold implies the large gap between the adjacent QRs, thus resulting in the large difference between the best granted bandwidth and the real granted bandwidth. In this paper, we integrate AS with a cooperative prediction mechanism and distribute multiple QRs to reduce the penalty brought by the prediction error. Furthermore, to improve the QoS and save the usage of queue reports, the highest priority (EF) traffic which comes during the waiting time is granted automatically by OLT and is not considered in the requested bandwidth of ONU. The simulation results show that the proposed scheme has better performance metrics in terms of bandwidth utilization and average delay for different classes of packets.

Keywords: EPON, Inter-ONU and Intra-ONU scheduling, Prediction, Unused slot remainder

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
891 Performance Evaluation of Neural Network Prediction for Data Prefetching in Embedded Applications

Authors: Sofien Chtourou, Mohamed Chtourou, Omar Hammami

Abstract:

Embedded systems need to respect stringent real time constraints. Various hardware components included in such systems such as cache memories exhibit variability and therefore affect execution time. Indeed, a cache memory access from an embedded microprocessor might result in a cache hit where the data is available or a cache miss and the data need to be fetched with an additional delay from an external memory. It is therefore highly desirable to predict future memory accesses during execution in order to appropriately prefetch data without incurring delays. In this paper, we evaluate the potential of several artificial neural networks for the prediction of instruction memory addresses. Neural network have the potential to tackle the nonlinear behavior observed in memory accesses during program execution and their demonstrated numerous hardware implementation emphasize this choice over traditional forecasting techniques for their inclusion in embedded systems. However, embedded applications execute millions of instructions and therefore millions of addresses to be predicted. This very challenging problem of neural network based prediction of large time series is approached in this paper by evaluating various neural network architectures based on the recurrent neural network paradigm with pre-processing based on the Self Organizing Map (SOM) classification technique.

Keywords: Address, data set, memory, prediction, recurrentneural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
890 Design of an Stable GPC for Nonminimum Phase LTI Systems

Authors: Mahdi Yaghobi, Mohammad Haeri

Abstract:

The current methods of predictive controllers are utilized for those processes in which the rate of output variations is not high. For such processes, therefore, stability can be achieved by implementing the constrained predictive controller or applying infinite prediction horizon. When the rate of the output growth is high (e.g. for unstable nonminimum phase process) the stabilization seems to be problematic. In order to avoid this, it is suggested to change the method in the way that: first, the prediction error growth should be decreased at the early stage of the prediction horizon, and second, the rate of the error variation should be penalized. The growth of the error is decreased through adjusting its weighting coefficients in the cost function. Reduction in the error variation is possible by adding the first order derivate of the error into the cost function. By studying different examples it is shown that using these two remedies together, the closed-loop stability of unstable nonminimum phase process can be achieved.

Keywords: GPC, Stability, Varying Weighting Coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1274
889 Towards the Prediction of Aesthetic Requirements for Women’s Apparel Product

Authors: Yu Zhao, Min Zhang, Yuanqian Wang, Qiuyu Yu

Abstract:

The prediction of aesthetics of apparel is helpful for the development of a new type of apparel. This study is to build the quantitative relationship between the aesthetics and its design parameters. In particular, women’s pants have been preliminarily studied. This aforementioned relationship has been carried out by statistical analysis. The contributions of this study include the development of a more personalized apparel design mechanism and the provision of some empirical knowledge for the development of other products in the aspect of aesthetics.

Keywords: Aesthetics, crease line, cropped straight leg pants, knee width.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 788
888 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.

Keywords: Lèvy flight, situation awareness, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 538
887 An Improved Heat Transfer Prediction Model for Film Condensation inside a Tube with Interphacial Shear Effect

Authors: V. G. Rifert, V. V. Gorin, V. V. Sereda, V. V. Treputnev

Abstract:

The analysis of heat transfer design methods in condensing inside plain tubes under existing influence of shear stress is presented in this paper. The existing discrepancy in more than 30-50% between rating heat transfer coefficients and experimental data has been noted. The analysis of existing theoretical and semi-empirical methods of heat transfer prediction is given. The influence of a precise definition concerning boundaries of phase flow (it is especially important in condensing inside horizontal tubes), shear stress (friction coefficient) and heat flux on design of heat transfer is shown. The substantiation of boundary conditions of the values of parameters, influencing accuracy of rated relationships, is given. More correct relationships for heat transfer prediction, which showed good convergence with experiments made by different authors, are substantiated in this work.

Keywords: Film condensation, heat transfer, plain tube, shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000
886 The Use Support Vector Machine and Back Propagation Neural Network for Prediction of Daily Tidal Levels along the Jeddah Coast, Saudi Arabia

Authors: E. A. Mlybari, M. S. Elbisy, A. H. Alshahri, O. M. Albarakati

Abstract:

Sea level rise threatens to increase the impact of future  storms and hurricanes on coastal communities. Accurate sea level  change prediction and supplement is an important task in determining  constructions and human activities in coastal and oceanic areas. In  this study, support vector machines (SVM) is proposed to predict  daily tidal levels along the Jeddah Coast, Saudi Arabia. The optimal  parameter values of kernel function are determined using a genetic  algorithm. The SVM results are compared with the field data and  with back propagation (BP). Among the models, the SVM is superior  to BPNN and has better generalization performance.

