Search results for: computer games for learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3281

Search results for: computer games for learning

1841 Approximate Bounded Knowledge Extraction Using Type-I Fuzzy Logic

Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil

Abstract:

Using neural network we try to model the unknown function f for given input-output data pairs. The connection strength of each neuron is updated through learning. Repeated simulations of crisp neural network produce different values of weight factors that are directly affected by the change of different parameters. We propose the idea that for each neuron in the network, we can obtain quasi-fuzzy weight sets (QFWS) using repeated simulation of the crisp neural network. Such type of fuzzy weight functions may be applied where we have multivariate crisp input that needs to be adjusted after iterative learning, like claim amount distribution analysis. As real data is subjected to noise and uncertainty, therefore, QFWS may be helpful in the simplification of such complex problems. Secondly, these QFWS provide good initial solution for training of fuzzy neural networks with reduced computational complexity.

Keywords: Crisp neural networks, fuzzy systems, extraction of logical rules, quasi-fuzzy numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
1840 Computer Based Medicine: I - The Future

Authors: Essam Abd-Elrazek

Abstract:

With the rapid growth in business size, today-s businesses orient Throughout thirty years local, national and international experience in medicine as a medical student, junior doctor and eventually Consultant and Professor in Anaesthesia, Intensive Care and Pain Management, I note significant generalised dissatisfaction among medical students and doctors regarding their medical education and practice. We repeatedly hear complaints from patients about the dysfunctional health care system they are dealing with and subsequently the poor medical service that they are receiving. Medical students are bombarded with lectures, tutorials, clinical rounds and various exams. Clinicians are weighed down with a never-ending array of competing duties. Patients are extremely unhappy about the long waiting lists, loss of their records and the continuous deterioration of the health care service. This problem has been reported in different countries by several authors [1,2,3]. In a trial to solve this dilemma, a genuine idea has been suggested implementing computer technology in medicine [2,3]. Computers in medicine are a medium of international communication of the revolutionary advances being made in the application of the computer to the fields of bioscience and medicine [4,5]. The awareness about using computers in medicine has recently increased all over the world. In Misr University for Science & Technology (MUST), Egypt, medical students are now given hand-held computers (Laptop) with Internet facility making their medical education accessible, convenient and up to date. However, this trial still needs to be validated. Helping the readers to catch up with the on going fast development in this interesting field, the author has decided to continue reviewing the literature, exploring the state-of-art in computer based medicine and up dating the medical professionals especially the local trainee Doctors in Egypt. In part I of this review article we will give a general background discussing the potential use of computer technology in the various aspects of the medical field including education, research, clinical practice and the health care service given to patients. Hope this will help starting changing the culture, promoting the awareness about the importance of implementing information technology (IT) in medicine, which is a field in which such help is needed. An international collaboration is recommended supporting the emerging countries achieving this target.

Keywords: Medical Informatics, telemedicine, e-health systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2633
1839 Learner Awareness Levels Questionnaire: Development and Preliminary Validation of the English and Malay Versions to Measure How and Why Students Learn

Authors: S. Chee Choy, Pauline Swee Choo Goh, Yow Lin Liew

Abstract:

The purpose of this study is to evaluate the English version and a Malay translation of the 21-item Learner Awareness Questionnaire for its application to assess student learning in higher education. The Learner Awareness Questionnaire, originally written in English, is a quantitative measure of how and why students learn. The questionnaire gives an indication of the process and motives to learn using four scales: survival, establishing stability, approval and loving to learn. Data in the present study came from 680 university students enrolled in various programmes in Malaysia. The Malay version of the questionnaire supported a similar four factor structure and internal consistency to the English version. The four factors of the Malay version also showed moderate to strong correlations with those of the English versions. The results suggest that the Malay version of the questionnaire is similar to the English version. However, further refinement to the questions is needed to strengthen the correlations between the two questionnaires.

