Search results for: temperature dependent dielectric constant.
2545 Finite Element Modeling of Heat and Moisture Transfer in Porous Material
Authors: V. D. Thi, M. Li, M. Khelifa, M. El Ganaoui, Y. Rogaume
Abstract:
This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model.Keywords: Finite element method, heat transfer, moisture transfer, porous materials, wood.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12822544 An Artificial Neural Network Model for Earthquake Prediction and Relations between Environmental Parameters and Earthquakes
Authors: S. Niksarlioglu, F. Kulahci
Abstract:
Earthquakes are natural phenomena that occur with influence of a lot of parameters such as seismic activity, changing in the ground waters' motion, changing in the water-s temperature, etc. On the other hand, the radon gas concentrations in soil vary as nonlinear generally with earthquakes. Continuous measurement of the soil radon gas is very important for determination of characteristic of the seismic activity. The radon gas changes as continuous with strain occurring within the Earth-s surface during an earthquake and effects from the physical and the chemical processes such as soil structure, soil permeability, soil temperature, the barometric pressure, etc. Therefore, at the modeling researches are notsufficient to knowthe concentration ofradon gas. In this research, we determined relationships between radon emissions based on the environmental parameters and earthquakes occurring along the East Anatolian Fault Zone (EAFZ), Turkiye and predicted magnitudes of some earthquakes with the artificial neural network (ANN) model.
Keywords: Earthquake, Modeling, Prediction, Radon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30122543 A New Algorithm for Cluster Initialization
Authors: Moth'd Belal. Al-Daoud
Abstract:
Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the k-means algorithm. Solutions obtained from this technique are dependent on the initialization of cluster centers. In this article we propose a new algorithm to initialize the clusters. The proposed algorithm is based on finding a set of medians extracted from a dimension with maximum variance. The algorithm has been applied to different data sets and good results are obtained.
Keywords: clustering, k-means, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21032542 Comparison of Power Generation Status of Photovoltaic Systems under Different Weather Conditions
Authors: Zhaojun Wang, Zongdi Sun, Qinqin Cui, Xingwan Ren
Abstract:
Based on multivariate statistical analysis theory, this paper uses the principal component analysis method, Mahalanobis distance analysis method and fitting method to establish the photovoltaic health model to evaluate the health of photovoltaic panels. First of all, according to weather conditions, the photovoltaic panel variable data are classified into five categories: sunny, cloudy, rainy, foggy, overcast. The health of photovoltaic panels in these five types of weather is studied. Secondly, a scatterplot of the relationship between the amount of electricity produced by each kind of weather and other variables was plotted. It was found that the amount of electricity generated by photovoltaic panels has a significant nonlinear relationship with time. The fitting method was used to fit the relationship between the amount of weather generated and the time, and the nonlinear equation was obtained. Then, using the principal component analysis method to analyze the independent variables under five kinds of weather conditions, according to the Kaiser-Meyer-Olkin test, it was found that three types of weather such as overcast, foggy, and sunny meet the conditions for factor analysis, while cloudy and rainy weather do not satisfy the conditions for factor analysis. Therefore, through the principal component analysis method, the main components of overcast weather are temperature, AQI, and pm2.5. The main component of foggy weather is temperature, and the main components of sunny weather are temperature, AQI, and pm2.5. Cloudy and rainy weather require analysis of all of their variables, namely temperature, AQI, pm2.5, solar radiation intensity and time. Finally, taking the variable values in sunny weather as observed values, taking the main components of cloudy, foggy, overcast and rainy weather as sample data, the Mahalanobis distances between observed value and these sample values are obtained. A comparative analysis was carried out to compare the degree of deviation of the Mahalanobis distance to determine the health of the photovoltaic panels under different weather conditions. It was found that the weather conditions in which the Mahalanobis distance fluctuations ranged from small to large were: foggy, cloudy, overcast and rainy.
