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Abstract—Since information technology develops rapidly, the
security issue has become an increasingly critical for computer
system. In particular, as cloud computing and the Internet of Things
(IoT) continue to gain widespread adoption, computer systems need
to new security threats and attacks. The Root of Trust (RoT) is
the foundation for providing basic trusted computing, which is used
to verify the security and trustworthiness of other components.
Designing a reliable RoT and guaranteeing its own security are
essential for improving the overall security and credibility of
computer systems. In this paper, we discuss the implementation of
self-security technology based on the RISC-V RoT at the hardware
level. To effectively safeguard the security of the RoT, researches
on security safeguard technology on the RoT have been studied.
At first, a lightweight and secure boot framework is proposed as
a secure mechanism. Secondly, two kinds of memory protection
mechanism are built to against memory attacks. Moreover, hardware
implementation of proposed method has been also investigated. A
series of experiments and tests have been carried on to verify
to effectiveness of the proposed method. The experimental results
demonstrated that the proposed approach is effective in verifying
the integrity of the RoT’s own boot rom, user instructions, and
data, ensuring authenticity and enabling the secure boot of the
RoT’s own system. Additionally, our approach provides memory
protection against certain types of memory attacks, such as cache
leaks and tampering, and ensures the security of root-of-trust sensitive
information, including keys.

Keywords—Root of Trust, secure boot, memory protection,
hardware security.

I. INTRODUCTION

W ITH the rapid development and wide application of

information technology, computer systems are facing

more and more security threats and attack methods. In order to

ensure the security and trustworthiness of computer systems,

the design and implementation of security infrastructure

becomes crucial. The RoT is an important part of the

security infrastructure, and it undertakes the important task

of protecting the system from external attacks. A RoT is a

computer system component that is considered secure and can

be used to verify the security and trustworthiness of other

components. The RoT usually includes hardware and software.

The hardware part refers to the security module in the chip,

while the software part refers to the security software used to

verify and manage the hardware part [1], [2].

A RoT is a source that can always be trusted in a

cryptographic system. Since cryptographic security depends

on keys that encrypt and decrypt data, and perform functions

such as generating digital signatures and verifying signatures,

RoT schemes typically include a hardened hardware module.

A prime example is a hardware security module (HSM),
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which generates and protects keys and performs cryptographic

functions within its secure environment. Because the module

is for all intents and purposes inaccessible outside the

computer ecosystem, the ecosystem can trust the keys and

other encrypted information it receives from the root of the

trust module, i.e. authentic and authorized. This is especially

important as the Internet of Things (IoT) proliferates,

because to avoid being hacked, components of the computing

ecosystem need a way to be sure that the information they

receive is authentic. RoT protects the security of data and

applications and helps build trust in the entire ecosystem [3].

Therefore, the self-security based on the RISC-V Root of

Trust is very important to the overall security and credibility

of the computer system. The RoT is an important part of the

system security infrastructure, and it plays the role of verifying

the security and trustworthiness of other components. If the

RoT itself is not secure, the security and trustworthiness of

the entire system will be seriously threatened. If an attacker is

able to successfully attack the RoT, they will be able to tamper

or forge the output of the RoT, allowing other components of

the system to be compromised. Attackers may take advantage

of RoT vulnerabilities to implement various attacks, such as

side-channel attacks, buffer overflow attacks, stack overflow

attacks, and so on. These attacks can lead to system crashes,

exposure of sensitive data, or in worst cases, complete control

of entire systems.

For the security and trustworthiness of computer systems,

the security of the RoT itself is very important. Based on

the RISC-V RoT’s own security technology, it can protect the

RoT from external attacks and threats, thereby improving the

security and credibility of the entire system. This technology

includes the design of both hardware and software, and

proposes a series of security measures against possible attack

methods, and conducts feasibility verification. Through this

technology, the security of the RoT itself can be ensured,

thereby making the entire system more secure and trustworthy.

In the past research on the RoT, Gui [4] designed the RoT

for electronic control units. The author proposed a secure

framework and a hardware mechanism to mitigate denial of

service attacks, mainly using TPM for secure boot, Decryption,

and designed a black and white list to filter malicious frames,

but in the entire system, there is no memory protection

mechanism related to memory leaks and tampering. If the RoT

does not protect its own memory security, the key data in

the RoT will be vulnerable. Buffer overflow and stack attacks

are very deadly threats to the system. Moreover, the author

uses TPM in the electronic control unit system to realize its

own safe startup. This is not a lightweight safe startup, which

will increase the power consumption and cost of the product.

