Search results for: fault detection and identification.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2571

Search results for: fault detection and identification.

1161 Dual Construction of Stern-based Signature Scheme

Authors: Pierre-Louis Cayrel, Sidi Mohamed El Yousfi Alaoui

Abstract:

In this paper, we propose a dual version of the first threshold ring signature scheme based on error-correcting code proposed by Aguilar et. al in [1]. Our scheme uses an improvement of Véron zero-knowledge identification scheme, which provide smaller public and private key sizes and better computation complexity than the Stern one. This scheme is secure in the random oracle model.

Keywords: Stern algorithm, Véron algorithm, threshold ring signature, post-quantum cryptography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
1160 Self – Tuning Method of Fuzzy System: An Application on Greenhouse Process

Authors: M. Massour El Aoud, M. Franceschi, M. Maher

Abstract:

The approach proposed here is oriented in the direction of fuzzy system for the analysis and the synthesis of intelligent climate controllers, the simulation of the internal climate of the greenhouse is achieved by a linear model whose coefficients are obtained by identification. The use of fuzzy logic controllers for the regulation of climate variables represents a powerful way to minimize the energy cost. Strategies of reduction and optimization are adopted to facilitate the tuning and to reduce the complexity of the controller.

Keywords: Greenhouse, fuzzy logic, optimization, gradient descent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
1159 Synthesis of Highly Sensitive Molecular Imprinted Sensor for Selective Determination of Doxycycline in Honey Samples

Authors: Nadia El Alami El Hassani, Soukaina Motia, Benachir Bouchikhi, Nezha El Bari

Abstract:

Doxycycline (DXy) is a cycline antibiotic, most frequently prescribed to treat bacterial infections in veterinary medicine. However, its broad antimicrobial activity and low cost, lead to an intensive use, which can seriously affect human health. Therefore, its spread in the food products has to be monitored. The scope of this work was to synthetize a sensitive and very selective molecularly imprinted polymer (MIP) for DXy detection in honey samples. Firstly, the synthesis of this biosensor was performed by casting a layer of carboxylate polyvinyl chloride (PVC-COOH) on the working surface of a gold screen-printed electrode (Au-SPE) in order to bind covalently the analyte under mild conditions. Secondly, DXy as a template molecule was bounded to the activated carboxylic groups, and the formation of MIP was performed by a biocompatible polymer by the mean of polyacrylamide matrix. Then, DXy was detected by measurements of differential pulse voltammetry (DPV). A non-imprinted polymer (NIP) prepared in the same conditions and without the use of template molecule was also performed. We have noticed that the elaborated biosensor exhibits a high sensitivity and a linear behavior between the regenerated current and the logarithmic concentrations of DXy from 0.1 pg.mL−1 to 1000 pg.mL−1. This technic was successfully applied to determine DXy residues in honey samples with a limit of detection (LOD) of 0.1 pg.mL−1 and an excellent selectivity when compared to the results of oxytetracycline (OXy) as analogous interfering compound. The proposed method is cheap, sensitive, selective, simple, and is applied successfully to detect DXy in honey with the recoveries of 87% and 95%. Considering these advantages, this system provides a further perspective for food quality control in industrial fields.

Keywords: Electrochemical sensor, molecular imprinted polymer, doxycycline, food control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1173
1158 The Feasibility of Augmenting an Augmented Reality Image Card on a Quick Response Code

Authors: Alfred Chen, Shr Yu Lu, Cong Seng Hong, Yur-June Wang

Abstract:

This research attempts to study the feasibility of augmenting an augmented reality (AR) image card on a Quick Response (QR) code. The authors have developed a new visual tag, which contains a QR code and an augmented AR image card. The new visual tag has features of reading both of the revealed data of the QR code and the instant data from the AR image card. Furthermore, a handheld communicating device is used to read and decode the new visual tag, and then the concealed data of the new visual tag can be revealed and read through its visual display. In general, the QR code is designed to store the corresponding data or, as a key, to access the corresponding data from the server through internet. Those reveled data from the QR code are represented in text. Normally, the AR image card is designed to store the corresponding data in 3-Dimensional or animation/video forms. By using QR code's property of high fault tolerant rate, the new visual tag can access those two different types of data by using a handheld communicating device. The new visual tag has an advantage of carrying much more data than independent QR code or AR image card. The major findings of this research are: 1) the most efficient area for the designed augmented AR card augmenting on the QR code is 9% coverage area out of the total new visual tag-s area, and 2) the best location for the augmented AR image card augmenting on the QR code is located in the bottom-right corner of the new visual tag.

