Search results for: cycle composition networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3162

Search results for: cycle composition networks

1752 Performance Evaluation of Clustered Routing Protocols for Heterogeneous Wireless Sensor Networks

Authors: Awatef Chniguir, Tarek Farah, Zouhair Ben Jemaa, Safya Belguith

Abstract:

Optimal routing allows minimizing energy consumption in wireless sensor networks (WSN). Clustering has proven its effectiveness in organizing WSN by reducing channel contention and packet collision and enhancing network throughput under heavy load. Therefore, nowadays, with the emergence of the Internet of Things, heterogeneity is essential. Stable election protocol (SEP) that has increased the network stability period and lifetime is the first clustering protocol for heterogeneous WSN. SEP and its descendants, namely SEP, Threshold Sensitive SEP (TSEP), Enhanced TSEP (ETSSEP) and Current Energy Allotted TSEP (CEATSEP), were studied. These algorithms’ performance was evaluated based on different metrics, especially first node death (FND), to compare their stability. Simulations were conducted on the MATLAB tool considering two scenarios: The first one demonstrates the fraction variation of advanced nodes by setting the number of total nodes. The second considers the interpretation of the number of nodes while keeping the number of advanced nodes permanent. CEATSEP outperforms its antecedents by increasing stability and, at the same time, keeping a low throughput. It also operates very well in a large-scale network. Consequently, CEATSEP has a useful lifespan and energy efficiency compared to the other routing protocol for heterogeneous WSN.

Keywords: Clustering, heterogeneous, stability, scalability, throughput, IoT, WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 434
1751 Development of Lodging Business Management Standards of Bang Khonthi Community in Samut Songkram Province

Authors: Poramet Saeng-On

Abstract:

This research aims to develop ways of lodging business management of Bang Khonthi community in Samut Songkram province that are appropriate with the cultural context of the Bang Khonthi community. Eight lodging business owners were interviewed. It was found that lodging business that are family business must be done with passion, correct understanding of self, culture, nature, Thai way of life, thorough, professional development, environmentally concerned, building partnerships with various networks both community level, and public sector and business cohorts. Public relations should be done through media both traditional and modern outlets, such as websites and social networks to provide customers convenience, security, happiness, knowledge, love and value when travel to Bang Khonthi. This will also help them achieve sustainability in business, in line with the 10 Home Stay Standard Thailand. Suggestions for operators are as follows: Operators need to improve their public relations work. They need to use technology in public relations such as the internet. Management standards must be improved. Souvenir and local products shops should be arranged in the compound. Product pricing must be set accordingly. They need to join hands to help each other. Quality of the business operation should be raised to meet the standards. Educational measures to reduce the impact caused by tourism on the community such as efforts to reduce energy consumption.

Keywords: Homestay, lodging business, management, standard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124
1750 Complex-Valued Neural Network in Signal Processing: A Study on the Effectiveness of Complex Valued Generalized Mean Neuron Model

Authors: Anupama Pande, Ashok Kumar Thakur, Swapnoneel Roy

Abstract:

A complex valued neural network is a neural network which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in signal processing. In Neural networks, generalized mean neuron model (GMN) is often discussed and studied. The GMN includes a new aggregation function based on the concept of generalized mean of all the inputs to the neuron. This paper aims to present exhaustive results of using Generalized Mean Neuron model in a complex-valued neural network model that uses the back-propagation algorithm (called -Complex-BP-) for learning. Our experiments results demonstrate the effectiveness of a Generalized Mean Neuron Model in a complex plane for signal processing over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error required on a Generalized Mean neural network model. Some inherent properties of this complex back propagation algorithm are also studied and discussed.

