Search results for: time complexity.
5618 Requirements and Design of RFID based EManufacturing System
Authors: Gamal Darwish, Ahmed ElShafee, Dina Darwish
Abstract:
This paper proposes the requirements and design of RFID based system for SFC (Shop Floor Control) in order to achieve the factory real time controllability, Allowing to develop EManufacturing System. The detailed logical specifications of the core functions and the design diagrams of RFID based system are developed. Then RFID deployment in E-Manufacturing systems is investigated..Keywords: RFID, E-Manufacturing System, Requirementsspecifications, Design Diagrams, real time controllability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15815617 The Influence of Beta Shape Parameters in Project Planning
Authors: Αlexios Kotsakis, Stefanos Katsavounis, Dimitra Alexiou
Abstract:
Networks can be utilized to represent project planning problems, using nodes for activities and arcs to indicate precedence relationship between them. For fixed activity duration, a simple algorithm calculates the amount of time required to complete a project, followed by the activities that comprise the critical path. Program Evaluation and Review Technique (PERT) generalizes the above model by incorporating uncertainty, allowing activity durations to be random variables, producing nevertheless a relatively crude solution in planning problems. In this paper, based on the findings of the relevant literature, which strongly suggests that a Beta distribution can be employed to model earthmoving activities, we utilize Monte Carlo simulation, to estimate the project completion time distribution and measure the influence of skewness, an element inherent in activities of modern technical projects. We also extract the activity criticality index, with an ultimate goal to produce more accurate planning estimations.
Keywords: Beta distribution, PERT, Monte Carlo Simulation, skewness, project completion time distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7705616 Fingerprint Compression Using Contourlet Transform and Multistage Vector Quantization
Authors: S. Esakkirajan, T. Veerakumar, V. Senthil Murugan, R. Sudhakar
Abstract:
This paper presents a new fingerprint coding technique based on contourlet transform and multistage vector quantization. Wavelets have shown their ability in representing natural images that contain smooth areas separated with edges. However, wavelets cannot efficiently take advantage of the fact that the edges usually found in fingerprints are smooth curves. This issue is addressed by directional transforms, known as contourlets, which have the property of preserving edges. The contourlet transform is a new extension to the wavelet transform in two dimensions using nonseparable and directional filter banks. The computation and storage requirements are the major difficulty in implementing a vector quantizer. In the full-search algorithm, the computation and storage complexity is an exponential function of the number of bits used in quantizing each frame of spectral information. The storage requirement in multistage vector quantization is less when compared to full search vector quantization. The coefficients of contourlet transform are quantized by multistage vector quantization. The quantized coefficients are encoded by Huffman coding. The results obtained are tabulated and compared with the existing wavelet based ones.Keywords: Contourlet Transform, Directional Filter bank, Laplacian Pyramid, Multistage Vector Quantization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20135615 A Cuckoo Search with Differential Evolution for Clustering Microarray Gene Expression Data
Authors: M. Pandi, K. Premalatha
Abstract:
A DNA microarray technology is a collection of microscopic DNA spots attached to a solid surface. Scientists use DNA microarrays to measure the expression levels of large numbers of genes simultaneously or to genotype multiple regions of a genome. Elucidating the patterns hidden in gene expression data offers a tremendous opportunity for an enhanced understanding of functional genomics. However, the large number of genes and the complexity of biological networks greatly increase the challenges of comprehending and interpreting the resulting mass of data, which often consists of millions of measurements. It is handled by clustering which reveals the natural structures and identifying the interesting patterns in the underlying data. In this paper, gene based clustering in gene expression data is proposed using Cuckoo Search with Differential Evolution (CS-DE). The experiment results are analyzed with gene expression benchmark datasets. The results show that CS-DE outperforms CS in benchmark datasets. To find the validation of the clustering results, this work is tested with one internal and one external cluster validation indexes.