Keywords: Student learning, learner awareness, instrument validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
1838 Design and Implementation of an AI-Enabled Task Assistance and Management System

Authors: Arun Prasad Jaganathan

Abstract:

In today's dynamic industrial world, traditional task allocation methods often fall short in adapting to evolving operational conditions. This paper presents an AI-enabled task assistance and management system designed to overcome the limitations of conventional approaches. By using artificial intelligence (AI) and machine learning (ML), the system intelligently interprets user instructions, analyzes tasks, and allocates resources based on real-time data and environmental factors. Additionally, geolocation tracking enables proactive identification of potential delays, ensuring timely interventions. With its transparent reporting mechanisms, the system provides stakeholders with clear insights into task progress, fostering accountability and informed decision-making. The paper presents a comprehensive overview of the system architecture, algorithm, and implementation, highlighting its potential to revolutionize task management across diverse industries.

Keywords: Artificial intelligence, machine learning, task allocation, operational efficiency, resource optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75
1837 Towards Better Quality in Healthcare and Operations Management: A Developmental Literature Review

Authors: Towards Better Quality in Healthcare, Operations Management: A Developmental Literature Review

Abstract:

This work presents the various perspectives, dimensions, components and definitions given to quality in the operations management (OM) and healthcare services (HCS) literature in time, highlighting gaps and learning opportunities between the two disciplines through a thorough search into their rich and distinct body of knowledge. Greater and new insights about the general nature of quality are obtained with findings such as in OM, quality has been approached in six fairly distinct paradigms (excellence, value, conformity to specifications, attributes, satisfaction and meeting or exceeding customer expectations), whereas in HCS, two approaches are prominent (Donabedian’s structure, process and outcomes model and Lohr and Schroeder’s circumscribed definition). The two disciplines views on quality seem to have progressed much in parallel with little cross-learning from each other. This work then proposes an encompassing definition of quality as a lever and suggests further research and development avenues for a better use of the concept of quality by academics and practitioners alike toward the goals of greater organizational performance and improved management in healthcare and possibly other service domains.

Keywords: Healthcare, management, operations, quality, services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275
1836 Applying Multiple Intelligences to Teach Buddhist Doctrines in a Classroom

Authors: Phalaunnaphat Siriwongs

Abstract:

The classroom of the 21st century is an ever changing forum for new and innovative thoughts and ideas. With increasing technology and opportunity, students have rapid access to information that only decades ago would have taken weeks to obtain. Unfortunately, new techniques and technology are not the cure for the fundamental problems that have plagued the classroom ever since education was established. Class size has been an issue long debated in academia. While it is difficult to pin point an exact number, it is clear that in this case more does not mean better. By looking into the success and pitfalls of classroom size the true advantages of smaller classes will become clear. Previously, one class was comprised of 50 students. Being seventeen and eighteen- year- old students, sometimes it was quite difficult for them to stay focused. To help them understand and gain much knowledge, a researcher introduced “The Theory of Multiple Intelligence” and this, in fact, enabled students to learn according to their own learning preferences no matter how they were being taught. In this lesson, the researcher designed a cycle of learning activities involving all intelligences so that everyone had equal opportunities to learn.

Keywords: Multiple intelligences, role play, performance assessment, formative assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
1835 On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation

Authors: Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, Godfried T. Toussaint

Abstract:

Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.

Keywords: Machine learning, data mining, support vector machines, proximity graphs, relative-neighborhood graphs, k-nearestneighbor graphs, random sampling, training data condensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
1834 The Analysis of Internet and Social Media Behaviors of the Students in the Higher School of Vocational and Technical Sciences

Authors: Mehmet Balci, Sakir Tasdemir, Mustafa Altin, Ozlem Bozok

Abstract:

Our globalizing world has become almost a small village and everyone can access any information at any time. Everyone lets each other know who does whatever in which place. We can learn which social events occur in which place in the world. From the perspective of education, the course notes that a lecturer use in lessons in a university in any state of America can be examined by a student studying in a city of Africa or the Far East. This dizzying communication we have mentioned happened thanks to fast developments in computer and internet technologies. While these developments occur in the world, Turkey that has a very large young population and whose electronic infrastructure rapidly improves has also been affected by these developments. Nowadays, mobile devices have become common and thus, it causes to increase data traffic in social networks. This study was carried out on students in the different age groups in Selcuk University Vocational School of Technical Sciences, the Department of Computer Technology. Students’ opinions about the use of internet and social media were obtained. The features such as using the Internet and social media skills, purposes, operating frequency, accessing facilities and tools, social life and effects on vocational education and so forth were explored. The positive effects and negative effects of both internet and social media use on the students in this department and findings are evaluated from different perspectives and results are obtained. In addition, relations and differences were found out statistically.

Keywords: Computer technologies, internet use, social network, higher vocational school.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
1833 Increasing The Speed of Convergence of an Artificial Neural Network based ARMA Coefficients Determination Technique

Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb

Abstract:

In this paper, novel techniques in increasing the accuracy and speed of convergence of a Feed forward Back propagation Artificial Neural Network (FFBPNN) with polynomial activation function reported in literature is presented. These technique was subsequently used to determine the coefficients of Autoregressive Moving Average (ARMA) and Autoregressive (AR) system. The results obtained by introducing sequential and batch method of weight initialization, batch method of weight and coefficient update, adaptive momentum and learning rate technique gives more accurate result and significant reduction in convergence time when compared t the traditional method of back propagation algorithm, thereby making FFBPNN an appropriate technique for online ARMA coefficient determination.

Keywords: Adaptive Learning rate, Adaptive momentum, Autoregressive, Modeling, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
1832 Climate Change in Albania and Its Effect on Cereal Yield

Authors: L. Basha, E. Gjika

Abstract:

This study is focused on analyzing climate change in Albania and its potential effects on cereal yields. Initially, monthly temperature and rainfalls in Albania were studied for the period 1960-2021. Climacteric variables are important variables when trying to model cereal yield behavior, especially when significant changes in weather conditions are observed. For this purpose, in the second part of the study, linear and nonlinear models explaining cereal yield are constructed for the same period, 1960-2021. The multiple linear regression analysis and lasso regression method are applied to the data between cereal yield and each independent variable: average temperature, average rainfall, fertilizer consumption, arable land, land under cereal production, and nitrous oxide emissions. In our regression model, heteroscedasticity is not observed, data follow a normal distribution, and there is a low correlation between factors, so we do not have the problem of multicollinearity. Machine learning methods, such as Random Forest (RF), are used to predict cereal yield responses to climacteric and other variables. RF showed high accuracy compared to the other statistical models in the prediction of cereal yield. We found that changes in average temperature negatively affect cereal yield. The coefficients of fertilizer consumption, arable land, and land under cereal production are positively affecting production. Our results show that the RF method is an effective and versatile machine-learning method for cereal yield prediction compared to the other two methods: multiple linear regression and lasso regression method.

Keywords: Cereal yield, climate change, machine learning, multiple regression model, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249
1831 An Optimized Multi-block Method for Turbulent Flows

Authors: M. Goodarzi, P. Lashgari

Abstract:

A major part of the flow field involves no complicated turbulent behavior in many turbulent flows. In this research work, in order to reduce required memory and CPU time, the flow field was decomposed into several blocks, each block including its special turbulence. A two dimensional backward facing step was considered here. Four combinations of the Prandtl mixing length and standard k- E models were implemented as well. Computer memory and CPU time consumption in addition to numerical convergence and accuracy of the obtained results were mainly investigated. Observations showed that, a suitable combination of turbulence models in different blocks led to the results with the same accuracy as the high order turbulence model for all of the blocks, in addition to the reductions in memory and CPU time consumption.