Keywords: Complex valued neural network, Generalized Meanneuron model, Signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
1749 RTCoord: A Methodology to Design WSAN Applications

Authors: J. Barbarán, M. Díaz, I. Esteve, D. Garrido, L. Llopis, B. Rubio

Abstract:

Wireless Sensor and Actor Networks (WSANs) constitute an emerging and pervasive technology that is attracting increasing interest in the research community for a wide range of applications. WSANs have two important requirements: coordination interactions and real-time communication to perform correct and timely actions. This paper introduces a methodology to facilitate the task of the application programmer focusing on the coordination and real-time requirements of WSANs. The methodology proposed in this model uses a real-time component model, UM-RTCOM, which will help us to achieve the design and implementation of applications in WSAN by using the component oriented paradigm. This will help us to develop software components which offer some very interesting features, such as reusability and adaptability which are very suitable for WSANs as they are very dynamic environments with rapidly changing conditions. In addition, a high-level coordination model based on tuple channels (TC-WSAN) is integrated into the methodology by providing a component-based specification of this model in UM-RTCOM; this will allow us to satisfy both sensor-actor and actor-actor coordination requirements in WSANs. Finally, we present in this paper the design and implementation of an application which will help us to show how the methodology can be easily used in order to achieve the development of WSANs applications.

Keywords: Sensor networks, real time and embedded systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
1748 Miniaturized PVC Sensors for Determination of Fe2+, Mn2+ and Zn2+ in Buffalo-Cows’ Cervical Mucus Samples

Authors: Ahmed S. Fayed, Umima M. Mansour

Abstract:

Three polyvinyl chloride membrane sensors were developed for the electrochemical evaluation of ferrous, manganese and zinc ions. The sensors were used for assaying metal ions in cervical mucus (CM) of Egyptian river buffalo-cows (Bubalus bubalis) as their levels vary dependent on cyclical hormone variation during different phases of estrus cycle. The presented sensors are based on using ionophores, β-cyclodextrin (β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and sulfocalix-4-arene (SCAL) for sensors 1, 2 and 3 for Fe2+, Mn2+ and Zn2+, respectively. Dioctyl phthalate (DOP) was used as the plasticizer in a polymeric matrix of polyvinylchloride (PVC). For increasing the selectivity and sensitivity of the sensors, each sensor was enriched with a suitable complexing agent, which enhanced the sensor’s response. For sensor 1, β-CD was mixed with bathophenanthroline; for sensor 2, porphyrin was incorporated with HP-β-CD; while for sensor 3, oxine was the used complexing agent with SCAL. Linear responses of 10-7-10-2 M with cationic slopes of 53.46, 45.01 and 50.96 over pH range 4-8 were obtained using coated graphite sensors for ferrous, manganese and zinc ionic solutions, respectively. The three sensors were validated, according to the IUPAC guidelines. The obtained results by the presented potentiometric procedures were statistically analyzed and compared with those obtained by atomic absorption spectrophotometric method (AAS). No significant differences for either accuracy or precision were observed between the two techniques. Successful application for the determination of the three studied cations in CM, for the purpose to determine the proper time for artificial insemination (AI) was achieved. The results were compared with those obtained upon analyzing the samples by AAS. Proper detection of estrus and correct time of AI was necessary to maximize the production of buffaloes. In this experiment, 30 multi-parous buffalo-cows were in second to third lactation and weighting 415-530 kg, and were synchronized with OVSynch protocol. Samples were taken in three times around ovulation, on day 8 of OVSynch protocol, on day 9 (20 h before AI) and on day 10 (1 h before AI). Beside analysis of trace elements (Fe2+, Mn2+ and Zn2+) in CM using the three sensors, the samples were analyzed for the three cations and also Cu2+ by AAS in the CM samples and blood samples. The results obtained were correlated with hormonal analysis of serum samples and ultrasonography for the purpose of determining of the optimum time of AI. The results showed significant differences and powerful correlation with Zn2+ composition of CM during heat phase and the ovulation time, indicating that the parameter could be used as a tool to decide optimal time of AI in buffalo-cows.

