Search results for: plant extract
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1505

Search results for: plant extract

95 Role of Fish Hepatic Aldehyde Oxidase in Oxidative in vitro Metabolism of Phenanthridine Heterocyclic Aromatic Compound

Authors: Khaled S. Al Salhen

Abstract:

Aldehyde oxidase is molybdo-flavoenzyme involved in the oxidation of hundreds of endogenous and exogenous and N-heterocyclic compounds and environmental pollutants. Uncharged N-heterocyclic aromatic compounds such phenanthridine are commonly distributed pollutants in soil, air, sediments, surface water and groundwater, and in animal and plant tissues. Phenanthridine as uncharged N-heterocyclic aromatic compound was incubated with partially purified aldehyde oxidase from rainbow trout fish liver. Reversed-phase HLPC method was used to separate the oxidation products from phenanthridine and the metabolite was identified. The 6(5H)-phenanthridinone was identified the major metabolite by partially purified aldehyde oxidase from fish liver. Kinetic constant for the oxidation reactions were determined spectrophotometrically and showed that this substrate has a good affinity (Km = 78 ± 7.6µM) for hepatic aldehyde oxidase, will be a significant pathway. This study confirms that partially purified aldehyde oxidase from fish liver is indeed the enzyme responsible for the in vitro production 6(5H)-phenanthridinone metabolite as it is a major metabolite by mammalian aldehyde oxidase, coupled with a relatively high oxidation rate (0.77± 0.03 nmol/min/mg protein). In addition, the kinetic parameters of hepatic fish aldehyde oxidase towards the phenanthridine substrate indicate that in vitro biotransformation by hepatic fish aldehyde oxidase will be a significant pathway. This study confirms that partially purified aldehyde oxidase from fish liver is indeed the enzyme responsible for the in vitro production 6(5H)-phenanthridinone metabolite as it is a major metabolite by mammalian aldehyde oxidase.

Keywords: Aldehyde oxidase, Fish, Phenanthridine, Specificity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236
94 Research on the Aeration Systems’ Efficiency of a Lab-Scale Wastewater Treatment Plant

Authors: Oliver Marunțălu, Elena Elisabeta Manea, Lăcrămioara Diana Robescu, Mihai Necșoiu, Gheorghe Lăzăroiu, Dana Andreya Bondrea

Abstract:

In order to obtain efficient pollutants removal in small-scale wastewater treatment plants, uniform water flow has to be achieved. The experimental setup, designed for treating high-load wastewater (leachate), consists of two aerobic biological reactors and a lamellar settler. Both biological tanks were aerated by using three different types of aeration systems - perforated pipes, membrane air diffusers and tube ceramic diffusers. The possibility of homogenizing the water mass with each of the air diffusion systems was evaluated comparatively. The oxygen concentration was determined by optical sensors with data logging. The experimental data was analyzed comparatively for all three different air dispersion systems aiming to identify the oxygen concentration variation during different operational conditions. The Oxygenation Capacity was calculated for each of the three systems and used as performance and selection parameter. The global mass transfer coefficients were also evaluated as important tools in designing the aeration system. Even though using the tubular porous diffusers leads to higher oxygen concentration compared to the perforated pipe system (which provides medium-sized bubbles in the aqueous solution), it doesn’t achieve the threshold limit of 80% oxygen saturation in less than 30 minutes. The study has shown that the optimal solution for the studied configuration was the radial air diffusers which ensure an oxygen saturation of 80% in 20 minutes. An increment of the values was identified when the air flow was increased.

Keywords: Flow, aeration, bioreactor, oxygen concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410
93 Detection of Transgenes in Cotton (Gossypium hirsutum L.) by Using Biotechnology/Molecular Biological Techniques

Authors: Ahmad Ali Shahid, Muhammad Shakil Shaukat, Kamran Shehzad Bajwa, Abdul Qayyum Rao, Tayyab Husnain

Abstract:

Agriculture is the backbone of economy of Pakistan and cotton is the major agricultural export and supreme source of raw fiber for our textile industry. To combat severe problems of insect and weed, combination of three genes namely Cry1Ac, Cry2A and EPSPS genes was transferred in locally cultivated cotton variety MNH-786 with the use of Agrobacterium mediated genetic transformation. The present study focused on the molecular screening of transgenic cotton plants at T3 generation in order to confirm integration and expression of all three genes (Cry1Ac, Cry2A and EPSP synthase) into the cotton genome. Initially, glyphosate spray assay was used for screening of transgenic cotton plants containing EPSP synthase gene at T3 generation. Transgenic cotton plants which were healthy and showed no damage on leaves were selected after 07 days of spray. For molecular analysis of transgenic cotton plants in the laboratory, the genomic DNA of these transgenic cotton plants were isolated and subjected to amplification of the three genes. Thus, seventeen out of twenty (Cry1Ac gene), ten out of twenty (Cry2A gene) and all twenty (EPSP synthase gene) were produced positive amplification. On the base of PCR amplification, ten transgenic plant samples were subjected to protein expression analysis through ELISA. The results showed that eight out of ten plants were actively expressing the three transgenes. Real-time PCR was also done to quantify the mRNA expression levels of Cry1Ac and EPSP synthase gene. Finally, eight plants were confirmed for the presence and active expression of all three genes at T3 generation.

Keywords: Agriculture, Cotton, Transformation, Cry Genes, ELISA and PCR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3084
92 Socio-Economic Influences on Soilless Agriculture

Authors: G. V. Byrd, B. B. Ghaley, E. Hayashi

Abstract:

In urban farming, research and innovation are taking place at an unprecedented pace, and soilless growing technologies are emerging at different rates motivated by different objectives in various parts of the world. Local food production is ultimately a main objective everywhere, but adoption rates and expressions vary with socio-economic drivers. Herein, the status of hydroponics and aquaponics is summarized for four countries with diverse socio-economic settings: Europe (Denmark), Asia (Japan and Nepal) and North America (US). In Denmark, with a strong environmental ethic, soilless growing is increasing in urban agriculture because it is considered environmentally friendly. In Japan, soil-based farming is being replaced with commercial plant factories using advanced technology such as complete environmental control and computer monitoring. In Nepal, where rapid loss of agricultural land is occurring near cities, dozens of hydroponics and aquaponics systems have been built in the past decade, particularly in “non-traditional” sites such as roof tops to supplement family food. In the US, where there is also strong interest in locally grown fresh food, backyard and commercial systems have proliferated. Nevertheless, soilless growing is still in the research and development and early adopter stages, and the broad contribution of hydroponics and aquaponics to food security is yet to be fully determined. Nevertheless, current adoption of these technologies in diverse environments in different socio-economic settings highlights the potential contribution to food security with social and environmental benefits which contribute to several Sustainable Development Goals.