Keywords: DNA, Microarray, genomics, Cuckoo Search, Differential Evolution, Gene expression data, Clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14835614 New PTH Moment Stable Criteria of Stochastic Neural Networks
Authors: Zixin Liu, Huawei Yang, Fangwei Chen
Abstract:
In this paper, the issue of pth moment stability of a class of stochastic neural networks with mixed delays is investigated. By establishing two integro-differential inequalities, some new sufficient conditions ensuring pth moment exponential stability are obtained. Compared with some previous publications, our results generalize some earlier works reported in the literature, and remove some strict constraints of time delays and kernel functions. Two numerical examples are presented to illustrate the validity of the main results.
Keywords: Neural networks, stochastic, PTH moment stable, time varying delays, distributed delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14705613 Multiple Model and Neural based Adaptive Multi-loop PID Controller for a CSTR Process
Authors: R.Vinodha S. Abraham Lincoln, J. Prakash
Abstract:
Multi-loop (De-centralized) Proportional-Integral- Derivative (PID) controllers have been used extensively in process industries due to their simple structure for control of multivariable processes. The objective of this work is to design multiple-model adaptive multi-loop PID strategy (Multiple Model Adaptive-PID) and neural network based multi-loop PID strategy (Neural Net Adaptive-PID) for the control of multivariable system. The first method combines the output of multiple linear PID controllers, each describing process dynamics at a specific level of operation. The global output is an interpolation of the individual multi-loop PID controller outputs weighted based on the current value of the measured process variable. In the second method, neural network is used to calculate the PID controller parameters based on the scheduling variable that corresponds to major shift in the process dynamics. The proposed control schemes are simple in structure with less computational complexity. The effectiveness of the proposed control schemes have been demonstrated on the CSTR process, which exhibits dynamic non-linearity.Keywords: Multiple-model Adaptive PID controller, Multivariableprocess, CSTR process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20125612 Unsteady Laminar Boundary Layer Forced Flow in the Region of the Stagnation Point on a Stretching Flat Sheet
Authors: A. T. Eswara
Abstract:
This paper analyses the unsteady, two-dimensional stagnation point flow of an incompressible viscous fluid over a flat sheet when the flow is started impulsively from rest and at the same time, the sheet is suddenly stretched in its own plane with a velocity proportional to the distance from the stagnation point. The partial differential equations governing the laminar boundary layer forced convection flow are non-dimensionalised using semi-similar transformations and then solved numerically using an implicit finitedifference scheme known as the Keller-box method. Results pertaining to the flow and heat transfer characteristics are computed for all dimensionless time, uniformly valid in the whole spatial region without any numerical difficulties. Analytical solutions are also obtained for both small and large times, respectively representing the initial unsteady and final steady state flow and heat transfer. Numerical results indicate that the velocity ratio parameter is found to have a significant effect on skin friction and heat transfer rate at the surface. Furthermore, it is exposed that there is a smooth transition from the initial unsteady state flow (small time solution) to the final steady state (large time solution).Keywords: Forced flow, Keller-box method, Stagnation point, Stretching flat sheet, Unsteady laminar boundary layer, Velocity ratio parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16955611 Bayesian Networks for Earthquake Magnitude Classification in a Early Warning System
Authors: G. Zazzaro, F.M. Pisano, G. Romano
Abstract:
During last decades, worldwide researchers dedicated efforts to develop machine-based seismic Early Warning systems, aiming at reducing the huge human losses and economic damages. The elaboration time of seismic waveforms is to be reduced in order to increase the time interval available for the activation of safety measures. This paper suggests a Data Mining model able to correctly and quickly estimate dangerousness of the running seismic event. Several thousand seismic recordings of Japanese and Italian earthquakes were analyzed and a model was obtained by means of a Bayesian Network (BN), which was tested just over the first recordings of seismic events in order to reduce the decision time and the test results were very satisfactory. The model was integrated within an Early Warning System prototype able to collect and elaborate data from a seismic sensor network, estimate the dangerousness of the running earthquake and take the decision of activating the warning promptly.Keywords: Bayesian Networks, Decision Support System, Magnitude Classification, Seismic Early Warning System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35985610 Dynamic Analysis of Nonlinear Models with Infinite Extension by Boundary Elements