Keywords: PVC sensors, buffalo-cows, cyclodextrins, atomic absorption spectrophotometry, artificial insemination, OVSynch protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1268
1747 Peak Data Rate Enhancement Using Switched Micro-Macro Diversity in Cellular Multiple-Input-Multiple-Output Systems

Authors: Jihad S. Daba, J. P. Dubois, Yvette Antar

Abstract:

With the exponential growth of cellular users, a new generation of cellular networks is needed to enhance the required peak data rates. The co-channel interference between neighboring base stations inhibits peak data rate increase. To overcome this interference, multi-cell cooperation known as coordinated multipoint transmission is proposed. Such a solution makes use of multiple-input-multiple-output (MIMO) systems under two different structures: Micro- and macro-diversity. In this paper, we study the capacity and bit error rate in cellular networks using MIMO technology. We analyse both micro- and macro-diversity schemes and develop a hybrid model that switches between macro- and micro-diversity in the case of hard handoff based on a cut-off range of signal-to-noise ratio values. We conclude that our hybrid switched micro-macro MIMO system outperforms classical MIMO systems at the cost of increased hardware and software complexity.

Keywords: Cooperative multipoint transmission, ergodic capacity, hard handoff, macro-diversity, micro-diversity, multiple-input-multiple-output systems, MIMO, orthogonal frequency division multiplexing, OFDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1100
1746 Integrating AI Visualization Tools to Enhance Student Engagement and Understanding in AI Education

Authors: Yong W. Foo, Lai M. Tang

Abstract:

Artificial Intelligence (AI), particularly the usage of deep neural networks for hierarchical representations from data, has found numerous complex applications across various domains, including computer vision, robotics, autonomous vehicles, and other scientific fields. However, their inherent “black box” nature can sometimes make it challenging for early researchers or school students of various levels to comprehend and trust the results they produce. Consequently, there has been a growing demand for reliable visualization tools in engineering and science education to help learners understand, trust, and explain a deep learning network. This has led to a notable emphasis on the visualization of AI in the research community in recent years. AI visualization tools are increasingly being adopted to significantly improve the comprehension of complex topics in deep learning. This paper presents an approach to empower students to actively explore the inner workings of deep neural networks by integrating the student-centered learning approach of flipped classroom models with the investigative capabilities of AI visualization tools, namely, the TensorFlow Playground, the Local Interpretable Model-agnostic Explanations (LIME), and the SHapley Additive exPlanations (SHAP), for delivering an AI education curriculum. Integrating these two factors is crucial for fostering ownership, responsibility, and critical thinking skills in the age of AI.

Keywords: Deep Learning, Explainable AI, AI Visualization, Representation Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47
1745 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment

Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang

Abstract:

2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn  features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.

Keywords: Artificial Intelligence, machine learning, deep learning, convolutional neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1267
1744 Effect of Clustering on Energy Efficiency and Network Lifetime in Wireless Sensor Networks

Authors: Prakash G L, Chaitra K Meti, Poojitha K, Divya R.K.

Abstract:

Wireless Sensor Network is Multi hop Self-configuring Wireless Network consisting of sensor nodes. The deployment of wireless sensor networks in many application areas, e.g., aggregation services, requires self-organization of the network nodes into clusters. Efficient way to enhance the lifetime of the system is to partition the network into distinct clusters with a high energy node as cluster head. The different methods of node clustering techniques have appeared in the literature, and roughly fall into two families; those based on the construction of a dominating set and those which are based solely on energy considerations. Energy optimized cluster formation for a set of randomly scattered wireless sensors is presented. Sensors within a cluster are expected to be communicating with cluster head only. The energy constraint and limited computing resources of the sensor nodes present the major challenges in gathering the data. In this paper we propose a framework to study how partially correlated data affect the performance of clustering algorithms. The total energy consumption and network lifetime can be analyzed by combining random geometry techniques and rate distortion theory. We also present the relation between compression distortion and data correlation.