Keywords: Aquaponics, hydroponics, soilless agriculture, urban agriculture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37
91 Microbubbles Enhanced Synthetic Phorbol Ester Degradation by Ozonolysis

Authors: Kuvshinov, D., Siswanto, A., Zimmerman, W. B.

Abstract:

A phorbol-12-myristate-13-acetate (TPA) is a synthetic analogue of phorbol ester (PE), a natural toxic compound of Euphorbiaceae plant. The oil extracted from plants of this family is useful source for primarily biofuel. However this oil might also be used as a foodstuff due to its significant nutrition content. The limitations for utilizing the oil as a foodstuff are mainly due to a toxicity of PE. Currently, a majority of PE detoxification processes are expensive as include multi steps alcohol extraction sequence.

Ozone is considered as a strong oxidative agent. It reacts with PE by attacking the carbon-carbon double bond of PE. This modification of PE molecular structure yields a non toxic ester with high lipid content.

This report presents data on development of simple and cheap PE detoxification process with water application as a buffer and ozone as reactive component. The core of this new technique is an application for a new microscale plasma unit to ozone production and the technology permits ozone injection to the water-TPA mixture in form of microbubbles.

The efficacy of a heterogeneous process depends on the diffusion coefficient which can be controlled by contact time and interfacial area. The low velocity of rising microbubbles and high surface to volume ratio allow efficient mass transfer to be achieved during the process. Direct injection of ozone is the most efficient way to process with such highly reactive and short lived chemical.

Data on the plasma unit behavior are presented and the influence of gas oscillation technology on the microbubble production mechanism has been discussed. Data on overall process efficacy for TPA degradation is shown.

Keywords: Microbubble, ozonolysis, synthetic phorbol ester.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331
90 A Two-Step, Temperature-Staged Direct Coal Liquefaction Process

Authors: Reyna Singh, David Lokhat, Milan Carsky

Abstract:

The world crude oil demand is projected to rise to 108.5 million bbl/d by the year 2035. With reserves estimated at 869 billion tonnes worldwide, coal remains an abundant resource. The aim of this work was to produce a high value hydrocarbon liquid product using a Direct Coal Liquefaction (DCL) process at, relatively mild operating conditions. Via hydrogenation, the temperature-staged approach was investigated in a dual reactor lab-scale pilot plant facility. The objectives included maximising thermal dissolution of the coal in the presence of tetralin as the hydrogen donor solvent in the first stage with 2:1 and 3:1 solvent: coal ratios. Subsequently, in the second stage, hydrogen saturation, in particular, hydrodesulphurization (HDS) performance was assessed. Two commercial hydrotreating catalysts were investigated viz. NickelMolybdenum (Ni-Mo) and Cobalt-Molybdenum (Co-Mo). GC-MS results identified 77 compounds and various functional groups present in the first and second stage liquid product. In the first stage 3:1 ratios and liquid product yields catalysed by magnetite were favoured. The second stage product distribution showed an increase in the BTX (Benzene, Toluene, Xylene) quality of the liquid product, branched chain alkanes and a reduction in the sulphur concentration. As an HDS performer and selectivity to the production of long and branched chain alkanes, Ni-Mo had an improved performance over Co-Mo. Co-Mo is selective to a higher concentration of cyclohexane. For 16 days on stream each, Ni-Mo had a higher activity than Co-Mo. The potential to cover the demand for low–sulphur, crude diesel and solvents from the production of high value hydrocarbon liquid in the said process, is thus demonstrated. 

Keywords: Catalyst, coal, liquefaction, temperature-staged.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
89 Dynamic Programming Based Algorithm for the Unit Commitment of the Transmission-Constrained Multi-Site Combined Heat and Power System

Authors: A. Rong, P. B. Luh, R. Lahdelma

Abstract:

High penetration of intermittent renewable energy sources (RES) such as solar power and wind power into the energy system has caused temporal and spatial imbalance between electric power supply and demand for some countries and regions. This brings about the critical need for coordinating power production and power exchange for different regions. As compared with the power-only systems, the combined heat and power (CHP) systems can provide additional flexibility of utilizing RES by exploiting the interdependence of power and heat production in the CHP plant. In the CHP system, power production can be influenced by adjusting heat production level and electric power can be used to satisfy heat demand by electric boiler or heat pump in conjunction with heat storage, which is much cheaper than electric storage. This paper addresses multi-site CHP systems without considering RES, which lay foundation for handling penetration of RES. The problem under study is the unit commitment (UC) of the transmission-constrained multi-site CHP systems. We solve the problem by combining linear relaxation of ON/OFF states and sequential dynamic programming (DP) techniques, where relaxed states are used to reduce the dimension of the UC problem and DP for improving the solution quality. Numerical results for daily scheduling with realistic models and data show that DP-based algorithm is from a few to a few hundred times faster than CPLEX (standard commercial optimization software) with good solution accuracy (less than 1% relative gap from the optimal solution on the average).