At the same time, the hardware RoT of the low-power SoC

edge device designed by Ehret [5] also lacks the corresponding
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memory protection mechanism of the RoT itself.

At the level of hardware implementation, we will use

PULPino as a research platform to discuss the security

technology based on the RISC-V RoT, mainly for the research

on the lightweight secure boot and memory security of the RoT

itself.

A. Secure Boot

In order to achieve secure boot of system devices, some

advanced technologies, such as Trusted Platform Module

(TPM) [6], Arm TrustZone [7], Microsoft’s fTPM [8], Intel’s

SGX [9] have been designed and implemented, To protect the

operating system kernel and application software running on

these computer system devices. However, the above-mentioned

technologies are not fully applicable to embedded devices, and

the resources they occupy are difficult to support for the RoT

of embedded devices.

This paper proposed a lightweight and secure boot

framework for a secure boot mechanism based on the RISC-V

processor RoT, using the SM3 national secret digest algorithm

to perform hash calculations on Boot Rom, user instructions,

and user data for subsequent integrity checks of hash value,

so as to ensure that the key data has not been modified; using

the AES symmetric encryption algorithm to encrypt the hash

value generated by the user command and user data on the

HOST side, and realizing the signature operation. During the

startup process of the device side, the device side decrypts the

encrypted digest (ciphertext), compares the user instructions

loaded into memory with the user data calculation digest,

compares the calculated digest with the decrypted digest,

and verifies the consistency and ensures the authenticity of

the data. The key required for AES symmetric encryption

is dynamically and randomly implemented through a Key

Derivation Function (KDF) circuit.

B. Memory Protection

For the RoT’s own security, the key link is to ensure the

security of memory and prevent data from being tampered

with. Among memory attacks, buffer overflow attacks [10]

are very common. The boundary-checked buffer overflows to

overwrite the existing data in the buffer. For example, the

attack covers the key data of the dynamic stack of the buffer,

causing the program to run incorrectly; overwriting its return

address, enabling the attacker to hijack the control flow of the

processor.

This article will give two memory protection mechanisms:

(1) to ensure that the return address stored in the dynamic

stack cannot be tampered with. Once the attacker initiates a

buffer overflow attack, the mechanism can detect the malicious

attack in advance and propose a blocking buffer area overflow

attack; (2) to complete the pre-detection and defense of the

buffer overflow attack covering the return address.

C. The Work and Contributions of This Article

In summary, we made the following contributions in this

paper: (1) A lightweight and secure boot framework is

proposed for a secure boot mechanism based on the RISC-V

processor RoT to complete data integrity verification and

ensure data authenticity; (2) In view of the RoT’s own memory

attack and the possibility of data tampering, two memory

protection mechanisms are proposed to protect RoT from

program control flow hijacking attacks, thus ensuring the high

security and reliability of RoT itself.

II. SECURE BOOT BASED ON ROT SELF-SECURITY

Secure Boot is a general-purpose technology that is

primarily based on digest algorithms or symmetric/asymmetric

encryption algorithms to perform integrity checks and

signature verification of processor firmware and cores. This

paper proposes a lightweight and secure boot framework based

on the secure boot mechanism of the RISC-V processor RoT

[11]. The mechanism described in this section is based on

the SM3 NATIONAL SECRET DIGEST Algorithm and the

AES SYMMETRIC ENCRYPTION Algorithm to implement

a secure processor startup mechanism to ensure the integrity

and authenticity of key data to ensure that the Boot Code,

user instructions, and user data against tamper. This paper

uses hardware description language to implement SM3 and

AES algorithms based on literature [12], [13], and performs

its hardware implementation into the core of PULPino for

experiments and verification.

