Search results for: measured data.
7041 Mining Educational Data to Support Students’ Major Selection
Authors: Kunyanuth Kularbphettong, Cholticha Tongsiri
Abstract:
This paper aims to create the model for student in choosing an emphasized track of student majoring in computer science at Suan Sunandha Rajabhat University. The objective of this research is to develop the suggested system using data mining technique to analyze knowledge and conduct decision rules. Such relationships can be used to demonstrate the reasonableness of student choosing a track as well as to support his/her decision and the system is verified by experts in the field. The sampling is from student of computer science based on the system and the questionnaire to see the satisfaction. The system result is found to be satisfactory by both experts and student as well.
Keywords: Data mining technique, the decision support system, knowledge and decision rules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32847040 Bandwidth allocation in ATM Network for different QOS Requirements
Authors: H. El-Madbouly
Abstract:
For future Broad band ISDN, Asynchronous Transfer Mode (ATM) is designed not only to support a wide range of traffic classes with diverse flow characteristics, but also to guarantee the different quality of service QOS requirements. The QOS may be measured in terms of cell loss probability and maximum cell delay. In this paper, ATM networks in which the virtual path (VP) concept is implemented are considered. By applying the Markov Deterministic process method, an efficient algorithm to compute the minimum capacity required to satisfy the QOS requirements when multiple classes of on-off are multiplexed on to a single VP. Using the result, we then proposed a simple algorithm to determine different combinations of VP to achieve the optimum of the total capacity required for satisfying the individual QOS requirements (loss- delay).Keywords: Bandwidth allocation, Quality of services, ATMNetwork, virtual path.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15567039 Categorical Missing Data Imputation Using Fuzzy Neural Networks with Numerical and Categorical Inputs
Authors: Pilar Rey-del-Castillo, Jesús Cardeñosa
Abstract:
There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson-s fuzzy min-max neural networks where the input variables for learning and classification are just numerical. The proposed method extends the input to categorical variables by introducing new fuzzy sets, a new operation and a new architecture. The procedure is tested and compared with others using opinion poll data.
Keywords: Classifier, imputation techniques, fuzzy systems, fuzzy min-max neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17797038 Attitude and Knowledge of Primary Health Care Physicians and Local Inhabitants about Leishmaniasis and Sandfly in West Alexandria
Authors: Randa M. Ali, Naguiba F. Loutfy, Osama M. Awad
Abstract:
Leishmaniasis is the collective name for a number of diseases caused by protozoan flagellates of the genus Leishmania, which is transmitted by Phlebotomine sandfly, the disease has diverse clinical manifestations and found in many areas of the world, particularly in Africa, Latin America, South and Central Asia, the Mediterranean basin and the Middle East. This study was done to assess primary health care physicians’ knowledge (PHP) and attitude about leishmaniasis and to assess awareness of local inhabitants about the disease and its vector in four areas in west Alexandria, Egypt. It is a cross sectional survey that was conducted in four PHC units in west Alexandria. All physicians currently working in these units during the study period were invited to participate in the study; only 20 PHP completed the questionnaire. 60 local inhabitants were selected randomly from the four areas of the study, 15 from each area; Data was collected through two different specially designed questionnaires. Results showed that 11 (55%) percent of the physicians had satisfactory knowledge; they answered more than 9 (60%) questions out of a total 14 questions about leishmaniasis and sandfly. On the other hand when attitude of the primary health care physicians about leishmaniasis was measured, results showed that 17 (85%) had good attitude and 3 (15%) had poor attitude. The second questionnaire showed that the awareness of local inhabitants about leishmaniasis and sandfly as a vector of the disease is poor and needs to be corrected. (90%) of the interviewed inhabitants had not heard about leishmaniasis, Only 3 (5%) of them said they know sandfly and its role in transmission of leishmaniasis. Thus we conclude that knowledge and attitudes of physicians are