Keywords: Dynamic programming, multi-site combined heat and power system, relaxed states, transmission-constrained generation unit commitment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
88 Soil Quality Status under Dryland Vegetation of Yabello District, Southern Ethiopia

Authors: Mohammed Abaoli, Omer Kara

Abstract:

The current research has investigated the soil quality status under dryland vegetation of Yabello district, Southern Ethiopia in which we should identify the nature and extent of salinity problem of the area for further research bases. About 48 soil samples were taken from 0-30, 31-60, 61-90 and 91-120 cm soil depths by opening 12 representative soil profile pits at 1.5 m depth. Soil color, texture, bulk density, Soil Organic Carbon (SOC), Cation Exchange Capacity (CEC), Na, K, Mg, Ca, CaCO3, gypsum (CaSO4), pH, Sodium Adsorption Ratio (SAR), Exchangeable Sodium Percentage (ESP) were analyzed. The dominant soil texture was silty-clay-loam.  Bulk density varied from 1.1 to 1.31 g/cm3. High SOC content was observed in 0-30 cm. The soil pH ranged from 7.1 to 8.6. The electrical conductivity shows indirect relationship with soil depth while CaCO3 and CaSO4 concentrations were observed in a direct relationship with depth. About 41% are non-saline, 38.31% saline, 15.23% saline-sodic and 5.46% sodic soils. Na concentration in saline soils was greater than Ca and Mg in all the soil depths. Ca and Mg contents were higher above 60 cm soil depth in non-saline soils. The concentrations of SO2-4 and HCO-3 were observed to be higher at the most lower depth than upper. SAR value tends to be higher at lower depths in saline and saline-sodic soils, but decreases at lower depth of the non-saline soils. The distribution of ESP above 60 cm depth was in an increasing order in saline and saline-sodic soils. The result of the research has shown the direction to which extent of salinity we should consider for the Commiphora plant species we want to grow on the area. 

Keywords: Commiphora species, dryland vegetation, ecological significance, soil quality, salinity problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 551
87 Transesterification of Waste Cooking Oil for Biodiesel Production Using Modified Clinoptilolite Zeolite as a Heterogeneous Catalyst

Authors: D. Mowla, N. Rasti, P. Keshavarz

Abstract:

Reduction of fossil fuels sources, increasing of pollution gases emission, and global warming effects increase the demand of renewable fuels. One of the main candidates of alternative fuels is biodiesel. Biodiesel limits greenhouse gas effects due to the closed CO2 cycle. Biodiesel has more biodegradability, lower combustion emissions such as CO, SOx, HC, PM and lower toxicity than petro diesel. However, biodiesel has high production cost due to high price of plant oils as raw material. So, the utilization of waste cooking oils (WCOs) as feedstock, due to their low price and disposal problems reduce biodiesel production cost. In this study, production of biodiesel by transesterification of methanol and WCO using modified sodic potassic (SP) clinoptilolite zeolite and sodic potassic calcic (SPC) clinoptilolite zeolite as heterogeneous catalysts have been investigated. These natural clinoptilolite zeolites were modified by KOH solution to increase the site activity. The optimum biodiesel yields for SP clinoptilolite and SPC clinoptilolite were 95.8% and 94.8%, respectively. Produced biodiesel were analyzed and compared with petro diesel and ASTM limits. The properties of produced biodiesel confirm well with ASTM limits. The density, kinematic viscosity, cetane index, flash point, cloud point, and pour point of produced biodiesel were all higher than petro diesel but its acid value was lower than petro diesel. Finally, the reusability and regeneration of catalysts were investigated. The results indicated that the spent zeolites cannot be reused directly for the transesterification, but they can be regenerated easily and can obtain high activity.

Keywords: Biodiesel, renewable fuel, transesterification, waste cooking oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
86 Soil Evaluation for Cashew, Cocoa and Oil Palm in Akure, South-West Nigeria

Authors: Francis Bukola Dada, Samuel Ojo Ajayi, Babatunde Sunday Ewulo, Kehinde Oseni Saani

Abstract:

A key element in the sustainability of the soil-plant relationship in crop yield and performance is the soil's capacity to support tree crops prior to establishment. With the intention of determining the suitability and limitations of the soils of the locations, the northern and southern portions of Akure, a rainforest in Nigeria, were chosen for the suitability evaluation of land for tree crops. In the study area, 16 pedons were established with the help of the Global Positioning System (GPS), the locations were georeferenced and samples were taken from the pedons. The samples were subjected to standard physical and chemical testing. The findings revealed that soils in the research locations were deep to extremely deep, with pH ranging from highly acidic to slightly acidic (4.94 to 6.71). and that sand predominated. The soils had low levels of organic carbon, effective cation exchange capacity (ECEC), total nitrogen, and available phosphorus, whereas exchangeable cations were evaluated as low to moderate. The suitability result indicated that only Pedon 2 and Pedon 14 are currently highly suitable (S1) for the production of oil palms, while others ranged from moderately suitable to marginally suitable. Pedons 4, 12, and 16 were not suitable (N1), respectively, but other Pedons were moderately suitable (S2) and marginally suitable (S3) for the cultivation of cocoa. None of the study areas are currently highly suitable for the production of oil palms. The poor soil texture and low fertility status were the two main drawbacks found. Finally, sound management practices and soil conservation are essential for fertility sustainability.

Keywords: Cashew, cocoa, land evaluation, oil palm, soil fertility suitability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 387
85 The Benefits of End-To-End Integrated Planning from the Mine to Client Supply for Minimizing Penalties

Authors: G. Martino, F. Silva, E. Marchal

Abstract:

The control over delivered iron ore blend characteristics is one of the most important aspects of the mining business. The iron ore price is a function of its composition, which is the outcome of the beneficiation process. So, end-to-end integrated planning of mine operations can reduce risks of penalties on the iron ore price. In a standard iron mining company, the production chain is composed of mining, ore beneficiation, and client supply. When mine planning and client supply decisions are made uncoordinated, the beneficiation plant struggles to deliver the best blend possible. Technological improvements in several fields allowed bridging the gap between departments and boosting integrated decision-making processes. Clusterization and classification algorithms over historical production data generate reasonable previsions for quality and volume of iron ore produced for each pile of run-of-mine (ROM) processed. Mathematical modeling can use those deterministic relations to propose iron ore blends that better-fit specifications within a delivery schedule. Additionally, a model capable of representing the whole production chain can clearly compare the overall impact of different decisions in the process. This study shows how flexibilization combined with a planning optimization model between the mine and the ore beneficiation processes can reduce risks of out of specification deliveries. The model capabilities are illustrated on a hypothetical iron ore mine with magnetic separation process. Finally, this study shows ways of cost reduction or profit increase by optimizing process indicators across the production chain and integrating the different plannings with the sales decisions.