Authors: Delfim Soares Jr., Webe J. Mansur
Abstract:
The Time-Domain Boundary Element Method (TDBEM) is a well known numerical technique that handles quite properly dynamic analyses considering infinite dimension media. However, when these analyses are also related to nonlinear behavior, very complex numerical procedures arise considering the TD-BEM, which may turn its application prohibitive. In order to avoid this drawback and model nonlinear infinite media, the present work couples two BEM formulations, aiming to achieve the best of two worlds. In this context, the regions expected to behave nonlinearly are discretized by the Domain Boundary Element Method (D-BEM), which has a simpler mathematical formulation but is unable to deal with infinite domain analyses; the TD-BEM is employed as in the sense of an effective non-reflexive boundary. An iterative procedure is considered for the coupling of the TD-BEM and D-BEM, which is based on a relaxed renew of the variables at the common interfaces. Elastoplastic models are focused and different time-steps are allowed to be considered by each BEM formulation in the coupled analysis.Keywords: Boundary Element Method, Dynamic Elastoplastic Analysis, Iterative Coupling, Multiple Time-Steps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15385609 An Asymptotic Solution for the Free Boundary Parabolic Equations
Authors: Hsuan-Ku Liu, Ming Long Liu
Abstract:
In this paper, we investigate the solution of a two dimensional parabolic free boundary problem. The free boundary of this problem is modelled as a nonlinear integral equation (IE). For this integral equation, we propose an asymptotic solution as time is near to maturity and develop an integral iterative method. The computational results reveal that our asymptotic solution is very close to the numerical solution as time is near to maturity.
Keywords: Integral equation, asymptotic solution, free boundary problem, American exchange option.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14735608 Financing Decision and Productivity Growth for the Venture Capital Industry Using High-Order Fuzzy Time Series
Authors: Shang-En Yu
Abstract:
Human society, there are many uncertainties, such as economic growth rate forecast of the financial crisis, many scholars have, since the the Song Chissom two scholars in 1993 the concept of the so-called fuzzy time series (Fuzzy Time Series)different mode to deal with these problems, a previous study, however, usually does not consider the relevant variables selected and fuzzy process based solely on subjective opinions the fuzzy semantic discrete, so can not objectively reflect the characteristics of the data set, in addition to carrying outforecasts are often fuzzy rules as equally important, failed to consider the importance of each fuzzy rule. For these reasons, the variable selection (Factor Selection) through self-organizing map (Self-Organizing Map, SOM) and proposed high-end weighted multivariate fuzzy time series model based on fuzzy neural network (Fuzzy-BPN), and using the the sequential weighted average operator (Ordered Weighted Averaging operator, OWA) weighted prediction. Therefore, in order to verify the proposed method, the Taiwan stock exchange (Taiwan Stock Exchange Corporation) Taiwan Weighted Stock Index (Taiwan Stock Exchange Capitalization Weighted Stock Index, TAIEX) as experimental forecast target, in order to filter the appropriate variables in the experiment Finally, included in other studies in recent years mode in conjunction with this study, the results showed that the predictive ability of this study further improve.
Keywords: Heterogeneity, residential mortgage loans, foreclosure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13885607 Preliminary Chaos Analyses of Explosion Earthquakes Followed by Harmonic Tremors at Semeru Volcano, East Java, Indonesia
Authors: Sukir Maryanto, Didik R. Santosa, Iyan Mulyana, Muhammad Hendrasto
Abstract:
Successive event of explosion earthquake and harmonic tremor recorded at Semeru volcano were analyzed to investigate the dynamical system regarding to their eruptive mechanism. The eruptive activity at Semeru volcano East Java, Indonesia is intermittent emission of ash and bombs with Strombolian style which occurred at interval of 15 to 45 minutes. The explosive eruptions accompanied by explosion earthquakes and followed by volcanic tremor which generated by continuous emission of volcanic ash. The spectral and Lyapunov exponent of successive event of explosion and harmonic tremor were analyzed. Peak frequencies of explosion earthquakes range 1.2 to 1.9 Hz and those of the harmonic tremor have peak frequency range 1.5 — 2.2 Hz. The phase space is reconstructed and evaluated based on the Lyapunov exponents. Harmonic tremors have smaller Lyapunov exponent than explosion earthquakes. It can be considerably as correlated complexity of the mechanism from the variance of spectral and fractal dimension and can be concluded that the successive event of harmonic tremor and explosions are chaotic.