 

Keywords: Tides, Prediction, Support Vector Machines, Genetic Algorithm, Back-Propagation Neural Network, Risk, Hazards.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386
885 Alternative Methods to Rank the Impact of Object Oriented Metrics in Fault Prediction Modeling using Neural Networks

Authors: Kamaldeep Kaur, Arvinder Kaur, Ruchika Malhotra

Abstract:

The aim of this paper is to rank the impact of Object Oriented(OO) metrics in fault prediction modeling using Artificial Neural Networks(ANNs). Past studies on empirical validation of object oriented metrics as fault predictors using ANNs have focused on the predictive quality of neural networks versus standard statistical techniques. In this empirical study we turn our attention to the capability of ANNs in ranking the impact of these explanatory metrics on fault proneness. In ANNs data analysis approach, there is no clear method of ranking the impact of individual metrics. Five ANN based techniques are studied which rank object oriented metrics in predicting fault proneness of classes. These techniques are i) overall connection weights method ii) Garson-s method iii) The partial derivatives methods iv) The Input Perturb method v) the classical stepwise methods. We develop and evaluate different prediction models based on the ranking of the metrics by the individual techniques. The models based on overall connection weights and partial derivatives methods have been found to be most accurate.

Keywords: Artificial Neural Networks (ANNS), Backpropagation, Fault Prediction Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
884 The Effect of Clamping Restrain on the Prediction of Drape Simulation Software Tool

Authors: T.A. Adegbola, IEA Aghachi, E.R. Sadiku

Abstract:

To investigates the effect of fiberglass clamping process improvement on drape simulation prediction. This has great effect on the mould and the fiber during manufacturing process. This also, improves the fiber strain, the quality of the fiber orientation in the area of folding and wrinkles formation during the press-forming process. Drape simulation software tool was used to digitalize the process, noting the formation problems on the contour sensitive part. This was compared with the real life clamping processes using single and double frame set-ups to observe the effects. Also, restrains are introduced by using clips, and the G-clamps with predetermine revolution to; restrain the fabric deformation during the forming process.The incorporation of clamping and fabric restrain deformation improved on the prediction of the simulation tool. Therefore, for effective forming process, incorporation of clamping process into the drape simulation process will assist in the development of fiberglass application in manufacturing process.

Keywords: clamping, fiberglass, drape simulation, pressforming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
883 Artificial Neural Network Prediction for Coke Strength after Reaction and Data Analysis

Authors: Sulata Maharana, B Biswas, Adity Ganguly, Ashok Kumar

Abstract:

In this paper, the requirement for Coke quality prediction, its role in Blast furnaces, and the model output is explained. By applying method of Artificial Neural Networking (ANN) using back propagation (BP) algorithm, prediction model has been developed to predict CSR. Important blast furnace functions such as permeability, heat exchanging, melting, and reducing capacity are mostly connected to coke quality. Coke quality is further dependent upon coal characterization and coke making process parameters. The ANN model developed is a useful tool for process experts to adjust the control parameters in case of coke quality deviations. The model also makes it possible to predict CSR for new coal blends which are yet to be used in Coke Plant. Input data to the model was structured into 3 modules, for tenure of past 2 years and the incremental models thus developed assists in identifying the group causing the deviation of CSR.

Keywords: Artificial Neural Networks, backpropagation, CokeStrength after Reaction, Multilayer Perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2614
882 The Predictability and Abstractness of Language: A Study in Understanding and Usage of the English Language through Probabilistic Modeling and Frequency

Authors: Revanth Sai Kosaraju, Michael Ramscar, Melody Dye

Abstract:

Accounts of language acquisition differ significantly in their treatment of the role of prediction in language learning. In particular, nativist accounts posit that probabilistic learning about words and word sequences has little to do with how children come to use language. The accuracy of this claim was examined by testing whether distributional probabilities and frequency contributed to how well 3-4 year olds repeat simple word chunks. Corresponding chunks were the same length, expressed similar content, and were all grammatically acceptable, yet the results of the study showed marked differences in performance when overall distributional frequency varied. It was found that a distributional model of language predicted the empirical findings better than a number of other models, replicating earlier findings and showing that children attend to distributional probabilities in an adult corpus. This suggested that language is more prediction-and-error based, rather than on abstract rules which nativist camps suggest.

Keywords: Abstractness, child psychology, language acquisition, prediction and error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
881 Classification of Initial Stripe Height Patterns using Radial Basis Function Neural Network for Proportional Gain Prediction

Authors: Prasit Wonglersak, Prakarnkiat Youngkong, Ittipon Cheowanish

Abstract:

This paper aims to improve a fine lapping process of hard disk drive (HDD) lapping machines by removing materials from each slider together with controlling the strip height (SH) variation to minimum value. The standard deviation is the key parameter to evaluate the strip height variation, hence it is minimized. In this paper, a design of experiment (DOE) with factorial analysis by twoway analysis of variance (ANOVA) is adopted to obtain a statistically information. The statistics results reveal that initial stripe height patterns affect the final SH variation. Therefore, initial SH classification using a radial basis function neural network is implemented to achieve the proportional gain prediction.