acceptable. However, there is, room for improvement and could be done through formal training courses and distribution of guidelines. In addition to raising the awareness of primary health care physicians about the importance of early detection and notification of cases of leishmaniasis, health education for raising awareness of the public regarding the vector and the disease is necessary because related studies have demonstrated that for inhabitants to take enough protective measures against the vector, they should perceive that it is responsible for causing a disease.Keywords: Attitude, knowledge, PHP, leishmaniasis, sandfly, local inhabitants, inside and outside housing conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19347037 The Influence of Reaction Parameters on Magnetic Properties of Synthesized Strontium Ferrite
Authors: M. Bahgat, F. M. Awan, H. A. Hanafy
Abstract:
The conventional ceramic route was utilized to prepare a hard magnetic powder (M-type strontium ferrite, SrFe12O19). The stoichiometric mixture of iron oxide and strontium carbonate were calcined at 1000oC and then fired at various temperatures. The influence of various reaction parameters such as mixing ratio, calcination temperature, firing temperature and firing time on the magnetic behaviors of the synthesized magnetic powder were investigated. The magnetic properties including Coercivity (Hc), Magnetic saturation (Ms), and Magnetic remnance (Mr) were measured by vibrating sample magnetometer. Morphologically the produced magnetic powder has a dense hexagonal grain shape structure.Keywords: Hard magnetic materials, ceramic route, strontium ferrite, magnetic properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21817036 A Hidden Markov Model for Modeling Pavement Deterioration under Incomplete Monitoring Data
Authors: Nam Lethanh, Bryan T. Adey
Abstract:
In this paper, the potential use of an exponential hidden Markov model to model a hidden pavement deterioration process, i.e. one that is not directly measurable, is investigated. It is assumed that the evolution of the physical condition, which is the hidden process, and the evolution of the values of pavement distress indicators, can be adequately described using discrete condition states and modeled as a Markov processes. It is also assumed that condition data can be collected by visual inspections over time and represented continuously using an exponential distribution. The advantage of using such a model in decision making process is illustrated through an empirical study using real world data.Keywords: Deterioration modeling, Exponential distribution, Hidden Markov model, Pavement management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23057035 Automated Knowledge Engineering
Authors: Sandeep Chandana, Rene V. Mayorga, Christine W. Chan
Abstract:
This article outlines conceptualization and implementation of an intelligent system capable of extracting knowledge from databases. Use of hybridized features of both the Rough and Fuzzy Set theory render the developed system flexibility in dealing with discreet as well as continuous datasets. A raw data set provided to the system, is initially transformed in a computer legible format followed by pruning of the data set. The refined data set is then processed through various Rough Set operators which enable discovery of parameter relationships and interdependencies. The discovered knowledge is automatically transformed into a rule base expressed in Fuzzy terms. Two exemplary cancer repository datasets (for Breast and Lung Cancer) have been used to test and implement the proposed framework.Keywords: Knowledge Extraction, Fuzzy Sets, Rough Sets, Neuro–Fuzzy Systems, Databases
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17877034 Using Data Mining Techniques for Estimating Minimum, Maximum and Average Daily Temperature Values
Authors: S. Kotsiantis, A. Kostoulas, S. Lykoudis, A. Argiriou, K. Menagias
Abstract:
Estimates of temperature values at a specific time of day, from daytime and daily profiles, are needed for a number of environmental, ecological, agricultural and technical applications, ranging from natural hazards assessments, crop growth forecasting to design of solar energy systems. The scope of this research is to investigate the efficiency of data mining techniques in estimating minimum, maximum and mean temperature values. For this reason, a number of experiments have been conducted with well-known regression algorithms using temperature data from the city of Patras in Greece. The performance of these algorithms has been evaluated using standard statistical indicators, such as Correlation Coefficient, Root Mean Squared Error, etc.