Keywords: Semeru volcano, explosion earthquakes, harmonic tremor, lyapunov exponent, chaotic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15785606 Orchestra/Percussion Classification Algorithm for United Speech Audio Coding System
Authors: Yueming Wang, Rendong Ying, Sumxin Jiang, Peilin Liu
Abstract:
Unified Speech Audio Coding (USAC), the latest MPEG standardization for unified speech and audio coding, uses a speech/audio classification algorithm to distinguish speech and audio segments of the input signal. The quality of the recovered audio can be increased by well-designed orchestra/percussion classification and subsequent processing. However, owing to the shortcoming of the system, introducing an orchestra/percussion classification and modifying subsequent processing can enormously increase the quality of the recovered audio. This paper proposes an orchestra/percussion classification algorithm for the USAC system which only extracts 3 scales of Mel-Frequency Cepstral Coefficients (MFCCs) rather than traditional 13 scales of MFCCs and use Iterative Dichotomiser 3 (ID3) Decision Tree rather than other complex learning method, thus the proposed algorithm has lower computing complexity than most existing algorithms. Considering that frequent changing of attributes may lead to quality loss of the recovered audio signal, this paper also design a modified subsequent process to help the whole classification system reach an accurate rate as high as 97% which is comparable to classical 99%.
Keywords: ID3 Decision Tree, MFCC, Orchestra/Percussion Classification, USAC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16735605 Hydrolysis of Hull-Less Pumpkin Oil Cake Protein Isolate by Pepsin
Authors: Ivan Živanović, Žužana Vaštag, Senka Popović, Ljiljana Popović, Draginja Peričin
Abstract:
The present work represents an investigation of the hydrolysis of hull-less pumpkin (Cucurbita Pepo L.) oil cake protein isolate (PuOC PI) by pepsin. To examine the effectiveness and suitability of pepsin towards PuOC PI the kinetic parameters for pepsin on PuOC PI were determined and then, the hydrolysis process was studied using Response Surface Methodology (RSM). The hydrolysis was carried out at temperature of 30°C and pH 3.00. Time and initial enzyme/substrate ratio (E/S) at three levels were selected as the independent parameters. The degree of hydrolysis, DH, was mesuared after 20, 30 and 40 minutes, at initial E/S of 0.7, 1 and 1.3 mA/mg proteins. Since the proposed second-order polynomial model showed good fit with the experimental data (R2 = 0.9822), the obtained mathematical model could be used for monitoring the hydrolysis of PuOC PI by pepsin, under studied experimental conditions, varying the time and initial E/S. To achieve the highest value of DH (39.13 %), the obtained optimum conditions for time and initial E/S were 30 min and 1.024 mA/mg proteins.Keywords: Enzymatic hydrolysis, Pepsin, Pumpkin (CucurbitaPepo L.) oil cake protein isolate, Response surface methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21775604 Negative Selection as a Means of Discovering Unknown Temporal Patterns
Authors: Wanli Ma, Dat Tran, Dharmendra Sharma
Abstract:
The temporal nature of negative selection is an under exploited area. In a negative selection system, newly generated antibodies go through a maturing phase, and the survivors of the phase then wait to be activated by the incoming antigens after certain number of matches. These without having enough matches will age and die, while these with enough matches (i.e., being activated) will become active detectors. A currently active detector may also age and die if it cannot find any match in a pre-defined (lengthy) period of time. Therefore, what matters in a negative selection system is the dynamics of the involved parties in the current time window, not the whole time duration, which may be up to eternity. This property has the potential to define the uniqueness of negative selection in comparison with the other approaches. On the other hand, a negative selection system is only trained with “normal" data samples. It has to learn and discover unknown “abnormal" data patterns on the fly by itself. Consequently, it is more appreciate to utilize negation selection as a system for pattern discovery and recognition rather than just pattern recognition. In this paper, we study the potential of using negative selection in discovering unknown temporal patterns.