Keywords: Fitting, principal component analysis, Mahalanobis distance, SPSS, MATLAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6752541 Passive Ventilation System Analysis using Solar Chimney in South of Algeria
Authors: B. Belfuguais, S. Larbi
Abstract:
The work presented in this study is related to an energy system analysis based on passive cooling system for dwellings. It consists to solar chimney energy performances determination versus geometrical and environmental considerations as the size and inlet width conditions of the chimney. Adrar site located in the southern region of Algeria is chosen for this study according to ambient temperature and solar irradiance technical data availability. Obtained results are related to the glazing temperature distributions, the chimney air flow and internal wall temperatures. The air room change per hour (ACH) parameter, the outlet air velocity and mass air flow rate are also determined. It is shown that the chimney width has a significant effect on energy performances compared to its entry size. A good agreement is observed between these results and those obtained by others from the literature.Keywords: Solar chimney, Energy performances, Passive ventilation, Numerical simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29262540 Design and Synthesis of Two Tunable Bandpass Filters Based On Varactors and Defected Ground Structure
Authors: M. Boulakroune, M. Challal, H. Louazene, S. Fentiz
Abstract:
This paper presents two types of microstrip bandpass filter (BPF) at microwave frequencies. The first one is a tunable BPF using planar patch resonators based on a varactor diode. The filter is formed by a triple mode circular patch resonator with two pairs of slots, in which the varactor diodes are connected. Indeed, this filter is initially centered at 2.4 GHz; the center frequency of the tunable patch filter could be tuned up to 1.8 GHz simultaneously with the bandwidth, reaching high tuning ranges. Lossless simulations were compared to those considering the substrate dielectric, conductor losses and the equivalent electrical circuit model of the tuning element in order to assess their effects. Within these variations, simulation results showed insertion loss better than 2 dB and return loss better than 10 dB over the passband. The second structure is a BPF for ultra-wideband (UWB) applications based on multiple-mode resonator (MMR) and rectangular-shaped defected ground structure (DGS). This filter, which is compact size of 25.2 x 3.8 mm2, provides in the pass band an insertion loss of 0.57 dB and a return loss greater than 12 dB. The proposed filters presents good performances and the simulation results are in satisfactory agreement with the experimentation ones reported elsewhere.
Keywords: Defected ground structure, varactor diode, microstrip bandpass filter, multiple-mode resonator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26462539 Axisymmetric Vibrations of Layered Cylindrical Shells with Cracks
Authors: Larissa Roots
Abstract:
Vibrations of circular cylindrical shells made of layered composite materials are considered. The shells are weakened by circumferential cracks. The influence of circumferential cracks with constant depth on the vibration of the shell is prescribed with the aid of a matrix of local flexibility coupled with the coefficient of the stress intensity known in the linear elastic fracture mechanics. Numerical results are presented for the case of the shell with one circular crack.
Keywords: Layered shell, axisymmetric vibration, crack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17812538 Influence of the Moisture Content on the Flowability of Fine-Grained Iron Ore Concentrate
Authors: C. Lanzerstorfer, M. Hinterberger
Abstract:
The iron content of the ore used is crucial for the productivity and coke consumption rate in blast furnace pig iron production. Therefore, most iron ore deposits are processed in beneficiation plants to increase the iron content and remove impurities. In several comminution stages, the particle size of the ore is reduced to ensure that the iron oxides are physically liberated from the gangue. Subsequently, physical separation processes are applied to concentrate the iron ore. The fine-grained ore concentrates produced need to be transported, stored, and processed. For smooth operation of these processes, the flow properties of the material are crucial. The flowability of powders depends on several properties of the material: grain size, grain size distribution, grain shape, and moisture content of the material. The flowability of powders can be measured using ring shear testers. In this study, the influence of the moisture content on the flowability for the Krivoy Rog magnetite iron ore concentrate was investigated. Dry iron ore concentrate was mixed with varying amounts of water to produce samples with a moisture content in the range of 0.2 to 12.2%. The flowability of the samples was investigated using a Schulze ring shear tester. At all measured values of the normal stress (1.0 kPa – 20 kPa), the flowability decreased significantly from dry ore to a moisture content of approximately 3-5%. At higher moisture contents, the flowability was nearly constant, while at the maximum moisture content the flowability improved for high values of the normal stress only. The results also showed an improving flowability with increasing consolidation stress for all moisture content levels investigated. The wall friction angle of the dust with carbon steel (S235JR), and an ultra-high molecule low-pressure polyethylene (Robalon) was also investigated. The wall friction angle increased significantly from dry ore to a moisture content of approximately 3%. For higher moisture content levels, the wall friction angles were nearly constant. Generally, the wall friction angle was approximately 4° lower at the higher wall normal stress.