Keywords: regression algorithms, supervised machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34187033 A Real-Time Signal Processing Technique for MIDI Generation
Authors: Farshad Arvin, Shyamala Doraisamy
Abstract:
This paper presents a new hardware interface using a microcontroller which processes audio music signals to standard MIDI data. A technique for processing music signals by extracting note parameters from music signals is described. An algorithm to convert the voice samples for real-time processing without complex calculations is proposed. A high frequency microcontroller as the main processor is deployed to execute the outlined algorithm. The MIDI data generated is transmitted using the EIA-232 protocol. The analyses of data generated show the feasibility of using microcontrollers for real-time MIDI generation hardware interface.Keywords: Signal processing, MIDI, Microcontroller, EIA-232.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21277032 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark
Authors: B. Elshafei, X. Mao
Abstract:
The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.
Keywords: Data fusion, Gaussian process regression, signal denoise, temporal extrapolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5017031 An Energy Aware Data Aggregation in Wireless Sensor Network Using Connected Dominant Set
Authors: M. Santhalakshmi, P Suganthi
Abstract:
Wireless Sensor Networks (WSNs) have many advantages. Their deployment is easier and faster than wired sensor networks or other wireless networks, as they do not need fixed infrastructure. Nodes are partitioned into many small groups named clusters to aggregate data through network organization. WSN clustering guarantees performance achievement of sensor nodes. Sensor nodes energy consumption is reduced by eliminating redundant energy use and balancing energy sensor nodes use over a network. The aim of such clustering protocols is to prolong network life. Low Energy Adaptive Clustering Hierarchy (LEACH) is a popular protocol in WSN. LEACH is a clustering protocol in which the random rotations of local cluster heads are utilized in order to distribute energy load among all sensor nodes in the network. This paper proposes Connected Dominant Set (CDS) based cluster formation. CDS aggregates data in a promising approach for reducing routing overhead since messages are transmitted only within virtual backbone by means of CDS and also data aggregating lowers the ratio of responding hosts to the hosts existing in virtual backbones. CDS tries to increase networks lifetime considering such parameters as sensors lifetime, remaining and consumption energies in order to have an almost optimal data aggregation within networks. Experimental results proved CDS outperformed LEACH regarding number of cluster formations, average packet loss rate, average end to end delay, life computation, and remaining energy computation.Keywords: Wireless sensor network, connected dominant set, clustering, data aggregation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11297030 Deadline Missing Prediction for Mobile Robots through the Use of Historical Data
Authors: Edwaldo R. B. Monteiro, Patricia D. M. Plentz, Edson R. De Pieri
Abstract:
Mobile robotics is gaining an increasingly important role in modern society. Several potentially dangerous or laborious tasks for human are assigned to mobile robots, which are increasingly capable. Many of these tasks need to be performed within a specified period, i.e, meet a deadline. Missing the deadline can result in financial and/or material losses. Mechanisms for predicting the missing of deadlines are fundamental because corrective actions can be taken to avoid or minimize the losses resulting from missing the deadline. In this work we propose a simple but reliable deadline missing prediction mechanism for mobile robots through the use of historical data and we use the Pioneer 3-DX robot for experiments and simulations, one of the most popular robots in academia.