Keywords: Artificial Immune Systems, ComputationalIntelligence, Negative Selection, Pattern Discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16655603 Integrating Big Island Layout with Pull System for Production Optimization
Authors: M. H. M. Rusli, A. Jaffar, M. T. Ali, S. Muhamud @ Kayat
Abstract:
Lean manufacturing is a production philosophy made popular by Toyota Motor Corporation (TMC). It is globally known as the Toyota Production System (TPS) and has the ultimate aim of reducing cost by thoroughly eliminating wastes or muda. TPS embraces the Just-in-time (JIT) manufacturing; achieving cost reduction through lead time reduction. JIT manufacturing can be achieved by implementing Pull system in the production. Furthermore, TPS aims to improve productivity and creating continuous flow in the production by arranging the machines and processes in cellular configurations. This is called as Cellular Manufacturing Systems (CMS). This paper studies on integrating the CMS with the Pull system to establish a Big Island-Pull system production for High Mix Low Volume (HMLV) products in an automotive component industry. The paper will use the build-in JIT system steps adapted from TMC to create the Pull system production and also create a shojinka line which, according to takt time, has the flexibility to adapt to demand changes simply by adding and taking out manpower. This will lead to optimization in production.Keywords: Big Island layout, Lean manufacturing, Material and Information Flow Chart, Pull system production, TPS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25875602 Amplitude and Phase Analysis of EEG Signal by Complex Demodulation
Authors: Sun K. Yoo, Hee Cheol Kang
Abstract:
Analysis of amplitude and phase characteristics for delta, theta, and alpha bands at localized time instant from EEG signals is important for the characterizing information processing in the brain. In this paper, complex demodulation method was used to analyze EEG (Electroencephalographic) signal, particularly for auditory evoked potential response signal, with sufficient time resolution and designated frequency bandwidth resolution required. The complex demodulation decomposes raw EEG signal into 3 designated delta, theta, and alpha bands with complex EEG signal representation at sampled time instant, which can enable the extraction of amplitude envelope and phase information. Throughout simulated test data, and real EEG signal acquired during auditory attention task, it can extract the phase offset, phase and frequency changing instant and decomposed amplitude envelope for delta, theta, and alpha bands. The complex demodulation technique can be efficiently used in brain signal analysis in case of phase, and amplitude information required.
Keywords: EEG, Complex Demodulation, Amplitude, Phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47565601 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: Convolutional neural network, discrete wavelet transform, deep learning, heart sound classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11475600 Porul: Option Generation and Selection and Scoring Algorithms for a Tamil Flash Card Game
Authors: Anitha Narasimhan, Aarthy Anandan, Madhan Karky, C. N. Subalalitha
Abstract:
Games can be the excellent tools for teaching a language. There are few e-learning games in Indian languages like word scrabble, cross word, quiz games etc., which were developed mainly for educational purposes. This paper proposes a Tamil word game called, “Porul”, which focuses on education as well as on players’ thinking and decision-making skills. Porul is a multiple choice based quiz game, in which the players attempt to answer questions correctly from the given multiple options that are generated using a unique algorithm called the Option Selection algorithm which explores the semantics of the question in various dimensions namely, synonym, rhyme and Universal Networking Language semantic category. This kind of semantic exploration of the question not only increases the complexity of the game but also makes it more interesting. The paper also proposes a Scoring Algorithm which allots a score based on the popularity score of the question word. The proposed game has been tested using 20,000 Tamil words.Keywords: Porul game, Tamil word game, option selection, flash card, scoring, algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11625599 Nonlinear Dynamical Characterization of Heart Rate Variability Time Series of Meditation