Keywords: Iron ore concentrate, flowability, moisture content, wall friction angle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15212537 Kinetics Studies on Biological Treatment of Tannery Wastewater Using Mixed Culture
Authors: G.Durai, N.Rajamohan, C.Karthikeyan, M.Rajasimman
Abstract:
In this study, aerobic digestion of tannery industry wastewater was carried out using mixed culture obtained from common effluent treatment plant treating tannery wastewater. The effect of pH, temperature, inoculum concentration, agitation speed and initial substrate concentration on the reduction of organic matters were found. The optimum conditions for COD reduction was found to be pH - 7 (60%), temperature - 30ÔùªC (61%), inoculum concentration - 2% (61%), agitation speed - 150rpm (65%) and initial substrate concentration - 1560 mg COD/L (74%). Kinetics studies were carried by using Monod model, First order, Diffusional model and Singh model. From the results it was found that the Monod model suits well for the degradation of tannery wastewater using mixed microbial consortium.Keywords: Tannery, Wastewater, Biological treatment, Aerobic, Mixed culture, Kinetics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31682536 Microwave-Assisted Alginate Extraction from Portuguese Saccorhiza polyschides – Influence of Acid Pretreatment
Authors: Mário Silva, Filipa Gomes, Filipa Oliveira, Simone Morais, Cristina Delerue-Matos
Abstract:
Brown seaweeds are abundant in Portuguese coastline and represent an almost unexploited marine economic resource. One of the most common species, easily available for harvesting in the northwest coast, is Saccorhiza polyschides grows in the lowest shore and costal rocky reefs. It is almost exclusively used by local farmers as natural fertilizer, but contains a substantial amount of valuable compounds, particularly alginates, natural biopolymers of high interest for many industrial applications. Alginates are natural polysaccharides present in cell walls of brown seaweed, highly biocompatible, with particular properties that make them of high interest for the food, biotechnology, cosmetics and pharmaceutical industries. Conventional extraction processes are based on thermal treatment. They are lengthy and consume high amounts of energy and solvents. In recent years, microwave-assisted extraction (MAE) has shown enormous potential to overcome major drawbacks that outcome from conventional plant material extraction (thermal and/or solvent based) techniques, being also successfully applied to the extraction of agar, fucoidans and alginates. In the present study, acid pretreatment of brown seaweed Saccorhiza polyschides for subsequent microwave-assisted extraction (MAE) of alginate was optimized. Seaweeds were collected in Northwest Portuguese coastal waters of the Atlantic Ocean between May and August, 2014. Experimental design was used to assess the effect of temperature and acid pretreatment time in alginate extraction. Response surface methodology allowed the determination of the optimum MAE conditions: 40 mL of HCl 0.1 M per g of dried seaweed with constant stirring at 20ºC during 14h. Optimal acid pretreatment conditions have enhanced significantly MAE of alginates from Saccorhiza polyschides, thus contributing for the development of a viable, more environmental friendly alternative to conventional processes.
Keywords: Acid pretreatment, Alginate, Brown seaweed, Microwave-assisted extraction, Response surface methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33452535 Toward a New Simple Analytical Formulation of Navier-Stokes Equations
Authors: Gunawan Nugroho, Ahmed M. S. Ali, Zainal A. Abdul Karim
Abstract:
Incompressible Navier-Stokes equations are reviewed in this work. Three-dimensional Navier-Stokes equations are solved analytically. The Mathematical derivation shows that the solutions for the zero and constant pressure gradients are similar. Descriptions of the proposed formulation and validation against two laminar experiments and three different turbulent flow cases are reported in this paper. Even though, the analytical solution is derived for nonreacting flows, it could reproduce trends for cases including combustion.Keywords: Navier-Stokes Equations, potential function, turbulent flows.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21402534 Vermicomposting of Waste Corn Pulp Blended with Cow Dung Manure using Eisenia Fetida
Authors: Musaida M. M. Manyuchi, Anthony Phiri, Ngoni Chirinda, Perkins Muredzi, Joseph Govhaand, Thamary Sengudzwa
Abstract:
Waste corn pulp was investigated as a potential feedstock during vermicomposting using Eisenia fetida. Corn pulp is the major staple food in Southern Africa and constitutes about 25% of the total organic waste. Wastecooked corn pulp was blended with cow dung in the ratio 6:1 respectively to optimize the vermicomposting process. The feedstock was allowed to vermicompost for 30 days. The vermicomposting took place in a 3- tray plastic worm bin. Moisture content, temperature, pH, and electrical conductivity were monitoreddaily. The NPK content was determined at day 30. During vermicomposting, moisture content increased from 27.68% to 52.41%, temperature ranged between 19- 25◦C, pH increased from 5.5 to 7.7, and electrical conductivity decreased from 80000μS/cm to 60000μS/cm. The ash content increased from 11.40% to 28.15%; additionally the volatile matter increased from 1.45% to 10.02%. An odorless, dark brown vermicompost was obtained. The vermicompost NPK content was 4.19%, 1.15%, and 6.18% respectively.