Keywords: Clusters, multi hop, random geometry, rate distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
1743 Complex Condition Monitoring System of Aircraft Gas Turbine Engine

Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev

Abstract:

Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE workand output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-by-stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.

Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2548
1742 New Curriculum Approach in Teaching Network Security Subjects for ICT Courses in Malaysia

Authors: Mohd Fairuz Iskandar Othman, Nazrulazhar Bahaman, Zulkiflee Muslim, Faizal Abdollah

Abstract:

This paper discusses a curriculum approach that will give emphasis on practical portions of teaching network security subjects in information and communication technology courses. As we are well aware, the need to use a practice and application oriented approach in education is paramount. Research on active learning and cooperative groups have shown that students grasps more and have more tendency towards obtaining and realizing soft skills like leadership, communication and team work as opposed to the more traditional theory and exam based teaching and learning. While this teaching and learning paradigm is relatively new in Malaysia, it has been practiced widely in the West. This paper examines a certain approach whereby students learning wireless security are divided into and work in small and manageable groups where there will be 2 teams which consist of black hat and white hat teams. The former will try to find and expose vulnerabilities in a wireless network while the latter will try their best to prevent such attacks on their wireless networks using hardware, software, design and enforcement of security policy and etc. This paper will try to show that the approach taken plus the use of relevant and up to date software and hardware and with suitable environment setting will hopefully expose students to a more fruitful outcome in terms of understanding of concepts, theories and their motivation to learn.

Keywords: Curriculum approach, wireless networks, wirelesssecurity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
1741 The Effect of Porous Alkali Activated Material Composition on Buffer Capacity in Bioreactors

Authors: G. Bumanis, D. Bajare

Abstract:

With demand for primary energy continuously growing, search for renewable and efficient energy sources has been high on agenda of our society. One of the most promising energy sources is biogas technology. Residues coming from dairy industry and milk processing could be used in biogas production; however, low efficiency and high cost impede wide application of such technology. One of the main problems is management and conversion of organic residues through the anaerobic digestion process which is characterized by acidic environment due to the low whey pH (<6) whereas additional pH control system is required. Low buffering capacity of whey is responsible for the rapid acidification in biological treatments; therefore alkali activated material is a promising solution of this problem. Alkali activated material is formed using SiO2 and Al2O3 rich materials under highly alkaline solution. After material structure forming process is completed, free alkalis remain in the structure of materials which are available for leaching and could provide buffer capacity potential. In this research porous alkali activated material was investigated. Highly porous material structure ensures gradual leaching of alkalis during time which is important in biogas digestion process. Research of mixture composition and SiO2/Na2O and SiO2/Al2O ratio was studied to test the buffer capacity potential of alkali activated material. This research has proved that by changing molar ratio of components it is possible to obtain a material with different buffer capacity, and this novel material was seen to have considerable potential for using it in processes where buffer capacity and pH control is vitally important.

Keywords: Alkaline material, buffer capacity, biogas production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
1740 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves

Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira

Abstract:

Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.

Keywords: Artificial neural networks, digital image processing, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2560
1739 Authenticity Issues of Social Media: Credibility, Quality and Reality

Authors: Shahrinaz Ismail, Roslina Abdul Latif

Abstract:

Social media has led to paradigm shifts in ways people work and do business, interact and socialize, learn and obtain knowledge. So much so that social media has established itself as an important spatial extension of this nation-s historicity and challenges. Regardless of the enabling reputation and recommendation features through social networks embedded in the social media system, the overflow of broadcasted and publicized media contents turns the table around from engendering trust to doubting the trust system. When the trust is at doubt, the effects include deactivation of accounts and creation of multiple profiles, which lead to the overflow of 'ghost' contents (i.e. “the abundance of abandoned ships"). In most literature, the study of trust can be related to culture; hence the difference between Western-s “openness" and Eastern-s “blue-chip" concepts in networking and relationships. From a survey on issues and challenges among Malaysian social media users, 'authenticity' emerges as one of the main factors that causes and is caused by other factors. The other issue that has surfaced is credibility either in terms of message/content and source. Another is the quality of the knowledge that is shared. This paper explores the terrains of this critical space which in recent years has been dominated increasingly by, arguably, social networks embedded in the social media system, the overflow of broadcasted and publicized media content.