Keywords: Clusterization and classification algorithms, integrated planning, optimization, mathematical modeling, penalty minimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 595
84 Simulation of Organic Matter Variability on a Sugarbeet Field Using the Computer Based Geostatistical Methods

Authors: M. Rüstü Karaman, Tekin Susam, Fatih Er, Servet Yaprak, Osman Karkacıer

Abstract:

Computer based geostatistical methods can offer effective data analysis possibilities for agricultural areas by using vectorial data and their objective informations. These methods will help to detect the spatial changes on different locations of the large agricultural lands, which will lead to effective fertilization for optimal yield with reduced environmental pollution. In this study, topsoil (0-20 cm) and subsoil (20-40 cm) samples were taken from a sugar beet field by 20 x 20 m grids. Plant samples were also collected from the same plots. Some physical and chemical analyses for these samples were made by routine methods. According to derived variation coefficients, topsoil organic matter (OM) distribution was more than subsoil OM distribution. The highest C.V. value of 17.79% was found for topsoil OM. The data were analyzed comparatively according to kriging methods which are also used widely in geostatistic. Several interpolation methods (Ordinary,Simple and Universal) and semivariogram models (Spherical, Exponential and Gaussian) were tested in order to choose the suitable methods. Average standard deviations of values estimated by simple kriging interpolation method were less than average standard deviations (topsoil OM ± 0.48, N ± 0.37, subsoil OM ± 0.18) of measured values. The most suitable interpolation method was simple kriging method and exponantial semivariogram model for topsoil, whereas the best optimal interpolation method was simple kriging method and spherical semivariogram model for subsoil. The results also showed that these computer based geostatistical methods should be tested and calibrated for different experimental conditions and semivariogram models.

Keywords: Geostatistic, kriging, organic matter, sugarbeet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
83 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery

Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene

Abstract:

Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.

Keywords: Multi-objective decision support, analysis, data validation, freight delivery, multi-modal transportation, genetic programming methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 445
82 Survey of Potato Viral Infection Using Das-Elisa Method in Georgia

Authors: Maia Kukhaleishvili, Ekaterine Bulauri, Iveta Megrelishvili, Tamar Shamatava, Tamar Chipashvili

Abstract:

Plant viruses can cause loss of yield and quality in a lot of important crops. Symptoms of pathogens are variable depending on the cultivars and virus strain. Selection of resistant potato varieties would reduce the risk of virus transmission and significant economic impact. Other way to avoid reduced harvest yields is regular potato seed production sampling and testing for viral infection. The aim of this study was to determine the occurrence and distribution of viral diseases according potato cultivars for further selection of virus-free material in Georgia. During the summer 2015- 2016, 5 potato cultivars (Sante, Laura, Jelly, Red Sonia, Anushka) at 5 different farms located in Akhalkalaki were tested for 6 different potato viruses: Potato virus A (PVA), Potato virus M (PVM), Potato virus S (PVS), Potato virus X (PVX), Potato virus Y (PVY) and potato leaf roll virus (PLRV). A serological method, Double Antibody Sandwich-Enzyme linked Immunosorbent Assay (DASELISA) was used at the laboratory to analyze the results. The result showed that PVY (21.4%) and PLRV (19.7%) virus presence in collected samples was relatively high compared to others. Researched potato cultivars except Jelly and Laura were infected by PVY with different concentrations. PLRV was found only in three potato cultivars (Sante, Jelly, Red Sonia) and PVM virus (3.12%) was characterized with low prevalence. PVX, PVA and PVS virus infection was not reported. It would be noted that 7.9% of samples were containing PVY/PLRV mix infection. Based on the results it can be concluded that PVY and PLRV infections are dominant in all research cultivars. Therefore significant yield losses are expected. Systematic, long-term control of potato viral infection, especially seed-potatoes, must be regarded as the most important factor to increase seed productivity.

Keywords: Diseases, infection, potato, virus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892
81 Assessing the Potential of a Waste Material for Cement Replacement and the Effect of Its Fineness in Soft Soil Stabilisation

Authors: Hassnen M. Jafer, W. Atherton, F. Ruddock, E. Loffil

Abstract:

This paper represents the results of experimental work to investigate the suitability of a waste material (WM) for soft soil stabilisation. In addition, the effect of particle size distribution (PSD) of the waste material on its performance as a soil stabiliser was investigated. The WM used in this study is produced from the incineration processes in domestic energy power plant and it is available in two different grades of fineness (coarse waste material (CWM) and fine waste material (FWM)). An intermediate plasticity silty clayey soil with medium organic matter content has been used in this study. The suitability of the CWM and FWM to improve the physical and engineering properties of the selected soil was evaluated dependant on the results obtained from the consistency limits, compaction characteristics (optimum moisture content (OMC) and maximum dry density (MDD)); along with the unconfined compressive strength test (UCS). Different percentages of CWM were added to the soft soil (3, 6, 9, 12 and 15%) to produce various admixtures. Then the UCS test was carried out on specimens under different curing periods (zero, 7, 14, and 28 days) to find the optimum percentage of CWM. The optimum and other two percentages (either side of the optimum content) were used for FWM to evaluate the effect of the fineness of the WM on UCS of the stabilised soil. Results indicated that both types of the WM used in this study improved the physical properties of the soft soil where the index of plasticity (IP) was decreased significantly. IP was decreased from 21 to 13.64 and 13.10 with 12% of CWM and 15% of FWM respectively. The results of the unconfined compressive strength test indicated that 12% of CWM was the optimum and this percentage developed the UCS value from 202kPa to 500kPa for 28 days cured samples, which is equal, approximately 2.5 times the UCS value for untreated soil. Moreover, this percentage provided 1.4 times the value of UCS for stabilized soil-CWA by using FWM which recorded just under 700kPa after 28 days curing. 