Keywords: Computer memory, CPU time, Multi-block method, Turbulence modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
1830 The Pedagogical Integration of Digital Technologies in Initial Teacher Training

Authors: Vânia Graça, Paula Quadros-Flores, Altina Ramos

Abstract:

The use of Digital Technologies in teaching and learning processes is currently a reality, namely in initial teacher training. This study aims at knowing the digital reality of students in initial teacher training in order to improve training in the educational use of ICT and to promote digital technology integration strategies in an educational context. It is part of the IFITIC Project "Innovate with ICT in Initial Teacher Training to Promote Methodological Renewal in Pre-school Education and in the 1st and 2nd Basic Education Cycle" which involves the School of Education, Polytechnic of Porto and Institute of Education, University of Minho. The Project aims at rethinking educational practice with ICT in the initial training of future teachers in order to promote methodological innovation in Pre-school Education and in the 1st and 2nd Cycles of Basic Education. A qualitative methodology was used, in which a questionnaire survey was applied to teachers in initial training. For data analysis, the techniques of content analysis with the support of NVivo software were used. The results point to the following aspects: a) future teachers recognize that they have more technical knowledge about ICT than pedagogical knowledge. This result makes sense if we consider the objective of Basic Education, so that the gaps can be filled in the Master's Course by students who wish to follow the teaching; b) the respondents are aware that the integration of digital resources contributes positively to students' learning and to the life of children and young people, which also promotes preparation in life; c) to be a teacher in the digital age there is a need for the development of digital literacy, lifelong learning and the adoption of new ways of teaching how to learn. Thus, this study aims to contribute to a reflection on the teaching profession in the digital age.

Keywords: Digital technologies, initial teacher training, pedagogical use of ICT, skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 600
1829 Evaluation Factors of Clinical Decision Support System in u_Healthcare Service

Authors: Sun K. Yoo, Ki-Chang Nam, Hyun-Young Shin, Ho-Seong Moon, Hee Cheol Kang

Abstract:

Automated intelligent, clinical decision support systems generally promote to help or to assist physicians and patients regarding to prevention of diseases or treatment of illnesses using computer represented knowledge and information. In this paper, assessment factors affecting the proper design of clinical decision support system were investigated. The required procedure steps for gathering the data from clinical trial and extracting the information from large volume of healthcare repositories were listed, which are necessary for validation and verification of evidence-based implementation of clinical decision support system. The goal of this paper is to extract useful evaluation factors affecting the quality of the clinical decision support system in the design, development, and implementation of a computer-based decision support system.

Keywords: Evaluation, Clinical Decision Support System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237
1828 Widening Students Perspective: Empowering Them with Systems Methodologies

Authors: Albertus G. Joubert, Roelien Goede

Abstract:

Benefits to the organisation are just as important as technical ability when it comes to software success. The challenge is to provide industry with professionals who understand this. In other words: How to teach computer engineering students to look beyond technology, and at the benefits of software to organizations? This paper reports on the conceptual design of a section of the computer networks module aimed to sensitize the students to the organisational context. Checkland focuses on different worldviews represented by various role players in the organisation. He developed the Soft Systems Methodology that guides purposeful action in organisations, while incorporating different worldviews in the modeling process. If we can sensitize students to these methods, they are likely to appreciate the wider context of application of system software. This paper will provide literature on these concepts as well as detail on how the students will be guided to adopt these concepts.

Keywords: Checkland, Soft Systems Methodology, Systems Approach, System Software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
1827 The Influencing Factors and the Approach to Enhance the Standard of E-Commerce for Small and Medium Enterprises in Bangkok

Authors: Wanida Suwunniponth

Abstract:

The objectives of this research paper were to study the influencing factors that contributed to the success of electronic commerce (e-commerce) and to study the approach to enhance the standard of e-commerce for small and medium enterprises (SME). The research paper focused the study on only sole proprietorship SMEs in Bangkok, Thailand. The factors contributed to the success of SME included business management, learning in the organization, business collaboration, and the quality of website. A quantitative and qualitative mixed research methodology was used. In terms of quantitative method, a questionnaire was used to collect data from 251 sole proprietorships. The System Equation Model (SEM) was utilized as the tool for data analysis. In terms of qualitative method, an in-depth interview, a dialogue with experts in the field of ecommerce for SMEs, and content analysis were used. By using the adjusted causal relationship structure model, it was revealed that the factors affecting the success of e-commerce for SMEs were found to be congruent with the empirical data. The hypothesis testing indicated that business management influenced the learning in the organization, the learning in the organization influenced business collaboration and the quality of the website, and these factors, in turn, influenced the success of SMEs. Moreover, the approach to enhance the standard of SMEs revealed that the majority of respondents wanted to enhance the standard of SMEs to a high level in the category of safety of e-commerce system, basic structure of e-commerce, development of staff potentials, assistance of budget and tax reduction, and law improvement regarding the e-commerce respectively.

Keywords: Electronic Commerce, Influencing Factors, Small and Medium Enterprises.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
1826 Early Requirement Engineering for Design of Learner Centric Dynamic LMS

Authors: Kausik Halder, Nabendu Chaki, Ranjan Dasgupta

Abstract:

We present a modeling framework that supports the engineering of early requirements specifications for design of learner centric dynamic Learning Management System. The framework is based on i* modeling tool and Means End Analysis, that adopts primitive concepts for modeling early requirements (such as actor, goal, and strategic dependency). We show how pedagogical and computational requirements for designing a learner centric Learning Management system can be adapted for the automatic early requirement engineering specifications. Finally, we presented a model on a Learner Quanta based adaptive Courseware. Our early requirement analysis shows that how means end analysis reveals gaps and inconsistencies in early requirements specifications that are by no means trivial to discover without the help of formal analysis tool.

Keywords: Adaptive Courseware, Early Requirement Engineering, Means End Analysis, Organizational Modeling, Requirement Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
1825 A New Self-Adaptive EP Approach for ANN Weights Training

Authors: Kristina Davoian, Wolfram-M. Lippe

Abstract:

Evolutionary Programming (EP) represents a methodology of Evolutionary Algorithms (EA) in which mutation is considered as a main reproduction operator. This paper presents a novel EP approach for Artificial Neural Networks (ANN) learning. The proposed strategy consists of two components: the self-adaptive, which contains phenotype information and the dynamic, which is described by genotype. Self-adaptation is achieved by the addition of a value, called the network weight, which depends on a total number of hidden layers and an average number of neurons in hidden layers. The dynamic component changes its value depending on the fitness of a chromosome, exposed to mutation. Thus, the mutation step size is controlled by two components, encapsulated in the algorithm, which adjust it according to the characteristics of a predefined ANN architecture and the fitness of a particular chromosome. The comparative analysis of the proposed approach and the classical EP (Gaussian mutation) showed, that that the significant acceleration of the evolution process is achieved by using both phenotype and genotype information in the mutation strategy.

Keywords: Artificial Neural Networks (ANN), Learning Theory, Evolutionary Programming (EP), Mutation, Self-Adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
1824 Security Design of Root of Trust Based on RISC-V

Authors: Kang Huang, Wanting Zhou, Shiwei Yuan, Lei Li

Abstract:

Since information technology develops rapidly, the security issue has become an increasingly critical for computer system. In particular, as cloud computing and the Internet of Things (IoT) continue to gain widespread adoption, computer systems need to new security threats and attacks. The Root of Trust (RoT) is the foundation for providing basic trusted computing, which is used to verify the security and trustworthiness of other components. Designing a reliable RoT and guaranteeing its own security are essential for improving the overall security and credibility of computer systems. In this paper, we discuss the implementation of self-security technology based on the RISC-V RoT at the hardware level. To effectively safeguard the security of the RoT, researches on security safeguard technology on the RoT have been studied. At first, a lightweight and secure boot framework is proposed as a secure mechanism. Secondly, two kinds of memory protection mechanism are built to against memory attacks. Moreover, hardware implementation of proposed method has been also investigated. A series of experiments and tests have been carried on to verify to effectiveness of the proposed method. The experimental results demonstrated that the proposed approach is effective in verifying the integrity of the RoT’s own boot rom, user instructions, and data, ensuring authenticity and enabling the secure boot of the RoT’s own system. Additionally, our approach provides memory protection against certain types of memory attacks, such as cache leaks and tampering, and ensures the security of root-of-trust sensitive information, including keys.