Keywords: Augmented reality, QR code, Visual tag, Handheldcommunicating device

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
1157 Variable Regularization Parameter Normalized Least Mean Square Adaptive Filter

Authors: Young-Seok Choi

Abstract:

We present a normalized LMS (NLMS) algorithm with robust regularization. Unlike conventional NLMS with the fixed regularization parameter, the proposed approach dynamically updates the regularization parameter. By exploiting a gradient descent direction, we derive a computationally efficient and robust update scheme for the regularization parameter. In simulation, we demonstrate the proposed algorithm outperforms conventional NLMS algorithms in terms of convergence rate and misadjustment error.

Keywords: Regularization, normalized LMS, system identification, robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
1156 Predicting the Impact of the Defect on the Overall Environment in Function Based Systems

Authors: Parvinder S. Sandhu, Urvashi Malhotra, E. Ardil

Abstract:

There is lot of work done in prediction of the fault proneness of the software systems. But, it is the severity of the faults that is more important than number of faults existing in the developed system as the major faults matters most for a developer and those major faults needs immediate attention. In this paper, we tried to predict the level of impact of the existing faults in software systems. Neuro-Fuzzy based predictor models is applied NASA-s public domain defect dataset coded in C programming language. As Correlation-based Feature Selection (CFS) evaluates the worth of a subset of attributes by considering the individual predictive ability of each feature along with the degree of redundancy between them. So, CFS is used for the selecting the best metrics that have highly correlated with level of severity of faults. The results are compared with the prediction results of Logistic Models (LMT) that was earlier quoted as the best technique in [17]. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provide a relatively better prediction accuracy as compared to other models and hence, can be used for the modeling of the level of impact of faults in function based systems.

Keywords: Software Metrics, Fuzzy, Neuro-Fuzzy, Software Faults, Accuracy, MAE, RMSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
1155 Health Monitoring of Power Transformers by Dissolved Gas Analysis using Regression Method and Study the Effect of Filtration on Oil

Authors: Anjali Chatterjee, Nirmal Kumar Roy

Abstract:

Economically transformers constitute one of the largest investments in a Power system. For this reason, transformer condition assessment and management is a high priority task. If a transformer fails, it would have a significant negative impact on revenue and service reliability. Monitoring the state of health of power transformers has traditionally been carried out using laboratory Dissolved Gas Analysis (DGA) tests performed at periodic intervals on the oil sample, collected from the transformers. DGA of transformer oil is the single best indicator of a transformer-s overall condition and is a universal practice today, which started somewhere in the 1960s. Failure can occur in a transformer due to different reasons. Some failures can be limited or prevented by maintenance. Oil filtration is one of the methods to remove the dissolve gases and prevent the deterioration of the oil. In this paper we analysis the DGA data by regression method and predict the gas concentration in the oil in the future. We bring about a comparative study of different traditional methods of regression and the errors generated out of their predictions. With the help of these data we can deduce the health of the transformer by finding the type of fault if it has occurred or will occur in future. Additional in this paper effect of filtration on the transformer health is highlight by calculating the probability of failure of a transformer with and without oil filtrating.

Keywords: Power Transformers, Dissolve gas Analysis, Regression method, Filtration, oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2941
1154 Hands-off Parking: Deep Learning Gesture-Based System for Individuals with Mobility Needs

Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Javier Araluce, Joshué Pérez

Abstract:

Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, this paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for in-depth gesture classification. This tandem of MediaPipe’s extraction prowess and MPL’s analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System 2 (ROS2), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real-vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.

Keywords: Gesture detection, MediaPipe, MultiLayer Perceptron Layer, Robot Operating System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132
1153 An Efficient Segmentation Method Based on Local Entropy Characteristics of Iris Biometrics

Authors: Ali Shojaee Bakhtiari, Ali Asghar Beheshti Shirazi, Amir Sepasi Zahmati

Abstract:

An efficient iris segmentation method based on analyzing the local entropy characteristic of the iris image, is proposed in this paper and the strength and weaknesses of the method are analyzed for practical purposes. The method shows special strength in providing designers with an adequate degree of freedom in choosing the proper sections of the iris for their application purposes.