Keywords: Soft soil stabilisation, waste materials, fineness, and unconfined compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2609
80 Analysis of Pressure Drop in a Concentrated Solar Collector with Direct Steam Production

Authors: Sara Sallam, Mohamed Taqi, Naoual Belouaggadia

Abstract:

Solar thermal power plants using parabolic trough collectors (PTC) are currently a powerful technology for generating electricity. Most of these solar power plants use thermal oils as heat transfer fluid. The latter is heated in the solar field and transfers the heat absorbed in an oil-water heat exchanger for the production of steam driving the turbines of the power plant. Currently, we are seeking to develop PTCs with direct steam generation (DSG). This process consists of circulating water under pressure in the receiver tube to generate steam directly into the solar loop. This makes it possible to reduce the investment and maintenance costs of the PTCs (the oil-water exchangers are removed) and to avoid the environmental risks associated with the use of thermal oils. The pressure drops in these systems are an important parameter to ensure their proper operation. The determination of these losses is complex because of the presence of the two phases, and most often we limit ourselves to describing them by models using empirical correlations. A comparison of these models with experimental data was performed. Our calculations focused on the evolution of the pressure of the liquid-vapor mixture along the receiver tube of a PTC-DSG for pressure values and inlet flow rates ranging respectively from 3 to 10 MPa, and from 0.4 to 0.6 kg/s. The comparison of the numerical results with experience allows us to demonstrate the validity of some models according to the pressures and the flow rates of entry in the PTC-DSG receiver tube. The analysis of these two parameters’ effects on the evolution of the pressure along the receiving tub, shows that the increase of the inlet pressure and the decrease of the flow rate lead to minimal pressure losses.

Keywords: Direct steam generation, parabolic trough collectors, pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
79 Quality Classification and Monitoring Using Adaptive Metric Distance and Neural Networks: Application in Pickling Process

Authors: S. Bouhouche, M. Lahreche, S. Ziani, J. Bast

Abstract:

Modern manufacturing facilities are large scale, highly complex, and operate with large number of variables under closed loop control. Early and accurate fault detection and diagnosis for these plants can minimise down time, increase the safety of plant operations, and reduce manufacturing costs. Fault detection and isolation is more complex particularly in the case of the faulty analog control systems. Analog control systems are not equipped with monitoring function where the process parameters are continually visualised. In this situation, It is very difficult to find the relationship between the fault importance and its consequences on the product failure. We consider in this paper an approach to fault detection and analysis of its effect on the production quality using an adaptive centring and scaling in the pickling process in cold rolling. The fault appeared on one of the power unit driving a rotary machine, this machine can not track a reference speed given by another machine. The length of metal loop is then in continuous oscillation, this affects the product quality. Using a computerised data acquisition system, the main machine parameters have been monitored. The fault has been detected and isolated on basis of analysis of monitored data. Normal and faulty situation have been obtained by an artificial neural network (ANN) model which is implemented to simulate the normal and faulty status of rotary machine. Correlation between the product quality defined by an index and the residual is used to quality classification.

Keywords: Modeling, fault detection and diagnosis, parameters estimation, neural networks, Fault Detection and Diagnosis (FDD), pickling process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
78 Effects of Reclaimed Agro-Industrial Wastewater for Long-Term Irrigation of Herbaceous Crops on Soil Chemical Properties

Authors: E. Tarantino, G. Disciglio, G. Gatta, L. Frabboni, A. Libutti, A. Tarantino

Abstract:

Worldwide, about two-thirds of industrial and domestic wastewater effluent is discharged without treatment, which can cause contamination and eutrophication of the water. In particular, for Mediterranean countries, irrigation with treated wastewater would mitigate the water stress and support the agricultural sector. Changing global weather patterns will make the situation worse, due to increased susceptibility to drought, which can cause major environmental, social, and economic problems. The study was carried out in open field in an intensive agricultural area of the Apulian region in Southern Italy where freshwater resources are often scarce. As well as providing a water resource, irrigation with treated wastewater represents a significant source of nutrients for soil–plant systems. However, the use of wastewater might have further effects on soil. This study thus investigated the long-term impact of irrigation with reclaimed agro-industrial wastewater on the chemical characteristics of the soil. Two crops (processing tomato and broccoli) were cultivated in succession in Stornarella (Foggia) over four years from 2012 to 2016 using two types of irrigation water: groundwater and tertiary treated agro-industrial wastewater that had undergone an activated sludge process, sedimentation filtration, and UV radiation. Chemical analyses were performed on the irrigation waters and soil samples. The treated wastewater was characterised by high levels of several chemical parameters including TSS, EC, COD, BOD5, Na+, Ca2+, Mg2+, NH4-N, PO4-P, K+, SAR and CaCO3, as compared with the groundwater. However, despite these higher levels, the mean content of several chemical parameters in the soil did not show relevant differences between the irrigation treatments, in terms of the chemical features of the soil.

Keywords: Agro-industrial wastewater, broccoli, long-term re-use, tomato.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117
77 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements

Authors: Henok Hailemariam, Frank Wuttke

Abstract:

Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.

Keywords: Collapsible soil, relative subsidence, dielectric permittivity, moisture content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
76 Modeling and FOS Feedback Based Control of SISO Intelligent Structures with Embedded Shear Sensors and Actuators

Authors: T. C. Manjunath, B. Bandyopadhyay

Abstract:

Active vibration control is an important problem in structures. The objective of active vibration control is to reduce the vibrations of a system by automatic modification of the system-s structural response. In this paper, the modeling and design of a fast output sampling feedback controller for a smart flexible beam system embedded with shear sensors and actuators for SISO system using Timoshenko beam theory is proposed. FEM theory, Timoshenko beam theory and the state space techniques are used to model the aluminum cantilever beam. For the SISO case, the beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. Controllers are designed using FOS method and the performance of the designed FOS controller is evaluated for vibration control for 4 SISO models of the same plant. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Some of the limitations of the Euler-Bernoulli theory such as the neglection of shear and axial displacement are being considered here, thus giving rise to an accurate beam model. Embedded shear sensors and actuators have been considered in this paper instead of the surface mounted sensors and actuators for vibration suppression because of lot of advantages. In controlling the vibration modes, the first three dominant modes of vibration of the system are considered.