Authors: B. S. Raghavendra, D. Narayana Dutt
Abstract:
Many recent electrophysiological studies have revealed the importance of investigating meditation state in order to achieve an increased understanding of autonomous control of cardiovascular functions. In this paper, we characterize heart rate variability (HRV) time series acquired during meditation using nonlinear dynamical parameters. We have computed minimum embedding dimension (MED), correlation dimension (CD), largest Lyapunov exponent (LLE), and nonlinearity scores (NLS) from HRV time series of eight Chi and four Kundalini meditation practitioners. The pre-meditation state has been used as a baseline (control) state to compare the estimated parameters. The chaotic nature of HRV during both pre-meditation and meditation is confirmed by MED. The meditation state showed a significant decrease in the value of CD and increase in the value of LLE of HRV, in comparison with premeditation state, indicating a less complex and less predictable nature of HRV. In addition, it was shown that the HRV of meditation state is having highest NLS than pre-meditation state. The study indicated highly nonlinear dynamic nature of cardiac states as revealed by HRV during meditation state, rather considering it as a quiescent state.Keywords: Correlation dimension, Embedding dimension, Heartrate variability, Largest Lyapunov exponent, Meditation, Nonlinearity score.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19065598 Spatial-Temporal Clustering Characteristics of Dengue in the Northern Region of Sri Lanka, 2010-2013
Authors: Sumiko Anno, Keiji Imaoka, Takeo Tadono, Tamotsu Igarashi, Subramaniam Sivaganesh, Selvam Kannathasan, Vaithehi Kumaran, Sinnathamby Noble Surendran
Abstract:
Dengue outbreaks are affected by biological, ecological, socio-economic and demographic factors that vary over time and space. These factors have been examined separately and still require systematic clarification. The present study aimed to investigate the spatial-temporal clustering relationships between these factors and dengue outbreaks in the northern region of Sri Lanka. Remote sensing (RS) data gathered from a plurality of satellites were used to develop an index comprising rainfall, humidity and temperature data. RS data gathered by ALOS/AVNIR-2 were used to detect urbanization, and a digital land cover map was used to extract land cover information. Other data on relevant factors and dengue outbreaks were collected through institutions and extant databases. The analyzed RS data and databases were integrated into geographic information systems, enabling temporal analysis, spatial statistical analysis and space-time clustering analysis. Our present results showed that increases in the number of the combination of ecological factor and socio-economic and demographic factors with above the average or the presence contribute to significantly high rates of space-time dengue clusters.
Keywords: ALOS/AVNIR-2, Dengue, Space-time clustering analysis, Sri Lanka.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22845597 Using the PARIS Method for Multiple Criteria Decision Making in Unmanned Combat Aircraft Evaluation and Selection
Authors: C. Ardil
Abstract:
Unmanned combat aircraft (UCA) are expanding significantly in several defense industries, along with artificial intelligence improvements in highly precise technology. UCA is crucial in military settings for targeting enemy elements, and objects. UCA is also utilized for highly precise reconnaissance and surveillance tasks. To select the best alternative for critical missions, a methodical and effective strategy for UCA selection is required. Multiple criteria decision-making (MCDM) methodologies are ideally equipped to handle the complexity of alternative aircraft selection. To analyze UCA alternatives for the selection process, an integrated methodology built on the objective criteria weights and preference analysis for reference ideal solution (PARIS). First, the weights of essential elements are determined using the average weight (AW), standard deviation (SW) and entropy weight (EW) approach. The weights of the evaluation criteria affect the decision-making process. The aircraft choices in the decision problem are then ranked using objective criteria weights along with the PARIS technique. The validation and sensitivity analysis of the proposed MCDM approach are discussed.