Keywords: Authenticity, credibility, knowledge quality and social media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4565
1738 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network

Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard

Abstract:

Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the point specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.

Keywords: Milling process, rotational speed, Artificial Neural Networks, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
1737 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks

Authors: Yao-Hong Tsai

Abstract:

Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: Unmanned aerial vehicle, object tracking, deep learning, collision avoidance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
1736 Estimating Spatial Disaggregation of Urban Thermal Responsiveness on Summer Diurnal Range with a Numerical Modeling Approach in Bangkok, Thailand

Authors: Manat Srivanit, Hokao Kazunori

Abstract:

Facing the concern of the population to its environment and to climatic change, city planners are now considering the urban climate in their choices of planning. The urban climate, representing different urban morphologies across central Bangkok metropolitan area (BMA), are used to investigates the effects of both the composition and configuration of variables of urban morphology indicators on the summer diurnal range of urban climate, using correlation analyses and multiple linear regressions. Results show first indicate that approximately 92.6% of the variation in the average maximum daytime near-surface air temperature (Ta) was explained jointly by the two composition variables of urban morphology indicators including open space ratio (OSR) and floor area ratio (FAR). It has been possible to determine the membership of sample areas to the local climate zones (LCZs) using these urban morphology descriptors automatically computed with GIS and remote sensed data. Finally result found the temperature differences among zones of large separation, such as the city center could be respectively from 35.48±1.04ºC (Mean±S.D.) warmer than the outskirt of Bangkok on average for maximum daytime near surface temperature to 28.27±0.21ºC for extreme event and, can exceed as 8ºC. A spatially disaggregation of urban thermal responsiveness map would be helpful for several reasons. First, it would localize urban areas concerned by different climate behavior over summer daytime and be a good indicator of urban climate variability. Second, when overlaid with a land cover map, this map may contribute to identify possible urban management strategies to reduce heat wave effects in BMA.

Keywords: Urban climate, Urban morphology, Local climate zone, Urban planning, GIS and remote sensing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2470
1735 Data Recording for Remote Monitoring of Autonomous Vehicles

Authors: Rong-Terng Juang

Abstract:

Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.

Keywords: Autonomous vehicle, data recording, remote monitoring, controller area network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358
1734 Study of Kinetics Incorporation of Ag with TCPP

Authors: Rahmatollah Rahimi, Fariba Moharrami

Abstract:

The Kinetics formation of labile Complex Ag (I) tetra (p-carboxyphenyl) porphyrin, was investigated at 25oC and I=0.1M (NaNO3). By spectrophotometric titration, the composition ratio of the complex was established to be 2:1 (Ag : H2TCPP). The equilibrium constant, K, was found to be log 10-6.53. Binding of the first Ag (I) was found to be rate determining step with rate constant, k1= 4.67×102 . A plausible mechanism is discussed. We discus theoretically why Ag(I)2TCPP is unstable.

Keywords: Kinetics, Silver, TCPP, Sitting-atop, Theoretical study

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
1733 Integrating Dependent Material Planning Cycle into Building Information Management: A Building Information Management-Based Material Management Automation Framework

Authors: Faris Elghaish, Sepehr Abrishami, Mark Gaterell, Richard Wise

Abstract:

The collaboration and integration between all building information management (BIM) processes and tasks are necessary to ensure that all project objectives can be delivered. The literature review has been used to explore the state of the art BIM technologies to manage construction materials as well as the challenges which have faced the construction process using traditional methods. Thus, this paper aims to articulate a framework to integrate traditional material planning methods such as ABC analysis theory (Pareto principle) to analyse and categorise the project materials, as well as using independent material planning methods such as Economic Order Quantity (EOQ) and Fixed Order Point (FOP) into the BIM 4D, and 5D capabilities in order to articulate a dependent material planning cycle into BIM, which relies on the constructability method. Moreover, we build a model to connect between the material planning outputs and the BIM 4D and 5D data to ensure that all project information will be accurately presented throughout integrated and complementary BIM reporting formats. Furthermore, this paper will present a method to integrate between the risk management output and the material management process to ensure that all critical materials are monitored and managed under the all project stages. The paper includes browsers which are proposed to be embedded in any 4D BIM platform in order to predict the EOQ as well as FOP and alarm the user during the construction stage. This enables the planner to check the status of the materials on the site as well as to get alarm when the new order will be requested. Therefore, this will lead to manage all the project information in a single context and avoid missing any information at early design stage. Subsequently, the planner will be capable of building a more reliable 4D schedule by allocating the categorised material with the required EOQ to check the optimum locations for inventory and the temporary construction facilitates.

Keywords: Building information management, BIM, economic order quantity, fixed order point, BIM 4D, BIM 5D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919
1732 Recommender Systems Using Ensemble Techniques

Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim

Abstract:

This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.

Keywords: Product recommender system, Ensemble technique, Association rules, Decision tree, Artificial neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4227
1731 Using Satellite Images Datasets for Road Intersection Detection in Route Planning

Authors: Fatma El-zahraa El-taher, Ayman Taha, Jane Courtney, Susan Mckeever

Abstract:

Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions is critical to decisions such as crossing roads or selecting safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition  problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset are examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of detection of intersections in satellite images is evaluated.

Keywords: Satellite images, remote sensing images, data acquisition, autonomous vehicles, robot navigation, route planning, road intersections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
1730 High Speed Video Transmission for Telemedicine using ATM Technology

Authors: J. P. Dubois, H. M. Chiu

Abstract:

In this paper, we study statistical multiplexing of VBR video in ATM networks. ATM promises to provide high speed realtime multi-point to central video transmission for telemedicine applications in rural hospitals and in emergency medical services. Video coders are known to produce variable bit rate (VBR) signals and the effects of aggregating these VBR signals need to be determined in order to design a telemedicine network infrastructure capable of carrying these signals. We first model the VBR video signal and simulate it using a generic continuous-data autoregressive (AR) scheme. We carry out the queueing analysis by the Fluid Approximation Model (FAM) and the Markov Modulated Poisson Process (MMPP). The study has shown a trade off: multiplexing VBR signals reduces burstiness and improves resource utilization, however, the buffer size needs to be increased with an associated economic cost. We also show that the MMPP model and the Fluid Approximation model fit best, respectively, the cell region and the burst region. Therefore, a hybrid MMPP and FAM completely characterizes the overall performance of the ATM statistical multiplexer. The ramifications of this technology are clear: speed, reliability (lower loss rate and jitter), and increased capacity in video transmission for telemedicine. With migration to full IP-based networks still a long way to achieving both high speed and high quality of service, the proposed ATM architecture will remain of significant use for telemedicine.

Keywords: ATM, multiplexing, queueing, telemedicine, VBR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
1729 Unbalanced Distribution Optimal Power Flow to Minimize Losses with Distributed Photovoltaic Plants

Authors: Malinwo Estone Ayikpa

Abstract:

Electric power systems are likely to operate with minimum losses and voltage meeting international standards. This is made possible generally by control actions provide by automatic voltage regulators, capacitors and transformers with on-load tap changer (OLTC). With the development of photovoltaic (PV) systems technology, their integration on distribution networks has increased over the last years to the extent of replacing the above mentioned techniques. The conventional analysis and simulation tools used for electrical networks are no longer able to take into account control actions necessary for studying distributed PV generation impact. This paper presents an unbalanced optimal power flow (OPF) model that minimizes losses with association of active power generation and reactive power control of single-phase and three-phase PV systems. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The unbalance OPF is formulated by current balance equations and solved by primal-dual interior point method. Several simulation cases have been carried out varying the size and location of PV systems and the results show a detailed view of the impact of PV distributed generation on distribution systems.