Keywords: Smart structure, Timoshenko beam theory, Fast output sampling feedback control, Finite Element Method, State space model, SISO, Vibration control, LMI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
75 Influence of Drought on Yield and Yield Components in White Bean

Authors: Gholamreza Habibi

Abstract:

In order to study seed yield and seed yield components in bean under reduced irrigation condition and assessment drought tolerance of genotypes, 15 lines of White beans were evaluated in two separate RCB design with 3 replications under stress and non stress conditions. Analysis of variance showed that there were significant differences among varieties in terms of traits under study, indicating the existence of genetic variation among varieties. The results indicate that drought stress reduced seed yield, number of seed per plant, biological yield and number of pod in White been. In non stress condition, yield was highly correlated with the biological yield, whereas in stress condition it was highly correlated with harvest index. Results of stepwise regression showed that, selection can we done based on, biological yield, harvest index, number of seed per pod, seed length, 100 seed weight. Result of path analysis showed that the highest direct effect, being positive, was related to biological yield in non stress and to harvest index in stress conditions. Factor analysis were accomplished in stress and nonstress condition a, there were 4 factors that explained more than 76 percent of total variations. We used several selection indices such as Stress Susceptibility Index ( SSI ), Geometric Mean Productivity ( GMP ), Mean Productivity ( MP ), Stress Tolerance Index ( STI ) and Tolerance Index ( TOL ) to study drought tolerance of genotypes, we found that the best Stress Index for selection tolerance genotypes were STI, GMP and MP were the greatest correlations between these Indices and seed yield under stress and non stress conditions. In classification of genotypes base on phenotypic characteristics, using cluster analysis ( UPGMA ), all allels classified in 5 separate groups in stress and non stress conditions.

Keywords: Cluster analysis, factor analysis, path analysis, selection index, White bean

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
74 Achieving Sustainable Agriculture with Treated Municipal Wastewater

Authors: Reshu Yadav, Himanshu Joshi, S. K.Tripathi

Abstract:

A pilot field study was conducted at the Jagjeetpur Municipal Sewage treatment plant situated in the Haridwar town in Uttarakhand state, India. The objectives of the present study were to study the effect of treated wastewater on the production of various paddy varieties (Sharbati, PR-114, PB-1, Menaka, PB1121 and PB 1509) and the emission of GHG gases (CO2, CH4 and N2O) as compared to the same varieties grown in the control plots irrigated with fresh water. Of late, the concept of water footprint assessment has emerged, which explains enumeration of various types of water footprints of an agricultural entity from its production to processing stages. Paddy, the most water demanding staple crop of Uttarakhand state, displayed a high green water footprint value of 2474.12 m3/ Ton. Most of the wastewater irrigated varieties displayed up to 6% increase in production, except Menaka and PB-1121, which showed a reduction in production (6% and 3% respectively), due to pest and insect infestation. The treated wastewater was observed to be rich in Nitrogen (55.94 mg/ml Nitrate), Phosphorus (54.24 mg/ml) and Potassium (9.78 mg/ml), thus rejuvenating the soil quality and not requiring any external nutritional supplements. A Percentage increase of GHG gases of irrigation with treated municipal wastewater as compared to control plots was observed as 0.4% - 8.6% (CH4), 1.1% - 9.2% (CO2), and 0.07% - 5.8% (N2O). The variety, Sharbati, displayed maximum production (5.5 ton/ha) and emerged as the most resistant variety against pests and insects. The emission values of CH4, CO2 and N2O were 729.31 mg/m2/d, 322.10 mg/m2/d and 400.21 mg/m2/d in water stagnant condition. This study highlighted a successful possibility of reuse of wastewater for non-potable purposes offering the potential for exploiting this resource that can replace or reduce the existing use of fresh water sources in agriculture sector.

Keywords: Greenhouse gases, nutrients, water footprint, wastewater irrigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
73 The Necessity of Biomass Application for Developing Combined Heat and Power (CHP)with Biogas Fuel: Case Study

Authors: F. Amin Salehi, L. Sharp, M. A. Abdoli, D.E.Cotton, K.Rezapour

Abstract:

The daily increase of organic waste materials resulting from different activities in the country is one of the main factors for the pollution of environment. Today, with regard to the low level of the output of using traditional methods, the high cost of disposal waste materials and environmental pollutions, the use of modern methods such as anaerobic digestion for the production of biogas has been prevailing. The collected biogas from the process of anaerobic digestion, as a renewable energy source similar to natural gas but with a less methane and heating value is usable. Today, with the help of technologies of filtration and proper preparation, access to biogas with features fully similar to natural gas has become possible. At present biogas is one of the main sources of supplying electrical and thermal energy and also an appropriate option to be used in four stroke engine, diesel engine, sterling engine, gas turbine, gas micro turbine and fuel cell to produce electricity. The use of biogas for different reasons which returns to socio-economic and environmental advantages has been noticed in CHP for the production of energy in the world. The production of biogas from the technology of anaerobic digestion and its application in CHP power plants in Iran can not only supply part of the energy demands in the country, but it can materialize moving in line with the sustainable development. In this article, the necessity of the development of CHP plants with biogas fuels in the country will be dealt based on studies performed from the economic, environmental and social aspects. Also to prove the importance of the establishment of these kinds of power plants from the economic point of view, necessary calculations has been done as a case study for a CHP power plant with a biogas fuel.

Keywords: Anaerobic Digestion, Biogas, CHP, Organic Wastes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
72 Numerical Analysis of Laminar Reflux Condensation from Gas-Vapour Mixtures in Vertical Parallel Plate Channels

Authors: Foad Hassaninejadafarahani, Scott Ormiston

Abstract:

Reflux condensation occurs in vertical channels and tubes when there is an upward core flow of vapour (or gas-vapour mixture) and a downward flow of the liquid film. The understanding of this condensation configuration is crucial in the design of reflux condensers, distillation columns, and in loss-of-coolant safety analyses in nuclear power plant steam generators. The unique feature of this flow is the upward flow of the vapour-gas mixture (or pure vapour) that retards the liquid flow via shear at the liquid-mixture interface. The present model solves the full, elliptic governing equations in both the film and the gas-vapour core flow. The computational mesh is non-orthogonal and adapts dynamically the phase interface, thus produces a sharp and accurate interface. Shear forces and heat and mass transfer at the interface are accounted for fundamentally. This modeling is a big step ahead of current capabilities by removing the limitations of previous reflux condensation models which inherently cannot account for the detailed local balances of shear, mass, and heat transfer at the interface. Discretisation has been done based on finite volume method and co-located variable storage scheme. An in-house computer code was developed to implement the numerical solution scheme. Detailed results are presented for laminar reflux condensation from steam-air mixtures flowing in vertical parallel plate channels. The results include velocity and gas mass fraction profiles, as well as axial variations of film thickness.