Keywords: Iris segmentation, entropy, biocryptosystem, biometric identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
1152 An Exact Solution to Support Vector Mixture

Authors: Monjed Ezzeddinne, Nicolas Lefebvre, Régis Lengellé

Abstract:

This paper presents a new version of the SVM mixture algorithm initially proposed by Kwok for classification and regression problems. For both cases, a slight modification of the mixture model leads to a standard SVM training problem, to the existence of an exact solution and allows the direct use of well known decomposition and working set selection algorithms. Only the regression case is considered in this paper but classification has been addressed in a very similar way. This method has been successfully applied to engine pollutants emission modeling.

Keywords: Identification, Learning systems, Mixture ofExperts, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
1151 Touching Interaction: An NFC-RFID Combination

Authors: Eduardo Álvarez, Gerardo Quiroga, Jorge Orozco, Gabriel Chavira

Abstract:

AmI proposes a new way of thinking about computers, which follows the ideas of the Ubiquitous Computing vision of Mark Weiser. In these, there is what is known as a Disappearing Computer Initiative, with users immersed in intelligent environments. Hence, technologies need to be adapted so that they are capable of replacing the traditional inputs to the system by embedding these in every-day artifacts. In this work, we present an approach, which uses Radiofrequency Identification (RFID) and Near Field Communication (NFC) technologies. In the latter, a new form of interaction appears by contact. We compare both technologies by analyzing their requirements and advantages. In addition, we propose using a combination of RFID and NFC.

Keywords: Touching interaction, ambient intelligence, NFC, RFID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
1150 Landcover Mapping Using Lidar Data and Aerial Image and Soil Fertility Degradation Assessment for Rice Production Area in Quezon, Nueva Ecija, Philippines

Authors: Eliza. E. Camaso, Guiller. B. Damian, Miguelito. F. Isip, Ronaldo T. Alberto

Abstract:

Land-cover maps were important for many scientific, ecological and land management purposes and during the last decades, rapid decrease of soil fertility was observed to be due to land use practices such as rice cultivation. High-precision land-cover maps are not yet available in the area which is important in an economy management. To assure   accurate mapping of land cover to provide information, remote sensing is a very suitable tool to carry out this task and automatic land use and cover detection. The study did not only provide high precision land cover maps but it also provides estimates of rice production area that had undergone chemical degradation due to fertility decline. Land-cover were delineated and classified into pre-defined classes to achieve proper detection features. After generation of Land-cover map, of high intensity of rice cultivation, soil fertility degradation assessment in rice production area due to fertility decline was created to assess the impact of soils used in agricultural production. Using Simple spatial analysis functions and ArcGIS, the Land-cover map of Municipality of Quezon in Nueva Ecija, Philippines was overlaid to the fertility decline maps from Land Degradation Assessment Philippines- Bureau of Soils and Water Management (LADA-Philippines-BSWM) to determine the area of rice crops that were most likely where nitrogen, phosphorus, zinc and sulfur deficiencies were induced by high dosage of urea and imbalance N:P fertilization. The result found out that 80.00 % of fallow and 99.81% of rice production area has high soil fertility decline.

Keywords: Aerial image, land-cover, LiDAR, soil fertility degradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1141
1149 A Novel Approach towards Segmentation of Breast Tumors from Screening Mammograms for Efficient Decision Support System

Authors: M.Suganthi, M.Madheswaran

Abstract:

This paper presents a novel approach to finding a priori interesting regions in mammograms. In order to delineate those regions of interest (ROI-s) in mammograms, which appear to be prominent, a topographic representation called the iso-level contour map consisting of iso-level contours at multiple intensity levels and region segmentation based-thresholding have been proposed. The simulation results indicate that the computed boundary gives the detection rate of 99.5% accuracy.

Keywords: Breast Cancer, Mammogram, and Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
1148 Influence of Temperature and Precipitation Changes on Desertification

Authors: Kukuri Tavartkiladze, Nana Bolashvili

Abstract:

The purpose of this paper was separation and study of the part of structure regime, which directly affects the process of desertification. A simple scheme was prepared for the assessment of desertification process; surface air temperature and precipitation for the years of 1936-2009 were analyzed.  The map of distribution of the Desertification Contributing Coefficient in the territory of Georgia was compiled. The simple scheme for identification of the intensity of the desertification contributing process has been developed and the illustrative example of its practical application for the territory of Georgia has been conducted.

Keywords: Climate change, aridity, desertification, precipitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970
1147 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model

Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed

Abstract:

Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.