A. Processor Secure Boot Design

Before the PULPino processor executes the Boot Code

and starts the pipeline, it is first necessary to design the

Boot Rom safety startup circuit to ensure the integrity of the

Boot Rom. After the integrity verification of the Boot Rom

is completed, the system starts the processor pipeline. Boot

Code starts running. The integrity check of the Boot Code is

very important, which includes initializing registers and stacks,

loading user data and user instructions in RAM to DTCM and

ITCM in the processor core domain, and performing program

jumps. The Boot Rom secure startup circuit is mainly divided

into two parts: 1) The hardware circuit of the national secret

SM3 hash algorithm; 2) The control circuit of the Boot Code

hash value calculation. The main functions of the control

circuit are: a) to control the operation of the Boot Rom safe

start circuit; b) to control the Boot Code to enter the SM3

hardware circuit in sequence according to 512Bit groups, that

is, the current group information is compressed for 64 times

before entering the next group of information; c) to give the

indication signal and effective bit of the last 32Bit data, for

Boot Code, its last word byte in = 2’b11; d) to compare the

Boot Code hash value calculated by the SM3 hardware circuit

with the Boot Code reference hash stored in the processor

security register to generate a processor start signal. To sum

up, the implementation functional block diagram of the Boot

Rom secure startup circuit is shown in Fig. 1.

The AES algorithm is a symmetric key algorithm and

AES-CTR is an encryption mode within AES. The SM3

and AES-CTR are implemented in a hardware description

language and the hardware implementation is embedded in

the PULPino kernel. After the execution of the previous Boot
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Control 
Circuit

Information Fill

Information 
Extension

Info compression:1~is_last_word_in
Info compression:2
Info compression:3

Info compression:64
Initial Value

Boot Rom Secure Boot Circuit

Fig. 1 Functional block diagram of Boot Rom secure boot circuit design and
implementation

Rom secure boot circuit is completed, a signal is generated to

turn on the processor pipeline and the processor kernel starts to

execute the Boot Code data, during which the HOST side first

uses SM3 to read the compiled and generated user instruction

file I2 stim.slm and the user data file tcdm bank0.slm by

means of registers After that, the hash value of Hash itcm reg

and Hash dtcm reg are obtained, and the two hash values are

encrypted by AES-CTR mode to ensure the authenticity of

the data; subsequently, the device side decrypts the encrypted

digest (cipher text) to obtain the Hash value. Then, the user

instruction ITCM and the user data DTCM are loaded into

memory, and the summary Hash run is computed, and the

consistency between the computed summary and the decrypted

summary is compared respectively, and if the consistency is

passed, the subsequent instructions are executed to complete

the integrity check of the user instruction and the user data

and ensure the authenticity of the data. If not, the processor

kernel will stop running. The implementation block diagram

is shown in Fig. 2.

Hash_itcm_reg

Hash_dtcm_reg

Signature 
Algorithm

Symmetric Key
decrypt

Hashing 
Algorithm

ITCM

DTCM

HOST Device

Hashing 
Algorithm

I2_stim.s
lm

tcdm_ba
nk0.slm

Hash Value

Hash Value

encrypt
Symmetric Key Hash_

value Compare

Continue 
running / End

Hash_run

Fig. 2 Secure boot design for user instructions and user data

B. Key Derivation Circuit Design

The key derivation function (Key Derivation Function,

KDF) circuit is the core module to realize the dynamic

randomization mechanism. According to the KDF circuit, the

key required by the processor to encrypt key information can

be dynamically and randomly obtained, such as the above

AES symmetric encryption. The symmetric key is generated

by the KDF circuit. From the literature [14], it can be known

that KDF is implemented by TRNG and PUF XOR and then

through the digest algorithm. The implementation diagram is

shown in Fig. 3), and the core modules are: TRNG, PUF and

digest algorithm. The realization of TRNG and PUF both use

the ring oscillator as the basic unit module.

In this paper, the RO-TRNG is realized by using the

principle that the phase jitter of the ring oscillator obeys the

Gaussian distribution. The 72MB random numbers generated

by RO-TRNG were collected, and then the correlation

RO-TRNG

RO-PUF

SM3 Secure Boot 
Encryption Key

Fig. 3 Sketch of the hardware circuit implementation of the key export
function

coefficient between the average entropy per bit of RO-TRNG

and the random number sequence was calculated using the ent

test. The test results are shown in Table I.