Keywords: Distribution system, losses, photovoltaic generation, primal-dual interior point method, reactive power control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085
1728 Assessment of Soil Contamination on the Content of Macro and Microelements and the Quality of Grass Pea Seeds (Lathyrus sativus L.)

Authors: Violina R. Angelova

Abstract:

Comparative research has been conducted to allow us to determine the content of macro and microelements in the vegetative and reproductive organs of grass pea and the quality of grass pea seeds, as well as to identify the possibility of grass pea growth on soils contaminated by heavy metals. The experiment was conducted on an agricultural field subjected to contamination from the Non-Ferrous-Metal Works (MFMW) near Plovdiv, Bulgaria. The experimental plots were situated at different distances of 0.5 km and 8 km, respectively, from the source of pollution. On reaching commercial ripeness the grass pea plants were gathered. The composition of the macro and microelements in plant materials (roots, stems, leaves, seeds), and the dry matter content, sugars, proteins, fats and ash contained in the grass pea seeds were determined. Translocation factors (TF) and bioaccumulation factor (BCF) were also determined. The quantitative measurements were carried out through inductively-coupled plasma (ICP). The grass pea plant can successfully be grown on soils contaminated by heavy metals. Soil pollution with heavy metals does not affect the quality of the grass pea seeds. The seeds of the grass pea contain significant amounts of nutrients (K, P, Cu, Fe Mn, Zn) and protein (23.18-29.54%). The distribution of heavy metals in the organs of the grass pea has a selective character, which reduces in the following order: leaves > roots > stems > seeds. BCF and TF values were greater than one suggesting efficient accumulation in the above ground parts of grass pea plant. Grass pea is a plant that is tolerant to heavy metals and can be referred to the accumulator plants. The results provide valuable information about the chemical and nutritional composition of the seeds of the grass pea grown on contaminated soils in Bulgaria. The high content of macro and microelements and the low concentrations of toxic elements in the grass pea grown in contaminated soil make it possible to use the seeds of the grass pea as animal feed.

Keywords: Grass pea, heavy metals, micro and macroelements, polluted soils, quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 646
1727 The New Effective Biostimulator for Agroecological Engineering

Authors: Saniyam A. Ibragimova, Zhandos M. Basygarayev, Almagul R. Kerimkulova, E. A. Bukenova, Murat K. Gilmanov

Abstract:

New biostimulator from wheat seeds which by its chemical composition relates to fusicoccin is presented in this article. New biostimulator could be used as powerful hormonal substance that has ability to increase productivity and salt tolerance of agricultural plants. Also on the basis of biostimulator we have developed vegetative method for fast reproduction of perennial plants as desert plant - Tamarix gracilis.

Keywords: Biostimulator, crop productivity, ecology, fussicoccin, salt tolerance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
1726 Aggregation Scheduling Algorithms in Wireless Sensor Networks

Authors: Min Kyung An

Abstract:

In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.