Keywords: Corn pulp, Eisenia fetida, vermicomposting, waste management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33182533 Supercritical Carbon Dioxide Extraction of Phenolics and Tocopherols Enriched Oil from Wheat Bran
Authors: Kyung-Tae Kwon, Md. Salim Uddin, Go-Woon Jung, Jeong-Eun Sim, Byung-Soo Chun
Abstract:
Supercritical carbon dioxide (SC-CO2) was used as a solvent to extract oil from wheat bran. Extractions were carried out in a semi-batch process at temperatures ranging from 40 to 60ºC and pressures ranging from 10 to 30 MPa, with a carbon dioxide (CO2) flow rate of 26.81 g/min. The oil obtained from wheat bran at different extraction conditions was quantitatively measured to investigate the solubility of oil in SC-CO2. The solubility of wheat bran oil was found to be enhanced in high temperature and pressure. The composition of fatty acids in wheat bran oil was measured by gas chromatography (GC). Linoleic, palmitic, oleic and γ-linolenic acid were the major fatty acids of wheat bran oil. Tocopherol contents in oil were analyzed by high performance liquid chromatography (HPLC). The highest amount of phenolics and tocopherols (α and β) were found at temperature of 60ºC and pressure of 30 MPa.Keywords: Supercritical carbon dioxide, Tocopherols, Totalphenolic content, Wheat bran oil
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25672532 Integrating Dependent Material Planning Cycle into Building Information Management: A Building Information Management-Based Material Management Automation Framework
Authors: Faris Elghaish, Sepehr Abrishami, Mark Gaterell, Richard Wise
Abstract:
The collaboration and integration between all building information management (BIM) processes and tasks are necessary to ensure that all project objectives can be delivered. The literature review has been used to explore the state of the art BIM technologies to manage construction materials as well as the challenges which have faced the construction process using traditional methods. Thus, this paper aims to articulate a framework to integrate traditional material planning methods such as ABC analysis theory (Pareto principle) to analyse and categorise the project materials, as well as using independent material planning methods such as Economic Order Quantity (EOQ) and Fixed Order Point (FOP) into the BIM 4D, and 5D capabilities in order to articulate a dependent material planning cycle into BIM, which relies on the constructability method. Moreover, we build a model to connect between the material planning outputs and the BIM 4D and 5D data to ensure that all project information will be accurately presented throughout integrated and complementary BIM reporting formats. Furthermore, this paper will present a method to integrate between the risk management output and the material management process to ensure that all critical materials are monitored and managed under the all project stages. The paper includes browsers which are proposed to be embedded in any 4D BIM platform in order to predict the EOQ as well as FOP and alarm the user during the construction stage. This enables the planner to check the status of the materials on the site as well as to get alarm when the new order will be requested. Therefore, this will lead to manage all the project information in a single context and avoid missing any information at early design stage. Subsequently, the planner will be capable of building a more reliable 4D schedule by allocating the categorised material with the required EOQ to check the optimum locations for inventory and the temporary construction facilitates.
Keywords: Building information management, BIM, economic order quantity, fixed order point, BIM 4D, BIM 5D.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9112531 Effect of Tethers Tension Force in the Behavior of a Tension Leg Platform Subjected to Hydrodynamic Force
Authors: Amr R. El-Gamal, Ashraf Essa, Ayman Ismail
Abstract:
The tension leg platform (TLP) is one of the compliant structures which are generally used for deep water oil exploration. With respect to the horizontal degrees of freedom, it behaves like a floating structure moored by vertical tethers which are pretension due to the excess buoyancy of the platform, whereas with respect to the vertical degrees of freedom, it is stiff and resembles a fixed structure and is not allowed to float freely. In the current study, a numerical study for square TLP using modified Morison equation was carried out in the time domain with water particle kinematics using Airy’s linear wave theory to investigate the effect of changing the tether tension force on the stiffness matrix of TLP's, the dynamic behavior of TLP's; and on the fatigue stresses in the cables. The effect was investigated for different parameters of the hydrodynamic forces such as wave periods, and wave heights. The numerical study takes into consideration the effect of coupling between various degrees of freedom. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables. Nonlinear equation was solved using Newmark’s beta integration method. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e. 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether tension force, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations that is significantly dependent on wave height, and that special attention should be given to tethers fatigue because of their high tensile static and dynamic stress.