Keywords: Lithium-Ion batteries, genetic algorithm optimization, battery aging test, and parameter identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
1146 Urinary Mucosal Cryoglobulin: A Review

Authors: Ibrahim M. S. Shnawa, Naeem R. R. Algebory

Abstract:

The procedure for the assessment of the urinary mucosal cryoglobulin (UMCG) is being reviewed, testified and evaluated. The major features of UMCG are rather similar to that of serum cryoglobulin. Such evident similarities are forming the reality for the existence of the UMCG. There were seven characterizing criteria useable for the identification for UMCG. Upon matching them to the Irish criteria for serum cryoglobulin, some modifications are being proposed to the 16th standards that has been formulated and built as an Irish criteria. The existence of UMCG is being reported for the first time in human chronic infectious bacterial disease.

Keywords: Urinary, Mucosal, Cryoglubulin, Standard Immunofixation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
1145 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds

Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi

Abstract:

Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.

Keywords: Sensors, endocrine disruptors, nanoparticles, electrochemical, microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
1144 Revealing Nonlinear Couplings between Oscillators from Time Series

Authors: B.P. Bezruchko, D.A. Smirnov

Abstract:

Quantitative characterization of nonlinear directional couplings between stochastic oscillators from data is considered. We suggest coupling characteristics readily interpreted from a physical viewpoint and their estimators. An expression for a statistical significance level is derived analytically that allows reliable coupling detection from a relatively short time series. Performance of the technique is demonstrated in numerical experiments.

Keywords: Nonlinear time series analysis, directional couplings, coupled oscillators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1264
1143 Reliability Analysis of Press Unit using Vague Set

Authors: S. P. Sharma, Monica Rani

Abstract:

In conventional reliability assessment, the reliability data of system components are treated as crisp values. The collected data have some uncertainties due to errors by human beings/machines or any other sources. These uncertainty factors will limit the understanding of system component failure due to the reason of incomplete data. In these situations, we need to generalize classical methods to fuzzy environment for studying and analyzing the systems of interest. Fuzzy set theory has been proposed to handle such vagueness by generalizing the notion of membership in a set. Essentially, in a Fuzzy Set (FS) each element is associated with a point-value selected from the unit interval [0, 1], which is termed as the grade of membership in the set. A Vague Set (VS), as well as an Intuitionistic Fuzzy Set (IFS), is a further generalization of an FS. Instead of using point-based membership as in FS, interval-based membership is used in VS. The interval-based membership in VS is more expressive in capturing vagueness of data. In the present paper, vague set theory coupled with conventional Lambda-Tau method is presented for reliability analysis of repairable systems. The methodology uses Petri nets (PN) to model the system instead of fault tree because it allows efficient simultaneous generation of minimal cuts and path sets. The presented method is illustrated with the press unit of the paper mill.

Keywords: Lambda -Tau methodology, Petri nets, repairable system, vague fuzzy set.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
1142 A Modified Run Length Coding Technique for Test Data Compression Based on Multi-Level Selective Huffman Coding

Authors: C. Kalamani, K. Paramasivam

Abstract:

Test data compression is an efficient method for reducing the test application cost. The problem of reducing test data has been addressed by researchers in three different aspects: Test Data Compression, Built-in-Self-Test (BIST) and Test set compaction. The latter two methods are capable of enhancing fault coverage with cost of hardware overhead. The drawback of the conventional methods is that they are capable of reducing the test storage and test power but when test data have redundant length of runs, no additional compression method is followed. This paper presents a modified Run Length Coding (RLC) technique with Multilevel Selective Huffman Coding (MLSHC) technique to reduce test data volume, test pattern delivery time and power dissipation in scan test applications where redundant length of runs is encountered then the preceding run symbol is replaced with tiny codeword. Experimental results show that the presented method not only improves the test data compression but also reduces the overall test data volume compared to recent schemes. Experiments for the six largest ISCAS-98 benchmarks show that our method outperforms most known techniques.