TABLE I
RO-TRNG DIEHARDER TEST RESULTS FOR RANDOM DATA

Test Name Test Number Test Result

Diehard Birthdays Test 1 passed
Diehard OPERM5 Test 1 passed

Diehard 32x32 Binary Rank Test 1 passed
Diehard 6x8 Binary Rank Test 1 passed

Diehard Bitstream Test 1 passed
Diehard Count the 1s (stream) Test 1 passed

Diehard Parking Lot Test 1 passed
Diehard Minimum Distance (2d Circle) Test 1 passed
Diehard 3d Sphere (Minimum Distance) Test 1 passed

Diehard Squeeze Test 1 passed
Diehard Runs Test 2 1passed 1weak

Marsaglia and Tsang GCD Test 2 passed
STS Monobit Test 1 passed

STS Runs Test 1 passed
STS Serial Test (Generalized) 30 passed

RGB Bit Distribution Test 12 passed
RGB Generalized Minimum Distance Test 4 passed

RGB Permutations Test 4 passed
RGB Lagged Sum Test 33 passed

RGB Kolmogorov-Smirnov Test Test 1 passed
Byte Distribution 1 passed

DAB DCT 1 passed
DAB Fill Tree Test 2 passed

DAB Fill Tree 2 Test 2 passed
DAB Monobit 2 Test 1 passed

The oscillation frequency of different ROs deployed in an

IC or FPGA can vary slightly due to differences in physical

characteristics such as capacitance and wiring delay. These

variations can lead to small differences in the RO oscillation

frequency at different locations, even when the ROs are of the

same type. Taking advantage of this characteristic, this paper

proposes a design and implementation of an RO-PUF for a

KDF circuit.
To demonstrate the robustness and stability of the RO-PUF,

we deployed it on the ZYNQ 7010 FPGA and obtained 4096

PUF ID values continuously. We then calculated the on-chip

Hamming distance of the PUF using (1), which resulted in a

value of only 0.04%. These results clearly demonstrate that

the proposed RO-PUF has superior robustness and stability.

μintra% =
1

MN

M∑
i=1

hri · 100% (1)

The uniqueness of RO-PUF was verified by calculating the

inter-slice Hamming distance of RO-PUF, and the average

inter-slice Hamming distance was calculated as shown (2);

μinter% =
2

k(k − 1)

i=k−1∑
i=1

j=k∑
j=i+1

hri

n
· 100% (2)
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The RO-PUF designed in this subsection is deployed to 23

FPGAs to collect RO-PUF data and its RO-PUF ID value, and

the collected data are averaged to find the inter-piece Hamming

distance and standard deviation, and the distribution statistics

of the inter-piece Hamming distance are completed, as shown

in Fig. 4. It follows a Gaussian distribution with the mean

value of 0.4984 and standard deviation of 0.0482. The average

inter-piece Hamming distance of the RO-PUF designed and

implemented in this subsection is μinter% = 49.84%, which

is very close to the ideal value of 50%, which proves that the

RO-PUF designed and implemented in this subsection has a

high uniqueness.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized PUF inter-slice Hamming distance

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed
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ou

nt
 v

al
ue

interval count value of interslice Hamming distance
distribution curve (Gaussian distribution)

μ = 0.4984
σ = 0.0482

Fig. 4 RO-PUF inter-piece Hamming distance test results

III. MEMORY PROTECTION BASED ON SELF-SECURITY OF

ROT

For the RoT’s own security, a very critical part is to

protect the security of the memory and prevent data tampering.

The processor dynamic stack is a buffer for storing function

return addresses and local variable running results. Once the

dynamic stack data is tampered with, it will cause changes in

the processor’s running results and running track, and more

seriously, the processor’s control flow will be hijacked by the

attacker. In order to solve the security problem of processor

dynamic stack tampering caused by hardware vulnerabilities,

two memory protection mechanisms will be proposed below

to protect the memory of the RoT itself.

A. Memory Protection Mechanism 1

Buffer overflows (shown as Fig. 5) are the most common

vulnerability and can be used to launch a variety of attacks.

In an unbounded checker, an attacker can exploit redundant

data from user input overloads that may exceed the buffer

capacity and potentially malicious data overwriting nearby

memory locations and complete hijacking of the processor’s

control flow, such as in return-oriented programming (ROP),

where function pointers and operations violate the integrity of

the data flow.

The memory protection mechanism described in this section

starts with ensuring the correctness of the return address

Return PC

Var

Buffer

Dynamic Stack

ShellCode

1

2

3

Buffer Overflow C Code
void ShellCode(){
    malicious code; }

void vulnerableCode(char* str) {
char buffer[4];
strcpy(buffer, str); }

main() {
vulnerableCode("abcdabcdabcdabc

d\x88\x04\x00\x00");}

1

2

3

Strcpy causes  Buffer Overflow 

Return PC was Overwritten

Jump to ShellCode  Location

Fig. 5 Buffer overflow exploit

stored in the dynamic stack of the processor, builds the stack

of the processor program control flow graph in real time

during the program running, and generates a restricted space.