Keywords: Tethers tension, tension leg platforms, hydrodynamic wave forces, wave characteristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29302530 Catalytical Effect of Fluka 05120 on Methane Decomposition
Authors: Vidyasagar Shilapuram, Nesrin Ozalp, Anam Waheed
Abstract:
Carboneous catalytical methane decomposition is an attractive process because it produces two valuable products: hydrogen and carbon. Furthermore, this reaction does not emit any green house or hazardous gases. In the present study, experiments were conducted in a thermo gravimetric analyzer using Fluka 05120 as carboneous catalyst to analyze its effectiveness in methane decomposition. Various temperatures and methane partial pressures were chosen and carbon mass gain was observed as a function of time. Results are presented in terms of carbon formation rate, hydrogen production and catalytical activity. It is observed that there is linearity in carbon deposition amount by time at lower reaction temperature (780 °C). On the other hand, it is observed that carbon and hydrogen formation rates are increased with increasing temperature. Finally, we observed that the carbon formation rate is highest at 950 °C within the range of temperatures studied.Keywords: Catalysis, Fluka 05120, Hydrogen production, Methane decomposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18952529 Nonlinear Response of Infinite Beams on a Multilayer Tensionless Extensible Geo-Synthetic: Reinforced Earth Beds under Moving Load
Authors: K. Karuppasamy
Abstract:
In this paper, analysis of an infinite beam resting on multilayer tensionless extensible geosynthetic reinforced granular fill-poor soil system overlying soft soil strata under moving load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear winkler springs representing the underlying the very poor soil. The multilayer tensionless extensible geosynthetic layer has been assumed to deform such that at interface the geosynthetic and the soil have some deformation. Nonlinear behaviour of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Governing differential equations of the soil foundation system have been obtained and solved with the help of appropriate boundary conditions. The solution has been obtained by employing finite difference method by means of Gauss-Siedal iterative scheme. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil–foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. These parameters include magnitude of applied load, velocity of load, damping, ultimate resistance of poor soil and granular fill layer. Range of values of parameters has been considered as per Indian Railway conditions. This study clearly observed that the comparisons of multilayer tensionless extensible geosynthetic reinforcement with poor foundation soil and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil–foundation system.Keywords: Infinite beams, multilayer tensionless extensible geosynthetic, granular layer, moving load, nonlinear behavior of poor soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24572528 Leaching Characteristics of Upgraded Copper Flotation Tailings
Authors: Mercy M. Ramakokovhu, Henry Kasaini, Richard K.K. Mbaya
Abstract:
The copper flotation tailings from Konkola Copper mine in Nchanga, Zambia were used in the study. The purpose of this study was to determine the leaching characteristics of the tailings material prior and after the physical beneficiation process is employed. The Knelson gravity concentrator (KC-MD3) was used for the beneficiation process. The copper leaching efficiencies and impurity co-extraction percentages in both the upgraded and the raw feed material were determined at different pH levels and temperature. It was observed that the copper extraction increased with an increase in temperature and a decrease in pH levels. In comparison to the raw feed sample, the upgraded sample reported a maximum copper extraction of 69% which was 9%, higher than raw feed % extractions. The impurity carry over was reduced from 18% to 4 % on the upgraded sample. The reduction in impurity co-extraction was as a result of the removal of the reactive gangue elements during the upgrading process, this minimized the number of side reaction occurring during leaching.Keywords: Atmospheric leaching, Copper, Iron, Knelson concentrator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29062527 Stochastic Simulation of Reaction-Diffusion Systems
Authors: Paola Lecca, Lorenzo Dematte
Abstract:
Reactiondiffusion systems are mathematical models that describe how the concentration of one or more substances distributed in space changes under the influence of local chemical reactions in which the substances are converted into each other, and diffusion which causes the substances to spread out in space. The classical representation of a reaction-diffusion system is given by semi-linear parabolic partial differential equations, whose general form is ÔêétX(x, t) = DΔX(x, t), where X(x, t) is the state vector, D is the matrix of the diffusion coefficients and Δ is the Laplace operator. If the solute move in an homogeneous system in thermal equilibrium, the diffusion coefficients are constants that do not depend on the local concentration of solvent and of solutes and on local temperature of the medium. In this paper a new stochastic reaction-diffusion model in which the diffusion coefficients are function of the local concentration, viscosity and frictional forces of solvent and solute is presented. Such a model provides a more realistic description of the molecular kinetics in non-homogenoeus and highly structured media as the intra- and inter-cellular spaces. The movement of a molecule A from a region i to a region j of the space is described as a first order reaction Ai k- → Aj , where the rate constant k depends on the diffusion coefficient. Representing the diffusional motion as a chemical reaction allows to assimilate a reaction-diffusion system to a pure reaction system and to simulate it with Gillespie-inspired stochastic simulation algorithms. The stochastic time evolution of the system is given by the occurrence of diffusion events and chemical reaction events. At each time step an event (reaction or diffusion) is selected from a probability distribution of waiting times determined by the specific speed of reaction and diffusion events. Redi is the software tool, developed to implement the model of reaction-diffusion kinetics and dynamics. It is a free software, that can be downloaded from http://www.cosbi.eu. To demonstrate the validity of the new reaction-diffusion model, the simulation results of the chaperone-assisted protein folding in cytoplasm obtained with Redi are reported. This case study is redrawing the attention of the scientific community due to current interests on protein aggregation as a potential cause for neurodegenerative diseases.