Keywords: Deadline missing, historical data, mobile robots, prediction mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18097029 Contrast-Enhanced Magnetic Resonance Angiography in Rats with Gadobenate Dimeglumine at 3T
Authors: Jo-Chi Jao, Yen-Ku Chen, Twei-Shiun Jaw, Po-Chou Chen
Abstract:
This study aimed to investigate the magnetic resonance (MR) signal enhancement ratio (ER) of contrast-enhanced MR angiography (CE-MRA) in normal rats with gadobenate dimeglumine (Gd-BOPTA) using a clinical 3T scanner and an extremity coil. The relaxivities of Gd-BOPTA with saline only and with 4.5% human serum albumin (HSA) were also measured. Compared with Gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA), Gd-BOPTA had higher relaxivities. The maximum ER of aorta (ERa), kidney, liver and muscle with Gd-BOPTA were higher than those with Gd-DTPA. The maximum ERa appeared at 1.2 min and decayed to half at 10 min after Gd-BOPTA injection. This information is helpful for the design of CE-MRA study of rats.Keywords: Contrast-Enhanced Magnetic Resonance Angiography, Gd-BOPTA, Gd-DTPA, Rat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19057028 Changes to Oxidative Stress Levels Following Exposure to Formaldehyde in Lymphocytes
Authors: Malinee Pongsavee
Abstract:
Formaldehyde is the illegal chemical substance used for food preservation in fish and vegetable. It can promote carcinogenesis. Superoxide dismutases are the important antioxidative enzymes that catalyze the dismutation of superoxide anion into oxygen and hydrogen peroxide. The resultant level of oxidative stress in formaldehyde-treated lymphocytes was investigated. The formaldehyde concentrations of 0, 20, 40, 60, 80 and 120μmol/L were treated in human lymphocytes for 12 hours. After 12 treated hours, the superoxide dismutase activity change was measured in formaldehyde-treated lymphocytes. The results showed that the formaldehyde concentrations of 60, 80 and 120μmol/L significantly decreased superoxide dismutase activities in lymphocytes (P < 0.05). The change of superoxide dismutase activity in formaldehyde-treated lymphocytes may be the biomarker for detect cellular injury, such as damage to DNA, due to formaldehyde exposure.
Keywords: Formaldehyde, lymphocytes, superoxide dismutase activity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22317027 Torque Based Selection of ANN for Fault Diagnosis of Wound Rotor Asynchronous Motor-Converter Association
Authors: Djalal Eddine Khodja, Boukhemis Chetate
Abstract:
In this paper, an automatic system of diagnosis was developed to detect and locate in real time the defects of the wound rotor asynchronous machine associated to electronic converter. For this purpose, we have treated the signals of the measured parameters (current and speed) to use them firstly, as indicating variables of the machine defects under study and, secondly, as inputs to the Artificial Neuron Network (ANN) for their classification in order to detect the defect type in progress. Once a defect is detected, the interpretation system of information will give the type of the defect and its place of appearance.Keywords: Artificial Neuron Networks (ANN), Effective Value (RMS), Experimental results, Failure detection Indicating values, Motor-converter unit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15007026 Ensemble Approach for Predicting Student's Academic Performance
Authors: L. A. Muhammad, M. S. Argungu
Abstract:
Educational data mining (EDM) has recorded substantial considerations. Techniques of data mining in one way or the other have been proposed to dig out out-of-sight knowledge in educational data. The result of the study got assists academic institutions in further enhancing their process of learning and methods of passing knowledge to students. Consequently, the performance of students boasts and the educational products are by no doubt enhanced. This study adopted a student performance prediction model premised on techniques of data mining with Students' Essential Features (SEF). SEF are linked to the learner's interactivity with the e-learning management system. The performance of the student's predictive model is assessed by a set of classifiers, viz. Bayes Network, Logistic Regression, and Reduce Error Pruning Tree (REP). Consequently, ensemble methods of Bagging, Boosting, and Random Forest (RF) are applied to improve the performance of these single classifiers. The study reveals that the result shows a robust affinity between learners' behaviors and their academic attainment. Result from the study shows that the REP Tree and its ensemble record the highest accuracy of 83.33% using SEF. Hence, in terms of the Receiver Operating Curve (ROC), boosting method of REP Tree records 0.903, which is the best. This result further demonstrates the dependability of the proposed model.
Keywords: Ensemble, bagging, Random Forest, boosting, data mining, classifiers, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7607025 Identification of Service Quality Determinants in the Hotel Sector: A Conceptual Review
Authors: Asem M. Othman
Abstract:
The expansion of the hospitality industry is distinctive in the 21st century. Services, by nature, are intangible. Hence, service quality, in general, is a complicated process to be measured and evaluated. Hotels, as a service sector and part of the hospitality industry, are growing rapidly. This research paper was carried out to identify the quality determinants that may affect hotel guests’ service quality perception. In this research paper, each quality determinant will be discussed, illustrated, and justified thoroughly via a systematic literature review. This paper sets the stage to measure the significant influence of the service quality determinants on guest satisfaction. The knowledge contribution from this study proposes to practitioners and/or hotel service providers, fundamental elements to adopt the implications into their policies.