According to the program control flow chart stack, The number

of unreachable store instructions in the pre-run program. This

ensures that the return address stored in the dynamic stack

cannot be tampered with. Once the attacker launches a buffer

overflow attack, the mechanism in this section can detect the

malicious attack in advance and propose to block the buffer

overflow attack. The functional structure block diagram of

the memory protection mechanism described in this section

is shown in Fig. 6.

IF ID EX WB

Pipeline of RISC-V Processor

Building Program Control 
Flow Graph

Instruction & Valid

Generating Limited Space Compare

Data Address 

Result

Fig. 6 The implementation diagram of memory protection mechanism 1

1) Building Program Control Flow Graph in Real-Time:
The instruction and effective signal of RISC-V processor

decoding stage are acquired in real time. FSM (Finite State

Machine) and RAM are used to construct program control

flow diagrams in real time. The FSM status jump is shown

Fig. 7. C1 - C5 in Fig. 7 is the state jump condition, and its

corresponding meaning is:

• C1: JAL is matched from the instruction flow in the ID

stage of RISC-V processor, and the register rd is register

X1;

• C2: SW is matched from the instruction flow in the ID

stage of RISC-V processor, and the register rs2 is register

X1;

• C3: JALR is matched from the instruction flow in the ID

stage of RISC-V processor;

• C4: LW is matched from the instruction flow in the ID

stage of RISC-V processor, and the register rd is register

X1;

• C5: JALR is matched from the instruction flow in the ID
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stage of RISC-V processor.

IDLE

S1 PUSH

S2 POP

END

C1

C2

C4
C5

C3

Fig. 7 State transition of FSM for building PCFG in Real-Time

In the PUSH state, the function return address (x1) and its

corresponding buffer data address (X2 + IMM) are pushed

into the stack. In the POP state, the stack composed of RAM

is pushed out. From this, the program control flow graph is

builded in real-time.

2) Boundary Space and Detection Result Generation:
(1) Restricted space generation: According to the PCFG

constructed in real time, the range of restricted space that

is not accessible by Store instruction in the current function

segment is generated. Take PULPino as an example: (a) when

the FSM is in PUSH state, the maximum value of the restricted

space range is the data address MAX A1 corresponding to the

current return address into the buffer, and the restricted space

range is (MAX A1-4, MAX A1]; (b) when the FSM is in POP

state, the POP operation is performed, and the maximum value

of the restricted The maximum value of the space range is the

POP out data address MAX A2, and the range of the restricted

space is (MAX A2-4, MAX A2]; (2) Generation of detection

results: the data address REAL-TIME A in the access buffer

of the processor write-back stage is collected in real time,

and it is judged whether REAL-TIME A is in the restricted

space, and if REAL-TIME A belongs to the restricted space,

there is a malicious attack to overwrite the return address of

the processor function; (3) Blocking the malicious attack of

overwriting the return address of the processor function: when

the protection mechanism gives a warning, first suspend all

the flow of the processor to avoid the buffer overflow attack to

complete the overwriting of the return address of the function;

then block the permission of the Store execution access buffer

executed by the current function segment; finally resume all

the flow of the processor to complete the blocking of the buffer

overflow attack.

B. Memory Protection Mechanism 2

The memory protection mechanisms described in this

section can be used to detect and defend against buffer

overflow attacks in advance. Memory protection mechanism

2 can realize pre-detection and pre-defense against array

out-of-bounds, but at the software level, it depends on the

size of the cache space actually requested by the current

function segment passed by the custom extension instruction,

so there is a risk of being bypassed by the attacker. Memory

protection mechanism 1 can only detect and defend against

buffer overflow attacks to overwrite the return address in

advance. Its advantage is that it is completely implemented by

hardware, and attackers cannot bypass it. The two protection

mechanisms complement each other and jointly deal with the

security threats brought by buffer overflow attacks. Memory

protection mechanism 2 is mainly composed of three parts,

including custom extended instructions (”Guard”), SIIDM

(Store Instruction Information Decoding Module, SIIDM) and

HBCB (Hardware Boundary Checking for Buffer, HBCB).