Keywords: Reaction-diffusion systems, Fick's law, stochastic simulation algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17382526 Verified Experiment: Intelligent Fuzzy Weighted Input Estimation Method to Inverse Heat Conduction Problem
Authors: Chen-Yu Wang, Tsung-Chien Chen, Ming-Hui Lee, Jen-Feng Huang
Abstract:
In this paper, the innovative intelligent fuzzy weighted input estimation method (FWIEM) can be applied to the inverse heat transfer conduction problem (IHCP) to estimate the unknown time-varying heat flux efficiently as presented. The feasibility of this method can be verified by adopting the temperature measurement experiment. We would like to focus attention on the heat flux estimation to three kinds of samples (Copper, Iron and Steel/AISI 304) with the same 3mm thickness. The temperature measurements are then regarded as the inputs into the FWIEM to estimate the heat flux. The experiment results show that the proposed algorithm can estimate the unknown time-varying heat flux on-line.Keywords: Fuzzy Weighted Input Estimation Method, IHCP andHeat Flux.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15402525 Effect of Temperature and Time on Dilute Acid Pretreatment of Corn Cobs
Authors: Sirikarn Satimanont, Apanee Luengnaruemitchai, Sujitra Wongkasemjit
Abstract:
Lignocellulosic materials are new targeted source to produce second generation biofuels like biobutanol. However, this process is significantly resisted by the native structure of biomass. Therefore, pretreatment process is always essential to remove hemicelluloses and lignin prior to the enzymatic hydrolysis. The goals of pretreatment are removing hemicelluloses and lignin, increasing biomass porosity, and increasing the enzyme accessibility. The main goal of this research is to study the important variables such as pretreatment temperature and time, which can give the highest total sugar yield in pretreatment step by using dilute phosphoric acid. After pretreatment, the highest total sugar yield of 13.61 g/L was obtained under an optimal condition at 140°C for 10 min of pretreatment time by using 1.75% (w/w) H3PO4 and at 15:1 liquid to solid ratio. The total sugar yield of two-stage process (pretreatment+enzymatic hydrolysis) of 27.38 g/L was obtained.Keywords: Butanol production, Corn cobs, Phosphoric acid, Pretreatment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27342524 Iterative solutions to the linear matrix equation AXB + CXTD = E
Authors: Yongxin Yuan, Jiashang Jiang
Abstract:
In this paper the gradient based iterative algorithm is presented to solve the linear matrix equation AXB +CXTD = E, where X is unknown matrix, A,B,C,D,E are the given constant matrices. It is proved that if the equation has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. Two numerical examples show that the introduced iterative algorithm is quite efficient.Keywords: matrix equation, iterative algorithm, parameter estimation, minimum norm solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15552523 Effect of Equivalence Ratio on Performance of Fluidized Bed Gasifier Run with Sized Biomass
Authors: J. P. Makwana, A. K. Joshi, Rajesh N. Patel, Darshil Patel
Abstract:
Recently, fluidized bed gasification becomes an attractive technology for power generation due to its higher efficiency. The main objective pursued in this work is to investigate the producer gas production potential from sized biomass (sawdust and pigeon pea) by applying the air gasification technique. The size of the biomass selected for the study was in the range of 0.40-0.84 mm. An experimental study was conducted using a fluidized bed gasifier with 210 mm diameter and 1600 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures 700 to 900 °C, equivalence ratio 0.16 to 0.46 were studied. It was concluded that substantial amounts of producer gas (up to 1110 kcal/m3) could be produced utilizing biomass such as sawdust and pigeon pea by applying this fluidization technique. For both samples, the rise of temperature till 900 °C and equivalence ratio of 0.4 favored further gasification reactions and resulted into producer gas with calorific value 1110 kcal/m3.Keywords: Sized biomass, fluidized bed gasifier, equivalence ratio, temperature profile, gas composition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17362522 Effect of Oxygen on Biochar Yield and Properties
Authors: Ramlan Zailani, Halim Ghafar, Mohamad Sofian So'aib
Abstract:
Air infiltration in mass scale industrial applications of bio char production is inevitable. The presence of oxygen during the carbonization process is detrimental to the production of biochar yield and properties. The experiment was carried out on several wood species in a fixed-bed pyrolyser under various fractions of oxygen ranging from 0% to 11% by varying nitrogen and oxygen composition in the pyrolysing gas mixtures at desired compositions. The bed temperature and holding time were also varied. Process optimization was carried out by Response Surface Methodology (RSM) by employing Central Composite Design (CCD) using Design Expert 6.0 Software. The effect of oxygen ratio and holding time on biochar yield within the range studied were statistically significant. From the analysis result, optimum condition of 15.2% biochar yield of mangrove wood was predicted at pyrolysis temperature of 403 oC, oxygen percentage of 2.3% and holding time of two hours. This prediction agreed well with the experiment finding of 15.1% biochar yield.Keywords: Mangrove wood, slow pyrolysis, oxygen infiltration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34472521 Experimental Chevreul’s Salt Production Methods on Copper Recovery