Keywords: Data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
1725 Products in Early Development Phases: Ecological Classification and Evaluation Using an Interval Arithmetic Based Calculation Approach

Authors: Helen L. Hein, Joachim Schwarte

Abstract:

As a pillar of sustainable development, ecology has become an important milestone in research community, especially due to global challenges like climate change. The ecological performance of products can be scientifically conducted with life cycle assessments. In the construction sector, significant amounts of CO2 emissions are assigned to the energy used for building heating purposes. Therefore, sustainable construction materials for insulating purposes are substantial, whereby aerogels have been explored intensively in the last years due to their low thermal conductivity. Therefore, the WALL-ACE project aims to develop an aerogel-based thermal insulating plaster that would achieve minor thermal conductivities. But as in the early stage of development phases, a lot of information is still missing or not yet accessible, the ecological performance of innovative products bases increasingly on uncertain data that can lead to significant deviations in the results. To be able to predict realistically how meaningful the results are and how viable the developed products may be with regard to their corresponding respective market, these deviations however have to be considered. Therefore, a classification method is presented in this study, which may allow comparing the ecological performance of modern products with already established and competitive materials. In order to achieve this, an alternative calculation method was used that allows computing with lower and upper bounds to consider all possible values without precise data. The life cycle analysis of the considered products was conducted with an interval arithmetic based calculation method. The results lead to the conclusion that the interval solutions describing the possible environmental impacts are so wide that the result usability is limited. Nevertheless, a further optimization in reducing environmental impacts of aerogels seems to be needed to become more competitive in the future.

Keywords: Aerogel-based, insulating material, early develop¬ment phase, interval arithmetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 619
1724 Performance Evaluation of AOMDV-PAMAC Protocols for Ad Hoc Networks

Authors: B. Malarkodi, S. K. Riyaz Hussain, B. Venkataramani

Abstract:

Power consumption of nodes in ad hoc networks is a critical issue as they predominantly operate on batteries. In order to improve the lifetime of an ad hoc network, all the nodes must be utilized evenly and the power required for connections must be minimized. In this project a link layer algorithm known as Power Aware medium Access Control (PAMAC) protocol is proposed which enables the network layer to select a route with minimum total power requirement among the possible routes between a source and a destination provided all nodes in the routes have battery capacity above a threshold. When the battery capacity goes below a predefined threshold, routes going through these nodes will be avoided and these nodes will act only as source and destination. Further, the first few nodes whose battery power drained to the set threshold value are pushed to the exterior part of the network and the nodes in the exterior are brought to the interior. Since less total power is required to forward packets for each connection. The network layer protocol AOMDV is basically an extension to the AODV routing protocol. AOMDV is designed to form multiple routes to the destination and it also avoid the loop formation so that it reduces the unnecessary congestion to the channel. In this project, the performance of AOMDV is evaluated using PAMAC as a MAC layer protocol and the average power consumption, throughput and average end to end delay of the network are calculated and the results are compared with that of the other network layer protocol AODV.

Keywords: AODV, PAMAC, AOMDV, Power consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
1723 Seamless Multicast Handover in Fmipv6-Based Networks

Authors: Moneeb Gohar, Seok Joo Koh, Tae-Won Um, Hyun-Woo Lee

Abstract:

This paper proposes a fast tree join scheme to provide seamless multicast handover in the mobile networks based on the Fast Mobile IPv6 (FMIPv6). In the existing FMIPv6-based multicast handover scheme, the bi-directional tunnelling or the remote subscription is employed with the packet forwarding from the previous access router (AR) to the new AR. In general, the remote subscription approach is preferred to the bi-directional tunnelling one, since in the remote subscription scheme we can exploit an optimized multicast path from a multicast source to many mobile receivers. However, in the remote subscription scheme, if the tree joining operation takes a long time, the amount of data packets to be forwarded and buffered for multicast handover will increase, and thus the corresponding buffer may overflow, which results in severe packet losses. In order to reduce these costs associated with packet forwarding and buffering, this paper proposes the fast join to multicast tree, in which the new AR will join the multicast tree as fast as possible, so that the new multicast data packets can also arrive at the new AR, by which the packet forwarding and buffering costs can be reduced. From numerical analysis, it is shown that the proposed scheme can give better performance than the existing FMIPv6-based multicast handover schemes in terms of the multicast packet delivery costs.

Keywords: Mobile Multicast, FMIPv6, Seamless Handover, Fast Tree Join.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430