Keywords: Reflux Condensation, Heat Transfer, Channel, Laminar Flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
71 Extraction of Bran Protein Using Enzymes and Polysaccharide Precipitation

Authors: Sudarat Jiamyangyuen, Tipawan Thongsook, Riantong Singanusong, Chanida Saengtubtim

Abstract:

Rice bran is normally used as a raw material for rice bran oil production or sold as feed with a low price. Conventionally, the protein in defatted rice bran was extracted using alkaline extraction and acid precipitation, which involves in chemical usage and lowering some nutritious component. This study was conducted in order to extract of rice bran protein concentrate (RBPC) from defatted rice bran using enzymes and employing polysaccharides in a precipitating step. The properties of RBPC obtained will be compared to those of a control sample extracted using a conventional method. The results showed that extraction of protein from rice bran using enzymes exhibited the higher protein recovery compared to that extraction with alkaline. The extraction conditions using alcalase 2% (v/w) at 50 C, pH 9.5 gave the highest protein (2.44%) and yield (32.09%) in extracted solution compared to other enzymes. Rice bran protein concentrate powder prepared by a precipitation step using alginate (protein in solution: alginate 1:0.016) exhibited the highest protein (27.55%) and yield (6.84%). Precipitation using alginate was better than that of acid. RBPC extracted with alkaline (ALK) or enzyme alcalase (ALC), then precipitated with alginate (AL) (samples RBP-ALK-AL and RBP-ALC-AL) yielded the precipitation rate of 75% and 91.30%, respectively. Therefore, protein precipitation using alginate was then selected. Amino acid profile of control sample, and sample precipitated with alginate, as compared to casein and soy protein isolated, showed that control sample showed the highest content among all sample. Functional property study of RBP showed that the highest nitrogen solubility occurred in pH 8-10. There was no statically significant between emulsion capacity and emulsion stability of control and sample precipitated by alginate. However, control sample showed a higher of foaming capacity and foaming stability compared to those of sample precipitated with alginate. The finding was successful in terms of minimizing chemicals used in extraction and precipitation steps in preparation of rice bran protein concentrate. This research involves in a production of value-added product in which the double amount of protein (28%) compared to original amount (14%) contained in rice bran could be beneficial in terms of adding to food products e.g. healthy drink with high protein and fiber. In addition, the basic knowledge of functional property of rice bran protein concentrate was obtained, which can be used to appropriately select the application of this value-added product from rice bran.

Keywords: Alginate, carrageenan, rice bran, rice bran protein.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2625
70 Experimental Investigation into Chaotic Features of Flow Gauges in Automobile Fuel Metering System

Authors: S. K. Fasogbon

Abstract:

Chaotic system may lead to instability, extreme sensitivity and performance reduction in control systems. It is therefore important to understand the causes of such undesirable characteristics in control system especially in the automobile fuel gauges. This is because without accurate fuel gauges in automobile systems, it will be difficult if not impossible to embark on a journey whether during odd hours of the day or where fuel is difficult to obtain. To this end, this work studied the impacts of fuel tank rust and faulty component of fuel gauge system (voltage stabilizer) on the chaotic characteristics of fuel gauges. The results obtained were analyzed using Graph iSOFT package. Over the range of experiments conducted, the results obtained showed that rust effect of the fuel tank would alter the flow density, consequently the fluid pressure and ultimately the flow velocity of the fuel. The responses of the fuel gauge pointer to the faulty voltage stabilizer were erratic causing noticeable instability of gauge measurands indicated. The experiment also showed that the fuel gauge performed optimally by indicating the highest degree of accuracy when combined the effect of rust free tank and non-faulty voltage stabilizer conditions (± 6.75% measurand error) as compared to only the rust free tank situation (± 15% measurand error) and only the non-faulty voltage stabilizer condition (± 40% measurand error). The study concludes that both the fuel tank rust and the faulty voltage stabilizer gauge component have a significant effect on the sensitivity of fuel gauge and its accuracy ultimately. Also, by the reason of literature, our findings can also be said to be valid for all other fluid meters and gauges applicable in plant machineries and most hydraulic systems.

Keywords: Chaotic system, degree of accuracy, measurand, sensitivity of fuel gauge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 916
69 Applications of High Intensity Ultrasound to Modify Millet Protein Concentrate Functionality

Authors: B. Nazari, M. A. Mohammadifar, S. Shojaee-Aliabadi, L. Mirmoghtadaie

Abstract:

Millets as a new source of plant protein were not used in food applications due to its poor functional properties. In this study, the effect of high intensity ultrasound (frequency: 20 kHz, with contentious flow) (US) in 100% amplitude for varying times (5, 12.5, and 20 min) on solubility, emulsifying activity index (EAI), emulsion stability (ES), foaming capacity (FC), and foaming stability (FS) of millet protein concentrate (MPC) were evaluated. In addition, the structural properties of best treatments such as molecular weight and surface charge were compared with the control sample to prove the US effect. The US treatments significantly (P<0.05) increased the solubility of the native MPC (65.8±0.6%) at all sonicated times with the maximum solubility that is recorded at 12.5 min treatment (96.9±0.82 %). The FC of MPC was also significantly affected by the US treatment. Increase in sonicated time up to 12.5 min significantly increased the FC of native MPC (271.03±4.51 ml), but higher increase reduced it significantly. Minimal improvements were observed in the FS of all sonicated MPC compared to the native MPC. Sonicated time for 12.5 min affected the EAI and ES of the native MPC more markedly than 5 and 20 min that may be attributed to higher increase in proteins tendency to adsorption at the oil and water interfaces after the US treatment at this time. SDS-PAGE analysis showed changes in the molecular weight of MPC that attributed to shearing forces created by cavitation phenomenon. Also, this phenomenon caused an increase in the exposure of more amino acids with negative charge in the surface of US treated MPC, that was demonstrated by Zetasizer data. High intensity ultrasound, as a green technology, can significantly increase the functional properties of MPC and can make this usable for food applications.