Authors: Turan Çalban, Oral Laçin, Abdüsselam Kurtbas
Abstract:
Experimental production methods of Chevreul’s salt being an intermediate stage product in copper recovery were investigated on this article. Chevreul’s salt, Cu2SO3.CuSO3.2H2O, being a mixed valence copper sulphite compound, has been obtained by using different methods and reagents. Chevreul’s salt has an intense brick-red color. It is highly stable and expensive. The production of Chevreul’s salt plays a key role in hydrometallurgy. Thermodynamic tendency on precipitation of Chevreul’s salt is related to pH and temperature. Besides, SO2 gaseous is a versatile reagent for precipitating of copper sulphites, Using of SO2 for selective precipitation can be made by appropriate adjustments of pH and temperature. Chevreul’s salt does not form in acidic solutions if those solutions contains considerable amount of sulfurous acid. It is necessary to maintain between pH 2–4.5, because, solubility of Chevreul’s salt increases with decreasing of pH values. Also, the region which Chevreul’s salt is stable can be seen from the potentialpH diagram.
Keywords: Chevreul’s salt, copper recovery, copper sulphite, stage product.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30682520 Thermo-mechanical Deformation Behavior of Functionally Graded Rectangular Plates Subjected to Various Boundary Conditions and Loadings
Authors: Mohammad Talha, B. N. Singh
Abstract:
This paper deals with the thermo-mechanical deformation behavior of shear deformable functionally graded ceramicmetal (FGM) plates. Theoretical formulations are based on higher order shear deformation theory with a considerable amendment in the transverse displacement using finite element method (FEM). The mechanical properties of the plate are assumed to be temperaturedependent and graded in the thickness direction according to a powerlaw distribution in terms of the volume fractions of the constituents. The temperature field is supposed to be a uniform distribution over the plate surface (XY plane) and varied in the thickness direction only. The fundamental equations for the FGM plates are obtained using variational approach by considering traction free boundary conditions on the top and bottom faces of the plate. A C0 continuous isoparametric Lagrangian finite element with thirteen degrees of freedom per node have been employed to accomplish the results. Convergence and comparison studies have been performed to demonstrate the efficiency of the present model. The numerical results are obtained for different thickness ratios, aspect ratios, volume fraction index and temperature rise with different loading and boundary conditions. Numerical results for the FGM plates are provided in dimensionless tabular and graphical forms. The results proclaim that the temperature field and the gradient in the material properties have significant role on the thermo-mechanical deformation behavior of the FGM plates.
Keywords: Functionally graded material, higher order shear deformation theory, finite element method, independent field variables.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23342519 A Two-Step, Temperature-Staged Direct Coal Liquefaction Process
Authors: Reyna Singh, David Lokhat, Milan Carsky
Abstract:
The world crude oil demand is projected to rise to 108.5 million bbl/d by the year 2035. With reserves estimated at 869 billion tonnes worldwide, coal remains an abundant resource. The aim of this work was to produce a high value hydrocarbon liquid product using a Direct Coal Liquefaction (DCL) process at, relatively mild operating conditions. Via hydrogenation, the temperature-staged approach was investigated in a dual reactor lab-scale pilot plant facility. The objectives included maximising thermal dissolution of the coal in the presence of tetralin as the hydrogen donor solvent in the first stage with 2:1 and 3:1 solvent: coal ratios. Subsequently, in the second stage, hydrogen saturation, in particular, hydrodesulphurization (HDS) performance was assessed. Two commercial hydrotreating catalysts were investigated viz. NickelMolybdenum (Ni-Mo) and Cobalt-Molybdenum (Co-Mo). GC-MS results identified 77 compounds and various functional groups present in the first and second stage liquid product. In the first stage 3:1 ratios and liquid product yields catalysed by magnetite were favoured. The second stage product distribution showed an increase in the BTX (Benzene, Toluene, Xylene) quality of the liquid product, branched chain alkanes and a reduction in the sulphur concentration. As an HDS performer and selectivity to the production of long and branched chain alkanes, Ni-Mo had an improved performance over Co-Mo. Co-Mo is selective to a higher concentration of cyclohexane. For 16 days on stream each, Ni-Mo had a higher activity than Co-Mo. The potential to cover the demand for low–sulphur, crude diesel and solvents from the production of high value hydrocarbon liquid in the said process, is thus demonstrated.