Keywords: unmanned combat aircraft (UCA), multiple criteria decision making, MCDM, PARIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4745596 Interactive Chinese Character Learning System though Pictograph Evolution
Authors: J.H. Low, C.O. Wong, E.J. Han, K.R Kim K.C. Jung, H.K. Yang
Abstract:
This paper proposes an Interactive Chinese Character Learning System (ICCLS) based on pictorial evolution as an edutainment concept in computer-based learning of language. The advantage of the language origination itself is taken as a learning platform due to the complexity in Chinese language as compared to other types of languages. Users especially children enjoy more by utilize this learning system because they are able to memories the Chinese Character easily and understand more of the origin of the Chinese character under pleasurable learning environment, compares to traditional approach which children need to rote learning Chinese Character under un-pleasurable environment. Skeletonization is used as the representation of Chinese character and object with an animated pictograph evolution to facilitate the learning of the language. Shortest skeleton path matching technique is employed for fast and accurate matching in our implementation. User is required to either write a word or draw a simple 2D object in the input panel and the matched word and object will be displayed as well as the pictograph evolution to instill learning. The target of computer-based learning system is for pre-school children between 4 to 6 years old to learn Chinese characters in a flexible and entertaining manner besides utilizing visual and mind mapping strategy as learning methodology.Keywords: Computer-based learning, Chinese character, pictograph evolution, skeletonization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19085595 Direction of Arrival Estimation Based on a Single Port Smart Antenna Using MUSIC Algorithm with Periodic Signals
Authors: Chen Sun, Nemai Chandra Karmakar
Abstract:
A novel direction-of-arrival (DOA) estimation technique, which uses a conventional multiple signal classification (MUSIC) algorithm with periodic signals, is applied to a single RF-port parasitic array antenna for direction finding. Simulation results show that the proposed method gives high resolution (1 degree) DOA estimation in an uncorrelated signal environment. The novelty lies in that the MUSIC algorithm is applied to a simplified antenna configuration. Only one RF port and one analogue-to-digital converter (ADC) are used in this antenna, which features low DC power consumption, low cost, and ease of fabrication. Modifications to the conventional MUSIC algorithm do not bring much additional complexity. The proposed technique is also free from the negative influence by the mutual coupling between elements. Therefore, the technique has great potential to be implemented into the existing wireless mobile communications systems, especially at the power consumption limited mobile terminals, to provide additional position location (PL) services.
Keywords: Direction-of-arrival (DOA) estimation, electronically steerable parasitic array radiator (ESPAR), multiple single classifications (MUSIC), position location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29945594 Parallelization and Optimization of SIFT Feature Extraction on Cluster System
Authors: Mingling Zheng, Zhenlong Song, Ke Xu, Hengzhu Liu
Abstract:
Scale Invariant Feature Transform (SIFT) has been widely applied, but extracting SIFT feature is complicated and time-consuming. In this paper, to meet the demand of the real-time applications, SIFT is parallelized and optimized on cluster system, which is named pSIFT. Redundancy storage and communication are used for boundary data to improve the performance, and before representation of feature descriptor, data reallocation is adopted to keep load balance in pSIFT. Experimental results show that pSIFT achieves good speedup and scalability.Keywords: cluster, image matching, parallelization and optimization, SIFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18635593 Factors Influencing the Continuance Usage of Online Mobile Payment Apps: A Case Study of WECHAT Users in China
Authors: Isaac Kofi Mensah, Jianing Mi, Feng Cheng
Abstract:
This research paper seeks to investigate the factors determining the continuance usage of online mobile payment applications among WECHAT users in China. Technology Acceptance Model (TAM) and the Diffusion of Innovation (DOI) theory would both be applied as the theoretical foundation for this study. A developed instrument would be administered to the targeted sample of 1000 WECHAT Users in the City of Harbin, China, through an online questionnaire administration platform. Factors such as perceived usefulness, perceived ease of use, perceived service quality, social influence, trust in the internet, internet self-efficacy, relative advantage, compatibility, and complexity would be explored to determine its significant impact on the continuance intention to use mobile payment apps. This study is at the development and implementation stage. The successful completion of this research article would not only provide an insightful understanding of the factors influencing the decision of WECHAT users in China to use mobile payment applications but also enrich the e-commerce adoption literature.