Keywords: Hotel service, service quality, quality determinants, quality management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4637024 A Survey on Facial Feature Points Detection Techniques and Approaches
Authors: Rachid Ahdid, Khaddouj Taifi, Said Safi, Bouzid Manaut
Abstract:
Automatic detection of facial feature points plays an important role in applications such as facial feature tracking, human-machine interaction and face recognition. The majority of facial feature points detection methods using two-dimensional or three-dimensional data are covered in existing survey papers. In this article chosen approaches to the facial features detection have been gathered and described. This overview focuses on the class of researches exploiting facial feature points detection to represent facial surface for two-dimensional or three-dimensional face. In the conclusion, we discusses advantages and disadvantages of the presented algorithms.Keywords: Facial feature points, face recognition, facial feature tracking, two-dimensional data, three-dimensional data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16817023 Online Measurement of Fuel Stack Elongation
Authors: Sung Ho Ahn, Jintae Hong, Chang Young Joung, Tae Ho Yang, Sung Ho Heo, Seo Yun Jang
Abstract:
The performances of nuclear fuels and materials are qualified at an irradiation system in research reactors operating under the commercial nuclear power plant conditions. Fuel centerline temperature, coolant temperature, neutron flux, deformations of fuel stack and swelling are important parameters needed to analyze the nuclear fuel performances. The dimensional stability of nuclear fuels is a key parameter measuring the fuel densification and swelling. In this study, the fuel stack elongation is measured using a LVDT. A mockup LVDT instrumented fuel rod is developed. The performances of mockup LVDT instrumented fuel rod is evaluated by experiments.
Keywords: Axial deformation, elongation measurement, in-pile instrumentation, LVDT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14597022 Mining Network Data for Intrusion Detection through Naïve Bayesian with Clustering
Authors: Dewan Md. Farid, Nouria Harbi, Suman Ahmmed, Md. Zahidur Rahman, Chowdhury Mofizur Rahman
Abstract:
Network security attacks are the violation of information security policy that received much attention to the computational intelligence society in the last decades. Data mining has become a very useful technique for detecting network intrusions by extracting useful knowledge from large number of network data or logs. Naïve Bayesian classifier is one of the most popular data mining algorithm for classification, which provides an optimal way to predict the class of an unknown example. It has been tested that one set of probability derived from data is not good enough to have good classification rate. In this paper, we proposed a new learning algorithm for mining network logs to detect network intrusions through naïve Bayesian classifier, which first clusters the network logs into several groups based on similarity of logs, and then calculates the prior and conditional probabilities for each group of logs. For classifying a new log, the algorithm checks in which cluster the log belongs and then use that cluster-s probability set to classify the new log. We tested the performance of our proposed algorithm by employing KDD99 benchmark network intrusion detection dataset, and the experimental results proved that it improves detection rates as well as reduces false positives for different types of network intrusions.Keywords: Clustering, detection rate, false positive, naïveBayesian classifier, network intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55367021 Evaluation of Model Evaluation Criterion for Software Development Effort Estimation
Authors: S. K. Pillai, M. K. Jeyakumar
Abstract:
Estimation of model parameters is necessary to predict the behavior of a system. Model parameters are estimated using optimization criteria. Most algorithms use historical data to estimate model parameters. The known target values (actual) and the output produced by the model are compared. The differences between the two form the basis to estimate the parameters. In order to compare different models developed using the same data different criteria are used. The data obtained for short scale projects are used here. We consider software effort estimation problem using radial basis function network. The accuracy comparison is made using various existing criteria for one and two predictors. Then, we propose a new criterion based on linear least squares for evaluation and compared the results of one and two predictors. We have considered another data set and evaluated prediction accuracy using the new criterion. The new criterion is easy to comprehend compared to single statistic. Although software effort estimation is considered, this method is applicable for any modeling and prediction.