Memory protection mechanism 2 is deployed in the PULPino

kernel, and its implementation block diagram is shown in

Fig. 8.

IF ID EX WB

Pipeline of RISC-V Processor

Store Instruction Information 
Decoding Module

Instruction & Valid

Hardware Boundary 
Checking for Buffer

Result

Guard Decode Guard Execute

Ref Buffer Size

Fig. 8 The implementation diagram of memory protection mechanism 2

1) Custom Extension Instruction – ”Guard”: According

to the custom extension of RISC-V processor Instruction

Set Architecture (ISA), the Custom Extension Instruction –

”Guard” is realized by modifying the source code of part of

the compiler tool chain of the processor and the hardware

logic of the ID stage and EX stage of the kernel. The

”Guard” instruction is executed in the RISC-V processor

to generate the driver signal of this detection mechanism,

and at the same time, it can generate REF BS(Reference

Buffer Size, REF BS) of the buffer. So that This mechanism

can use REF BS to implement the boundary checking at

the hardware level of the buffer. When writing C code,

the ”Guard” instruction is added before the function that

may cause buffer overflow, such as: gets(), fgets(), strcpy(),

strncpy(), strlen(), etc., so as to realize the buffer boundary

check on the processor hardware level. The encoding and

meaning of ”guard” instruction are shown in Table II.

TABLE II
THE ENCODING AND MEANING OF ”GUARD” INSTRUCTION

insn imm12 func const5 opcdoe operation

Guard 12’h? 8’h01 5’h00 7’h77 {20′b0, imm12}−→s0

By decoding and executing ”Guard” instruction in RISC-V

processor, the immediate data carried by ”Guard” are stored

in the security register s0. For example, asm volatile (”Guard
s0, 12 ”) means that the ”Guard” passes the buffer size value

12 requested by the function at the C code level to the security

register s0.

2) Store Instruction Information Decoding Module: In

RISC-V processor, the instruction that stores data in the buffer

is only Store instruction, so the size of the buffer consumed

by the current function segment of RISC-V processor can be
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extracted by parsing Store instruction information in real-time.

Based on this, this section designs HBCB to complete the

extraction of the size of the buffer consumed by the current

function segment.

According to SIIDM, analyzing whether the currently

collected valid instructions is the type of Store instruction,

whether the immediate data carried by the Store instruction

is greater than or equal to 0, and Whether the increment

Δimm of the immediate data carried by the Store instruction

compared with that carried by the previous Store instruction

is 0 or 1 or 2 or 4. If the above conditions are met at the same

time, the size value Yi of buffer space to be consumed by the

current Store instruction is generated according to the funct3

encoding of the instruction. The calculation formula of Yi is

as (3):

Yi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4 StoreType == Word

2 StoreType == HalfWord

1 StoreType == Byte

0 others.

(3)

The value of i ranges from 1 to N, N refers to the maximum

count value of continuously detected valid instructions that

meet the conditions. Based on the obtained Yi, calculating the

size of the buffer consumed in the current function segment

in real time, The calculation formula is as (4):

RT BS =
N∑
i=1

Yi. (4)

3) Hardware Boundary Checking for Buffer: This module

is mainly used to detect and block buffer overflow in real-time.

After the execution of ”Guard” instruction, we read REF BS
stored in the security register s0 in real-time. At the same

time, we obtain the size value RT BS of buffer consumed

by the current function segment extracted and calculated by

SIIDM. HBCB compares REF BS with RT BS in real

time. If REF BS − RT BS ≥ 0 indicates that there is

no buffer overflow attack in the current function segment,

otherwise, there is a buffer overflow attack in the current

function segment.

According to the result of HBCB, the pipeline of processor

is stop immediately to avoid the buffer overflow attack to

complete the overwriting of the return address of the function.

Then, disable the permissions of the Store instructions

executing during the current function segment to store the

buffer. Finally, all the pipeline of processor is restored and

the buffer overflow attack is blocked.

IV. EXPERIMENTS AND ANALYSIS OF RESULTS

A. Secure Boot Experiment and Result Analysis Based on
RoT Self-Security

1) Secure Boot Experiment and Result Analysis: The Boot

Rom secure boot circuit plays a critical role in ensuring

the security of the RoT. As depicted in Fig. 9, this circuit

calculates the hash value of the Boot Code and generates

a simulation waveform of the secure boot signal. The hash

value is obtained and can be observed in the sm3 finished out

signal. In order to initiate the processor pipeline, the hash value

of the Boot Code must be compared with the hash value of the

security register stored in the processor. If these values match,

the pipeline start signal is activated, allowing the processor

to commence operation. This process provides an added layer

of security to the RoT by verifying the integrity of the Boot

Code and ensuring that it has not been tampered with.