Keywords: Root of Trust, secure boot, memory protection, hardware security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80
1823 Computer-based Alarm Processing and Presentation Methods in Nuclear Power Plants

Authors: Jung-Woon Lee, Jung-Taek Kim, Jae-Chang Park, In-Koo Hwang, Sung-Pil Lyu

Abstract:

Computerized alarm systems have been applied increasingly to nuclear power plants. For existing plants, an add-on computer alarm system is often installed to the control rooms. Alarm avalanches during the plant transients are major problems with the alarm systems in nuclear power plants. Computerized alarm systems can process alarms to reduce the number of alarms during the plant transients. This paper describes various alarm processing methods, an alarm cause tracking function, and various alarm presentation schemes to show alarm information to the operators effectively which are considered during the development of several computerized alarm systems for Korean nuclear power plants and are found to be helpful to the operators.

Keywords: Alarm processing, Alarm presentation, Alarm causetracking, Alarm logic diagram computerization, Alarm patternrecognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373
1822 A Machine Learning-based Analysis of Autism Prevalence Rates across US States against Multiple Potential Explanatory Variables

Authors: Ronit Chakraborty, Sugata Banerji

Abstract:

There has been a marked increase in the reported prevalence of Autism Spectrum Disorder (ASD) among children in the US over the past two decades. This research has analyzed the growth in state-level ASD prevalence against 45 different potentially explanatory factors including socio-economic, demographic, healthcare, public policy and political factors. The goal was to understand if these factors have adequate predictive power in modeling the differential growth in ASD prevalence across various states, and, if they do, which factors are the most influential. The key findings of this study include (1) there is a confirmation that the chosen feature set has considerable power in predicting the growth in ASD prevalence, (2) the most influential predictive factors are identified, (3) given the nature of the most influential predictive variables, an indication that a considerable portion of the reported ASD prevalence differentials across states could be attributable to over and under diagnosis, and (4) Florida is identified as a key outlier state pointing to a potential under-diagnosis of ASD.

Keywords: Autism Spectrum Disorder, ASD, clustering, Machine Learning, predictive modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 675
1821 Multiple Intelligence Theory with a View to Designing a Classroom for the Future

Authors: Phalaunnaphat Siriwongs

Abstract:

The classroom of the 21st century is an ever changing forum for new and innovative thoughts and ideas. With increasing technology and opportunity, students have rapid access to information that only decades ago would have taken weeks to obtain. Unfortunately, new techniques and technology is not a cure for the fundamental problems that have plagued the classroom ever since education was established. Class size has been an issue long debated in academia. While it is difficult to pin point an exact number, it is clear that in this case more does not mean better. By looking into the success and pitfalls of classroom size the true advantages of smaller classes will become clear. Previously, one class was comprised of 50 students. Being seventeen and eighteen-year-old students, sometimes it was quite difficult for them to stay focused. To help them understand and gain much knowledge, a researcher introduced “The Theory of Multiple Intelligence” and this, in fact, enabled students to learn according to their own learning preferences no matter how they were being taught. In this lesson, the researcher designed a cycle of learning activities involving all intelligences so that everyone had equal opportunities to learn.