Keywords: Millet protein concentrate, Functional properties, Structural properties, High intensity ultrasound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
68 Identification of Risks Associated with Process Automation Systems

Authors: J. K. Visser, H. T. Malan

Abstract:

A need exists to identify the sources of risks associated with the process automation systems within petrochemical companies or similar energy related industries. These companies use many different process automation technologies in its value chain. A crucial part of the process automation system is the information technology component featuring in the supervisory control layer. The ever-changing technology within the process automation layers and the rate at which it advances pose a risk to safe and predictable automation system performance. The age of the automation equipment also provides challenges to the operations and maintenance managers of the plant due to obsolescence and unavailability of spare parts. The main objective of this research was to determine the risk sources associated with the equipment that is part of the process automation systems. A secondary objective was to establish whether technology managers and technicians were aware of the risks and share the same viewpoint on the importance of the risks associated with automation systems. A conceptual model for risk sources of automation systems was formulated from models and frameworks in literature. This model comprised six categories of risk which forms the basis for identifying specific risks. This model was used to develop a questionnaire that was sent to 172 instrument technicians and technology managers in the company to obtain primary data. 75 completed and useful responses were received. These responses were analyzed statistically to determine the highest risk sources and to determine whether there was difference in opinion between technology managers and technicians. The most important risks that were revealed in this study are: 1) the lack of skilled technicians, 2) integration capability of third-party system software, 3) reliability of the process automation hardware, 4) excessive costs pertaining to performing maintenance and migrations on process automation systems, and 5) requirements of having third-party communication interfacing compatibility as well as real-time communication networks.

Keywords: Distributed control system, identification of risks, information technology, process automation system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
67 Antioxidative, Anticholinesterase and Anti-Neuroinflammatory Properties of Malaysian Brown and Green Seaweeds

Authors: Siti Aisya Gany, Swee Ching Tan, Sook Yee Gan

Abstract:

Diminished antioxidant defense or increased production of reactive oxygen species in the biological system can result in oxidative stress which may lead to various neurodegenerative diseases including Alzheimer’s disease (AD). Microglial activation also contributes to the progression of AD by producing several proinflammatory cytokines, nitric oxide (NO) and prostaglandin E2 (PGE2). Oxidative stress and inflammation have been reported to be possible pathophysiological mechanisms underlying AD. In addition, the cholinergic hypothesis postulates that memory impairment in patient with AD is also associated with the deficit of cholinergic function in the brain. Although a number of drugs have been approved for the treatment of AD, most of these synthetic drugs have diverse side effects and yield relatively modest benefits. Marine algae have great potential in pharmaceutical and biomedical applications as they are valuable sources of bioactive properties such as anticoagulation, antimicrobial, antioxidative, anticancer and anti-inflammatory. Hence, this study aimed to provide an overview of the properties of Malaysian seaweeds (Padina australis, Sargassum polycystum and Caulerpa racemosa) in inhibiting oxidative stress, neuroinflammation and cholinesterase enzymes. These seaweeds significantly exhibited potent DPPH and moderate superoxide anion radical scavenging ability (P<0.05). Hexane and methanol extracts of S. polycystum exhibited the most potent radical scavenging ability with IC50 values of 0.157±0.004mg/ml and 0.849±0.02mg/ml for DPPH and ABTS assays, respectively. Hexane extract of C. racemosa gave the strongest superoxide radical inhibitory effect (IC50 of 0.386±0.01mg/ml). Most seaweed extracts significantly inhibited the production of cytokine (IL-6, IL-1 β, TNFα) and NO in a concentration-dependent manner without causing significant cytotoxicity to the lipopolysaccharide (LPS)-stimulated microglia cells (P<0.05). All extracts suppressed cytokine and NO level by more than 50% at the concentration of 0.4mg/ml. In addition, C. racemosa and S. polycystum also showed anti-acetylcholinesterase activities with the IC50 values ranging from 0.086-0.115 mg/ml. Moreover, C. racemosa and P. australis were also found to be active against butyrylcholinesterase with IC50 values ranging from 0.118- 0.287 mg/ml.

Keywords: Anticholinesterase, antioxidative, neuroinflammation, seaweeds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2837
66 Characterization of Candlenut Shells and Its Application to Remove Oil and Fine Solids of Produced Water in Nutshell Filters of Water Cleaning Plant

Authors: Annur Suhadi, Haris B. Harahap, Zaim Arrosyidi, Epan, Darmapala

Abstract:

Oilfields under waterflood often face the problem of plugging injectors either by internal filtration or external filter cake built up inside pore throats. The content of suspended solids shall be reduced to required level of filtration since corrective action of plugging is costly expensive. The performance of nutshell filters, where filtration takes place, is good using pecan and walnut shells. Candlenut shells were used instead of pecan and walnut shells since they were abundant in Indonesia, Malaysia, and East Africa. Physical and chemical properties of walnut, pecan, and candlenut shells were tested and the results were compared. Testing, using full-scale nutshell filters, was conducted to determine the oil content, turbidity, and suspended solid removal, which was based on designed flux rate. The performance of candlenut shells, which were deeply bedded in nutshell filters for filtration process, was monitored. Cleaned water outgoing nutshell filters had total suspended solids of 17 ppm, while oil content could be reduced to 15.1 ppm. Turbidity, using candlenut shells, was below the specification for injection water, which was less than 10 Nephelometric Turbidity Unit (NTU). Turbidity of water, outgoing nutshell filter, was ranged from 1.7-5.0 NTU at various dates of operation. Walnut, pecan, and candlenut shells had moisture content of 8.98 wt%, 10.95 wt%, and 9.95 wt%, respectively. The porosity of walnut, pecan, and candlenut shells was significantly affected by moisture content. Candlenut shells had property of toluene solubility of 7.68 wt%, which was much higher than walnut shells, reflecting more crude oil adsorption. The hardness of candlenut shells was 2.5-3 Mohs, which was close to walnut shells’ hardness. It was advantage to guarantee the cleaning filter cake by fluidization process during backwashing.

Keywords: Candlenut shells, walnut shells, pecan shells, nutshell filter, filtration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 403