Keywords: Diffusion of innovation (DOI), e-commerce, mobile payment, technology acceptance model (TAM), WECHAT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16205592 View-Point Insensitive Human Pose Recognition using Neural Network and CUDA
Authors: Sanghyeok Oh, Keechul Jung
Abstract:
Although lots of research work has been done for human pose recognition, the view-point of cameras is still critical problem of overall recognition system. In this paper, view-point insensitive human pose recognition is proposed. The aims of the proposed system are view-point insensitivity and real-time processing. Recognition system consists of feature extraction module, neural network and real-time feed forward calculation. First, histogram-based method is used to extract feature from silhouette image and it is suitable for represent the shape of human pose. To reduce the dimension of feature vector, Principle Component Analysis(PCA) is used. Second, real-time processing is implemented by using Compute Unified Device Architecture(CUDA) and this architecture improves the speed of feed-forward calculation of neural network. We demonstrate the effectiveness of our approach with experiments on real environment.Keywords: computer vision, neural network, pose recognition, view-point insensitive, PCA, CUDA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13395591 Design and Analysis of Electric Power Production Unit for Low Enthalpy Geothermal Reservoir Applications
Authors: Ildar Akhmadullin, Mayank Tyagi
Abstract:
The subject of this paper is the design analysis of a single well power production unit from low enthalpy geothermal resources. A complexity of the project is defined by a low temperature heat source that usually makes such projects economically disadvantageous using the conventional binary power plant approach. A proposed new compact design is numerically analyzed. This paper describes a thermodynamic analysis, a working fluid choice, downhole heat exchanger (DHE) and turbine calculation results. The unit is able to produce 321 kW of electric power from a low enthalpy underground heat source utilizing n-Pentane as a working fluid. A geo-pressured reservoir located in Vermilion Parish, Louisiana, USA is selected as a prototype for the field application. With a brine temperature of 126 , the optimal length of DHE is determined as 304.8 m (1000ft). All units (pipes, turbine, and pumps) are chosen from commercially available parts to bring this project closer to the industry requirements. Numerical calculations are based on petroleum industry standards. The project is sponsored by the Department of Energy of the US.
Keywords: Downhole Heat Exchangers, Geothermal Power Generation, Organic Rankine Cycle, Refrigerants, Working Fluids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26705590 Adsorption of Lead(II) and Cadmium(II) Ions from Aqueous Solutions by Adsorption on Activated Carbon Prepared from Cashew Nut Shells
Authors: S. Tangjuank, N. Insuk , J. Tontrakoon , V. Udeye
Abstract:
Cashew nut shells were converted into activated carbon powders using KOH activation plus CO2 gasification at 1027 K. The increase both of impregnation ratio and activation time, there was swiftly the development of mesoporous structure with increasing of mesopore volume ratio from 20-28% and 27-45% for activated carbon with ratio of KOH per char equal to 1 and 4, respectively. Activated carbon derived from KOH/char ratio equal to 1 and CO2 gasification time from 20 to 150 minutes were exhibited the BET surface area increasing from 222 to 627 m2.g-1. And those were derived from KOH/char ratio of 4 with activation time from 20 to 150 minutes exhibited high BET surface area from 682 to 1026 m2.g-1. The adsorption of Lead(II) and Cadmium(II) ion was investigated. This adsorbent exhibited excellent adsorption for Lead(II) and Cadmium(II) ion. Maximum adsorption presented at 99.61% at pH 6.5 and 98.87% at optimum conditions. The experimental data was calculated from Freundlich isotherm and Langmuir isotherm model. The maximum capacity of Pb2+ and Cd2+ ions was found to be 28.90 m2.g-1 and 14.29 m2.g-1, respectively.
Keywords: Activated carbon, cashew nut shell, heavy metals, adsorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34035589 Historical and Future Rainfall Variations in Bangladesh
Authors: M. M. Hossain, M. Z. Hasan, M. Alauddin, S. Akhter
Abstract:
Climate change has become a major concern across the world as the intensity along with quantity of the rainfall, mean surface temperature and other climatic parameters have been changed not only in Bangladesh but also in the entire globe. Bangladesh has already experienced many natural hazards. Among them changing of rainfall pattern, erratic and heavy rainfalls are very common. But changes of rainfall pattern and its amount is still in question to some extent. This study aimed to unfold how the historical rainfalls varied over time and how would be their future trends. In this context, historical rainfall data (1975-2014) were collected from Bangladesh Metrological Department (BMD) and then a time series model was developed using Box-Jenkins algorithm in IBM SPSS to forecast the future rainfall. From the historical data analysis, this study revealed that the amount of rainfall decreased over the time and shifted to the post monsoons. Forecasted rainfall shows that the pre-monsoon and early monsoon will get drier in future whereas late monsoon and post monsoon will show huge fluctuations in rainfall magnitudes with temporal variations which means Bangladesh will get comparatively drier seasons in future which may be a serious problem for the country as it depends on agriculture.
Keywords: Monsoon, Pre-monsoon, rainfall, pattern, variations, IBM-SPSS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1335