Keywords: Catalyst, coal, liquefaction, temperature-staged.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16412518 Zinc Borate Synthesis Using Hydrozincite and Boric Acid with Ultrasonic Method
Authors: D. S. Vardar, A. S. Kipcak, F. T. Senberber, E. M. Derun, N. Tugrul, S. Piskin
Abstract:
Zinc borate is an important inorganic hydrate borate material, which can be used as a flame retardant agent and corrosion resistance material. This compound can loss its structural water content at higher than 290°C. Due to thermal stability; Zinc Borate can be used as flame retardant at high temperature process of plastic and gum. In this study, the ultrasonic reaction of zinc borates were studied using hydrozincite (Zn5(CO3)2·(OH)6) and boric acid (H3BO3) raw materials. Before the synthesis raw materials were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Ultrasonic method is a new application on the zinc borate synthesis. The synthesis parameters were set to 90°C reaction temperature and 55 minutes of reaction time, with 1:1, 1:2, 1:3, 1:4 and 1:5 molar ratio of starting materials (Zn5(CO3)2·(OH)6 : H3BO3). After the zinc borate synthesis, the products were analyzed by XRD and FT-IR. As a result, optimum molar ratio of 1:5 is determined for the synthesis of zinc borates with ultrasonic method.Keywords: Borate, ultrasonic method, zinc borate, zinc borate synthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20642517 Biodiesel as an Alternative Fuel for Diesel Engines
Authors: F. Halek, A. Kavousi, M. Banifatemi
Abstract:
There is growing interest in biodiesel (fatty acid methyl ester or FAME) because of the similarity in its properties when compared to those of diesel fuels. Diesel engines operated on biodiesel have lower emissions of carbon monoxide, unburned hydrocarbons, particulate matter, and air toxics than when operated on petroleum-based diesel fuel. Production of fatty acid methyl ester (FAME) from rapeseed (nonedible oil) fatty acid distillate having high free fatty acids (FFA) was investigated in this work. Conditions for esterification process of rapeseed oil were 1.8 % H2SO4 as catalyst, MeOH/oil of molar ratio 2 : 0.1 and reaction temperature 65 °C, for a period of 3h. The yield of methyl ester was > 90 % in 1 h. The amount of FFA was reduced from 93 wt % to less than 2 wt % at the end of the esterification process. The FAME was pureed by neutralization with 1 M sodium hydroxide in water solution at a reaction temperature of 62 °C. The final FAME product met with the biodiesel quality standard, and ASTM D 6751.Keywords: Alternative Fuels, Biodiesel, Fatty Acid, MethylEster, Seed Oil, Transesterification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21082516 Torrefaction of Malaysian Palm Kernel Shell into Value-Added Solid Fuels
Authors: Amin A. Jaafar, Murni M. Ahmad
Abstract:
This project aims to investigate the potential of torrefaction to improve the properties of Malaysian palm kernel shell (PKS) as a solid fuel. A study towards torrefaction of PKS was performed under various temperature and residence time of 240, 260, and 280oC and 30, 60, and 90 minutes respectively. The torrefied PKS was characterized in terms of the mass yield, energy yield, elemental composition analysis, calorific value analysis, moisture and volatile matter contents, and ash and fixed carbon contents. The mass and energy yield changes in the torrefied PKS were observed to prove that the temperature has more effect compare to residence time in the torrefaction process. The C content of PKS increases while H and O contents decrease after torrefaction, which resulted in higher heating value between 5 to 16%. Meanwhile, torrefaction caused the ash and fixed carbon content of PKS to increase, and the moisture and volatile matter to decrease.Keywords: biomass, palm kernel shell, pretreatment, solid fuel, torrefaction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3593