Keywords: Modified run length coding, multilevel selective Huffman coding, built-in-self-test modified selective Huffman coding, automatic test equipment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
1141 Decision Algorithm for Smart Airbag Deployment Safety Issues

Authors: Aini Hussain, M A Hannan, Azah Mohamed, Hilmi Sanusi, Burhanuddin Yeop Majlis

Abstract:

Airbag deployment has been known to be responsible for huge death, incidental injuries and broken bones due to low crash severity and wrong deployment decisions. Therefore, the authorities and industries have been looking for more innovative and intelligent products to be realized for future enhancements in the vehicle safety systems (VSSs). Although the VSSs technologies have advanced considerably, they still face challenges such as how to avoid unnecessary and untimely airbag deployments that can be hazardous and fatal. Currently, most of the existing airbag systems deploy without regard to occupant size and position. As such, this paper will focus on the occupant and crash sensing performances due to frontal collisions for the new breed of so called smart airbag systems. It intends to provide a thorough discussion relating to the occupancy detection, occupant size classification, occupant off-position detection to determine safe distance zone for airbag deployment, crash-severity analysis and airbag decision algorithms via a computer modeling. The proposed system model consists of three main modules namely, occupant sensing, crash severity analysis and decision fusion. The occupant sensing system module utilizes the weight sensor to determine occupancy, classify the occupant size, and determine occupant off-position condition to compute safe distance for airbag deployment. The crash severity analysis module is used to generate relevant information pertinent to airbag deployment decision. Outputs from these two modules are fused to the decision module for correct and efficient airbag deployment action. Computer modeling work is carried out using Simulink, Stateflow, SimMechanics and Virtual Reality toolboxes.

Keywords: Crash severity analysis, occupant size classification, smart airbag, vehicle safety system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4116
1140 Integrating Low and High Level Object Recognition Steps

Authors: András Barta, István Vajk

Abstract:

In pattern recognition applications the low level segmentation and the high level object recognition are generally considered as two separate steps. The paper presents a method that bridges the gap between the low and the high level object recognition. It is based on a Bayesian network representation and network propagation algorithm. At the low level it uses hierarchical structure of quadratic spline wavelet image bases. The method is demonstrated for a simple circuit diagram component identification problem.

Keywords: Object recognition, Bayesian network, Wavelets, Document processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
1139 Exploring the Physical Environment and Building Features in Earthquake Disaster Areas

Authors: Chang Hsueh-Sheng, Chen Tzu-Ling

Abstract:

Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience. Conventional ways to mitigate earthquake disaster are to enhance building codes and advance structural engineering measures. However, earthquake-induced ground damage such as liquefaction, land subsidence, landslide happen on places nearby earthquake prone or poor soil condition areas. Therefore, this study uses spatial statistical analysis to explore the spatial pattern of damaged buildings. Afterwards, principle components analysis (PCA) is applied to categorize the similar features in different kinds of clustered patterns. The results show that serious landslide prone area, close to fault, vegetated ground surface and mudslide prone area are common in those highly damaged buildings. In addition, the oldest building might not be directly referred to the most vulnerable one. In fact, it seems that buildings built between 1974 and 1989 become more fragile during the earthquake. The incorporation of both spatial statistical analyses and PCA can provide more accurate information to subsidize retrofit programs to enhance earthquake resistance in particular areas.

Keywords: Earthquake disaster, spatial statistical analysis, principle components analysis, clustered patterns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383
1138 Atrial Fibrillation Analysis Based on Blind Source Separation in 12-lead ECG

Authors: Pei-Chann Chang, Jui-Chien Hsieh, Jyun-Jie Lin, Feng-Ming Yeh

Abstract:

Atrial Fibrillation is the most common sustained arrhythmia encountered by clinicians. Because of the invisible waveform of atrial fibrillation in atrial activation for human, it is necessary to develop an automatic diagnosis system. 12-Lead ECG now is available in hospital and is appropriate for using Independent Component Analysis to estimate the AA period. In this research, we also adopt a second-order blind identification approach to transform the sources extracted by ICA to more precise signal and then we use frequency domain algorithm to do the classification. In experiment, we gather a significant result of clinical data.

Keywords: 12-Lead ECG, Atrial Fibrillation, Blind SourceSeparation, Kurtosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
1137 Analysis of Poverty Reduction Strategies as Mechanism for Development in Nigeria from 1999-2014

Authors: Ahmed Usman Egye, Hamza Muhammad

Abstract:

Poverty alleviation is one of the most difficult challenges facing third world countries in their development efforts. Evidences in Nigeria showed that the number of those in poverty has continued to increase. This paper is aimed at analyzing the performance of poverty alleviation measures undertaken by successive administrations in Nigeria with a view to addressing the quagmire. The study identified the whole gamut of factors that served as stumbling blocks to the implementation of each of the strategies and recommended the involvement of local people in the identification and design of projects so that sufficient participation could be achieved.