Keywords: Stripe height variation, Two-way analysis ofvariance (ANOVA), Radial basis function neural network, Proportional gain prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
880 Phase Equilibrium of Volatile Organic Compounds in Polymeric Solvents Using Group Contribution Methods

Authors: E. Muzenda

Abstract:

Group contribution methods such as the UNIFAC are of major interest to researchers and engineers involved synthesis, feasibility studies, design and optimization of separation processes as well as other applications of industrial use. Reliable knowledge of the phase equilibrium behavior is crucial for the prediction of the fate of the chemical in the environment and other applications. The objective of this study was to predict the solubility of selected volatile organic compounds (VOCs) in glycol polymers and biodiesel. Measurements can be expensive and time consuming, hence the need for thermodynamic models. The results obtained in this study for the infinite dilution activity coefficients compare very well those published in literature obtained through measurements. It is suggested that in preliminary design or feasibility studies of absorption systems for the abatement of volatile organic compounds, prediction procedures should be implemented while accurate fluid phase equilibrium data should be obtained from experiment.

Keywords: Volatile organic compounds, Prediction, Phaseequilibrium, Environmental, Infinite dilution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
879 Methods for Better Assessment of Fatigue and Deterioration in Bridges and Other Steel or Concrete Constructions

Authors: J. Menčík, B. Culek, Jr., L. Beran, J. Mareš

Abstract:

Large metal and concrete structures suffer by various kinds of deterioration, and accurate prediction of the remaining life is important. This paper informs about two methods for its assessment. One method, suitable for steel bridges and other constructions exposed to fatigue, monitors the loads and damage accumulation using information systems for the operation and the finite element model of the construction. In addition to the operation load, the dead weight of the construction and thermal stresses can be included into the model. The second method is suitable for concrete bridges and other structures, which suffer by carbonatation and other degradation processes, driven by diffusion. The diffusion constant, important for the prediction of future development, can be determined from the depth-profile of pH, obtained by pH measurement at various depths. Comparison with measurements on real objects illustrates the suitability of both methods.

Keywords: Bridges, carbonatation, concrete, diagnostics, fatigue, life prediction, monitoring, railway, simulation, structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
878 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High-Speed Streams

Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous

Abstract:

Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of the solar wind using mathematical models, MHD models and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulated the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar Cycles (SC) 21, 22, 23, and most of 24.

Keywords: Artificial Neural Network, ANN, Coronal Hole Area Feed-Forward neural network models, solar High-Speed Streams, HSSs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136
877 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular disease resulting from hypertension poses a significant threat to human health, and early detection of hypertension can potentially save numerous lives. Traditional methods for detecting hypertension require specialized equipment and are often incapable of capturing continuous blood pressure fluctuations. To address this issue, this study starts by analyzing the principle of heart rate variability (HRV) and introduces the utilization of sliding window and power spectral density (PSD) techniques to analyze both temporal and frequency domain features of HRV. Subsequently, a hypertension prediction network that relies on HRV is proposed, combining Resnet, attention mechanisms, and a multi-layer perceptron. The network leverages a modified ResNet18 to extract frequency domain features, while employing an attention mechanism to integrate temporal domain features, thus enabling auxiliary hypertension prediction through the multi-layer perceptron. The proposed network is trained and tested using the publicly available SHAREE dataset from PhysioNet. The results demonstrate that the network achieves a high prediction accuracy of 92.06% for hypertension, surpassing traditional models such as K Near Neighbor (KNN), Bayes, Logistic regression, and traditional Convolutional Neural Network (CNN).

Keywords: Feature extraction, heart rate variability, hypertension, residual networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195
876 CFD Analysis of Two Phase Flow in a Horizontal Pipe – Prediction of Pressure Drop

Authors: P. Bhramara, V. D. Rao, K. V. Sharma , T. K. K. Reddy

Abstract:

In designing of condensers, the prediction of pressure drop is as important as the prediction of heat transfer coefficient. Modeling of two phase flow, particularly liquid – vapor flow under diabatic conditions inside a horizontal tube using CFD analysis is difficult with the available two phase models in FLUENT due to continuously changing flow patterns. In the present analysis, CFD analysis of two phase flow of refrigerants inside a horizontal tube of inner diameter, 0.0085 m and 1.2 m length is carried out using homogeneous model under adiabatic conditions. The refrigerants considered are R22, R134a and R407C. The analysis is performed at different saturation temperatures and at different flow rates to evaluate the local frictional pressure drop. Using Homogeneous model, average properties are obtained for each of the refrigerants that is considered as single phase pseudo fluid. The so obtained pressure drop data is compared with the separated flow models available in literature.

Keywords: Adiabatic conditions, CFD analysis, Homogeneousmodel and Liquid – Vapor flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3697