Keywords: Multiple Intelligences, role play, performance assessment, formative assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548
1820 The SAFRS System : A Case-Based Reasoning Training Tool for Capturing and Re-Using Knowledge

Authors: Souad Demigha

Abstract:

The paper aims to specify and build a system, a learning support in radiology-senology (breast radiology) dedicated to help assist junior radiologists-senologists in their radiologysenology- related activity based on experience of expert radiologistssenologists. This system is named SAFRS (i.e. system supporting the training of radiologists-senologists). It is based on the exploitation of radiologic-senologic images (primarily mammograms but also echographic images or MRI) and their related clinical files. The aim of such a system is to help breast cancer screening in education. In order to acquire this expert radiologist-senologist knowledge, we have used the CBR (case-based reasoning) approach. The SAFRS system will promote the evolution of teaching in radiology-senology by offering the “junior radiologist" trainees an advanced pedagogical product. It will permit a strengthening of knowledge together with a very elaborate presentation of results. At last, the know-how will derive from all these factors.

Keywords: Learning support, radiology-senology, training, education, CBR, accumulated experience.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
1819 Bayesian Online Learning of Corresponding Points of Objects with Sequential Monte Carlo

Authors: Miika Toivanen, Jouko Lampinen

Abstract:

This paper presents an online method that learns the corresponding points of an object from un-annotated grayscale images containing instances of the object. In the first image being processed, an ensemble of node points is automatically selected which is matched in the subsequent images. A Bayesian posterior distribution for the locations of the nodes in the images is formed. The likelihood is formed from Gabor responses and the prior assumes the mean shape of the node ensemble to be similar in a translation and scale free space. An association model is applied for separating the object nodes and background nodes. The posterior distribution is sampled with Sequential Monte Carlo method. The matched object nodes are inferred to be the corresponding points of the object instances. The results show that our system matches the object nodes as accurately as other methods that train the model with annotated training images.

Keywords: Bayesian modeling, Gabor filters, Online learning, Sequential Monte Carlo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
1818 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks

Authors: B. Golchin, N. Riahi

Abstract:

One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.

Keywords: emotion classification, sentiment analysis, social networks, deep neural networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665
1817 Delineating Students’ Speaking Anxieties and Assessment Gaps in Online Speech Performances

Authors: Mary Jane B. Suarez

Abstract:

Speech anxiety is innumerable in any traditional communication classes especially for ESL students. The speech anxiety intensifies when communication skills assessments have taken its toll in an online mode of learning due to the perils of the COVID-19 virus. Teachers and students have experienced vast ambiguity on how to realize a still effective way to teach and learn various speaking skills amidst the pandemic. This mixed method study determined the factors that affected the public speaking skills of students in online performances, delineated the assessment gaps in assessing speaking skills in an online setup, and recommended ways to address students’ speech anxieties. Using convergent parallel design, quantitative data were gathered by examining the desired learning competencies of the English course including a review of the teacher’s class record to analyze how students’ performances reflected a significantly high level of anxiety in online speech delivery. Focus group discussion was also conducted for qualitative data describing students’ public speaking anxiety and assessment gaps. Results showed a significantly high level of students’ speech anxiety affected by time constraints, use of technology, lack of audience response, being conscious of making mistakes, and the use of English as a second language. The study presented recommendations to redesign curricular assessments of English teachers and to have a robust diagnosis of students’ speaking anxiety to better cater to the needs of learners in attempt to bridge any gaps in cultivating public speaking skills of students as educational institutions segue from the pandemic to the post-pandemic milieu.

Keywords: Blended learning, communication skills assessment, online speech delivery, public speaking anxiety, speech anxiety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178
1816 Open Source Software in Higher Education: Oman SQU Case Study

Authors: Amal S. Al-Badi, Ali H. Al-Badi

Abstract:

Many organizations are opting to adopt Open Source Software (OSS) as it is the current trend to rely on each other rather than on companies (Software vendors). It is a clear shift from organizations to individuals, the concept being to rely on collective participation rather than companies/vendors.

The main objectives of this research are 1) to identify the current level of OSS usage in Sultan Qaboos University; 2) to identify the potential benefits of using OSS in educational institutes; 3) to identify the OSS applications that are most likely to be used within an educational institute; 4) to identify the existing and potential barriers to the successful adoption of OSS in education.