Keywords: Poverty, development, strategies, Nigeria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2771
1136 Spread Spectrum Code Estimationby Particle Swarm Algorithm

Authors: Vahid R. Asghari, Mehrdad Ardebilipour

Abstract:

In the context of spectrum surveillance, a new method to recover the code of spread spectrum signal is presented, while the receiver has no knowledge of the transmitter-s spreading sequence. In our previous paper, we used Genetic algorithm (GA), to recover spreading code. Although genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems, but nonetheless, by increasing the length of the code, we will often lead to an unacceptable slow convergence speed. To solve this problem we introduce Particle Swarm Optimization (PSO) into code estimation in spread spectrum communication system. In searching process for code estimation, the PSO algorithm has the merits of rapid convergence to the global optimum, without being trapped in local suboptimum, and good robustness to noise. In this paper we describe how to implement PSO as a component of a searching algorithm in code estimation. Swarm intelligence boasts a number of advantages due to the use of mobile agents. Some of them are: Scalability, Fault tolerance, Adaptation, Speed, Modularity, Autonomy, and Parallelism. These properties make swarm intelligence very attractive for spread spectrum code estimation. They also make swarm intelligence suitable for a variety of other kinds of channels. Our results compare between swarm-based algorithms and Genetic algorithms, and also show PSO algorithm performance in code estimation process.

Keywords: Code estimation, Particle Swarm Optimization(PSO), Spread spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
1135 Integrating Low and High Level Object Recognition Steps by Probabilistic Networks

Authors: András Barta, István Vajk

Abstract:

In pattern recognition applications the low level segmentation and the high level object recognition are generally considered as two separate steps. The paper presents a method that bridges the gap between the low and the high level object recognition. It is based on a Bayesian network representation and network propagation algorithm. At the low level it uses hierarchical structure of quadratic spline wavelet image bases. The method is demonstrated for a simple circuit diagram component identification problem.

Keywords: Object recognition, Bayesian network, Wavelets, Document processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
1134 Adaptive MPC Using a Recursive Learning Technique

Authors: Ahmed Abbas Helmy, M. R. M. Rizk, Mohamed El-Sayed

Abstract:

A model predictive controller based on recursive learning is proposed. In this SISO adaptive controller, a model is automatically updated using simple recursive equations. The identified models are then stored in the memory to be re-used in the future. The decision for model update is taken based on a new control performance index. The new controller allows the use of simple linear model predictive controllers in the control of nonlinear time varying processes.

Keywords: Adaptive control, model predictive control, dynamic matrix control, online model identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
1133 Modeling and Analysis of DFIG Based Wind Power System Using Instantaneous Power Components

Authors: Jaimala Gambhir, Tilak Thakur, Puneet Chawla

Abstract:

As per the statistical data, the Doubly-fed Induction Generator (DFIG) based wind turbine with variable speed and variable pitch control is the most common wind turbine in the growing wind market. This machine is usually used on the grid connected wind energy conversion system to satisfy grid code requirements such as grid stability, Fault Ride Through (FRT), power quality improvement, grid synchronization and power control etc. Though the requirements are not fulfilled directly by the machine, the control strategy is used in both the stator as well as rotor side along with power electronic converters to fulfil the requirements stated above. To satisfy the grid code requirements of wind turbine, usually grid side converter is playing a major role. So in order to improve the operation capacity of wind turbine under critical situation, the intensive study of both machine side converter control and grid side converter control is necessary In this paper DFIG is modeled using power components as variables and the performance of the DFIG system is analysed under grid voltage fluctuations. The voltage fluctuations are made by lowering and raising the voltage values in the utility grid intentionally for the purpose of simulation keeping in view of different grid disturbances.

Keywords: DFIG, dynamic modeling, DPC, sag, swell, voltage fluctuations, FRT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2654
1132 Proposal of Solidification/Stabilisation Process of Chosen Hazardous Waste by Cementation

Authors: Bozena Dohnalkova

Abstract:

This paper presents a part of the project solving which is dedicated to the identification of the hazardous waste with the most critical production within the Czech Republic with the aim to study and find the optimal composition of the cement matrix that will ensure maximum content disposal of chosen hazardous waste. In the first stage of project solving – which represents this paper – a specific hazardous waste was chosen, its properties were identified and suitable solidification agents were chosen. Consequently solidification formulas and testing methodology was proposed.

Keywords: Cementation, solidification, waste, binder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866