After the pipeline is turned on, the Boot Code command

performs an integrity check on the user command and user

data and verifies the authenticity of the data, and compares

whether the calculated digest is consistent with the decrypted

digest. If they are consistent, the verification passes and the

subsequent commands are continued, the simulation waveform

is shown in Fig. 10.

The corresponding programs were run on PULPino’s

experimental platform, and the results of their code and

platform runs are shown in Fig. 11.

2) Key Derivation Circuit Experiment and Result Analysis:
The implemented RO-TRNG, RO-PUF and SM3 are created

as per Fig. 3 and deployed into the ZYNQ7010 FPGA, and

then the function of this KDF circuit is tested. Using ila to

trigger the final output valid signal sm3 finished out of the

KDF circuit, the result of the KDF circuit function test is

shown in Fig. 12.

The PUF ID is 96’h366074446d7514e960ec200d,

and the extracted 96Bit true random number is 96

h6dfaee3931c31ec8700a08d0, the PUF ID value is

96’h5b9a9a7d5cb60a2110e628dd, and the output of

the key derivation function circuit this time is 256’

h3b730147 0d720089 2f1b4412c698fd22 94e209b6d2f7fa24

b8acde3c354a9a8c, which is consistent with the value

calculated by the SM3 online calculation tool.

B. Experiments and Results Analysis of Memory Protection
Based on Trust Root Self-Security

Since PULPino’s compilation toolchain does not perform

a boundary check on the size of the dynamic stack space

requested by the function, it is assumed that the attacker knows

the physical entry address of the malicious code function

and plants a simple buffer overflow attack in the C program.

To simply run the example attack in PULPino, this thesis

writes the shellcode directly into the C program. The example

program with the buffer overflow attack is run on the baseline

processor and on the processor with secure memory protection

(the example program on the processor with secure memory

protection has an additional ”guard” instruction before strcpy),

and the code and its results on both platforms are shown in

Fig. 13. After the baseline processor suffers a buffer overflow

attack, the return address of func1 (PC=0x4d0) is changed to

the entry address of func2 (PC=0x488), thus executing the

shellcode injected by the attacker, and the program control

flow is hijacked by the attacker; the processor with the secure

memory protection mechanism is hijacked by the attacker due

to the ”guard” instruction and its hardware. The processor with

secure memory protection mechanism can ensure the normal

operation of the processor due to the ”guard” instruction and

its real-time boundary check logic at the hardware level, which
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Boot code Information Boot code hash value and pipeline boot signal

Fig. 9 The simulation waveform of the Boot Code hash value calculated by the processor secure boot circuit

Consistency of User Instructions and User Data Digest Computation

Fig. 10 Consistency check of user instruction and user data

PULPino running C program Processor Run Results

Fig. 11 User instructions and user data verification results running on the processor

Fig. 12 Functional test results of the key derivation function circuit

completes the pre-detection and defense of the processor

against buffer overflow, thus invalidating the buffer overflow

attack on the processor.

V. CONCLUSION

In our own security technology based on the RISC-V

RoT, we use secure boot and memory protection mechanisms

to protect the RoT from external attacks and threats, thus

improving the security and trustworthiness of the entire

system. For secure boot, we implemented a series of

verification and authentication steps to ensure the security of

the system during the boot process. First, we use a secure

boot circuit module to verify the integrity of the Boot Code

and check for modifications. Subsequently, we use digital

signature techniques to verify the authenticity and integrity of

user commands and user data to ensure that they have not been

tampered with. For memory protection mechanism, we use

hardware and software-based memory protection mechanism

to prevent memory leakage and tampering. To verify the

effectiveness of our proposed technique, we conducted a series

of experimental tests. The results show that our proposed

technique can ensure the security of the RoT itself to a certain

extent, thus improving the security and trustworthiness of the

whole system.
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Example code for buffer overflow attack Results of the baseline processor run

Results of the processor with 
secure memory protection mechanisms

Fig. 13 Results of the buffer overflow attack example program running on a baseline versus a processor with a secure memory protection mechanism
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