To achieve these objectives a two-stage research method was conducted. First a rigorous literature review of previously published material was performed (interpretive/descriptive approach), and then a set of interviews were conducted with the IT professionals at Sultan Qaboos University in Oman in order to explore the extent and nature of their usage of OSS.

Keywords: Open source software; social software, e-learning 2.0, Web 2.0, connectivism, personal learning environment (PLE), OpenID, OpenSocial and OpenCourseWare.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3645
1815 Machine Learning Methods for Flood Hazard Mapping

Authors: S. Zappacosta, C. Bove, M. Carmela Marinelli, P. di Lauro, K. Spasenovic, L. Ostano, G. Aiello, M. Pietrosanto

Abstract:

This paper proposes a neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The classification capability was compared with the flood hazard mapping River Basin Plans (Piani Assetto Idrogeologico, acronimed as PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), encoding four different increasing flood hazard levels. The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.

Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
1814 What the Future Holds for Social Media Data Analysis

Authors: P. Wlodarczak, J. Soar, M. Ally

Abstract:

The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.

Keywords: Social Media, text mining, knowledge discovery, predictive analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3849
1813 The Role of Satisfaction on Performance among Afe Babalola University Team Sports

Authors: B. O. Diyaolu

Abstract:

Viability and competency during competition is the dream of every team sports so as to have a good result. But it seems factors abound which deter the performance of even a good sports team. Different individuals with different state of mind all come together to perform in team sports with different degree of satisfaction. This study investigated the role of satisfaction on performance among Afe Babalola University team sports. Descriptive survey research design was used and the population consists of all male and female athletes in the team sports that participated in the last 2019 Ekiti State Higher Institution games (ESHIGA). Total enumeration technique was used for the three team sports; football (44), basketball (24) and volleyball (24). A total of 92 participants were involved in the research. The instrument used for the study was a modified Athlete Satisfaction Scale (ASS). The questionnaire was divided into two sections. The Cronbach’s Alpha reliability coefficient of 0.71 was obtained. The hypotheses were tested at 0.05 significant levels. The completed questionnaire was collated, coded, and analyzed using descriptive statistics of frequency counts and percentage and inferential statistics of chi-square (X2). Findings of this study revealed that satisfaction significantly influences team sports performance among Athletes of Afe Babalola University. The responsibility of satisfying athlete lies on the coaches, fans, sports administrators as well as organizers of such event, as it is not only financial reward that gives satisfaction. The performance of a team sports is quiet important and its being determined by the degree of satisfaction of each individual that make up the team. All effort must be made to satisfy athlete in order to guarantee optimum performance.

Keywords: Athlete satisfaction, Optimum achievement, Optimum performance, Sports performance, Team sports.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866
1812 Web 2.0 in Higher Education: The Instructors’ Acceptance in Higher Educational Institutes in Kingdom of Bahrain

Authors: Amal M. Alrayes, Hayat M. Ali

Abstract:

Since the beginning of distance education with the rapid evolution of technology, the social network plays a vital role in the educational process to enforce the interaction been the learners and teachers. There are many Web 2.0 technologies, services and tools designed for educational purposes. This research aims to investigate instructors’ acceptance towards web-based learning systems in higher educational institutes in Kingdom of Bahrain. Questionnaire is used to investigate the instructors’ usage of Web 2.0 and the factors affecting their acceptance. The results confirm that instructors had high accessibility to such technologies. However, patterns of use were complex. Whilst most expressed interest in using online technologies to support learning activities, learners seemed cautious about other values associated with web-based system, such as the shared construction of knowledge in a public format. The research concludes that there are main factors that affect instructors’ adoption which are security, performance expectation, perceived benefits, subjective norm, and perceived usefulness.

Keywords: Web 2.0, Higher education, Acceptance, Students’ perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309