Keywords: Software effort estimation, accuracy, Radial Basis Function, linear least squares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20417020 A Simple and Empirical Refraction Correction Method for UAV-Based Shallow-Water Photogrammetry
Authors: I GD Yudha Partama, A. Kanno, Y. Akamatsu, R. Inui, M. Goto, M. Sekine
Abstract:
The aerial photogrammetry of shallow water bottoms has the potential to be an efficient high-resolution survey technique for shallow water topography, thanks to the advent of convenient UAV and automatic image processing techniques Structure-from-Motion (SfM) and Multi-View Stereo (MVS)). However, it suffers from the systematic overestimation of the bottom elevation, due to the light refraction at the air-water interface. In this study, we present an empirical method to correct for the effect of refraction after the usual SfM-MVS processing, using common software. The presented method utilizes the empirical relation between the measured true depth and the estimated apparent depth to generate an empirical correction factor. Furthermore, this correction factor was utilized to convert the apparent water depth into a refraction-corrected (real-scale) water depth. To examine its effectiveness, we applied the method to two river sites, and compared the RMS errors in the corrected bottom elevations with those obtained by three existing methods. The result shows that the presented method is more effective than the two existing methods: The method without applying correction factor and the method utilizes the refractive index of water (1.34) as correction factor. In comparison with the remaining existing method, which used the additive terms (offset) after calculating correction factor, the presented method performs well in Site 2 and worse in Site 1. However, we found this linear regression method to be unstable when the training data used for calibration are limited. It also suffers from a large negative bias in the correction factor when the apparent water depth estimated is affected by noise, according to our numerical experiment. Overall, the good accuracy of refraction correction method depends on various factors such as the locations, image acquisition, and GPS measurement conditions. The most effective method can be selected by using statistical selection (e.g. leave-one-out cross validation).Keywords: Bottom elevation, multi-view stereo, river, structure-from-motion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15807019 Multistage Condition Monitoring System of Aircraft Gas Turbine Engine
Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev
Abstract:
Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes- dynamics of GTE work parameters allows drawing conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines' technical condition. Researches of correlation coefficients values- changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stageby- stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15707018 Solar Seawater Desalination Still with Seawater Preheater Using Efficient Heat Transfer Oil: Numerical Investigation and Data Verification
Authors: Ahmed N. Shmroukh, Gamal Tag Abdel-Jaber, Rashed D. Aldughpassi
Abstract:
The feasibility of improving the performance of the proposed solar still unit which operated in very hot climate is investigated numerically and verified with experimental data. This solar desalination unit with proposed auxiliary device as seawater preheating system using petrol based textherm oil was used to produce pure fresh water from seawater. The effective evaporation area of basin is about 1 m2. The unit was tested in two main operation modes which are normal and with seawater preheating system. The results showed that, there is good agreement between the theoretical data and the experimental data; this means that the numerical model can be accurately dependable for predicting the proposed solar still performance and design parameters. The results also showed that the fresh water productivity of the solar still in the modified preheating case which is higher than normal case, leads to an increase in productivity of 42%.Keywords: Improving productivity, seawater desalination, solar stills, theoretical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7727017 The Necessity to Standardize Procedures of Providing Engineering Geological Data for Designing Road and Railway Tunneling Projects
Authors: Atefeh Saljooghi Khoshkar, Jafar Hassanpour
Abstract:
One of the main problems of design stage relating to many tunneling projects is the lack of an appropriate standard for the provision of engineering geological data in a predefined format. In particular, this is more reflected in highway and railroad tunnels projects in which there is a number of tunnels and different professional teams involved. In this regard, a comprehensive software needs to be designed using the accepted methods in order to help engineering geologists to prepare standard reports, which contain sufficient input data for the design stage. Regarding this necessity, an applied software has been designed using macro capabilities and Visual Basic programming language (VBA) through Microsoft Excel. In this software, all of the engineering geological input data, which are required for designing different parts of tunnels such as discontinuities properties, rock mass strength parameters, rock mass classification systems, boreability classification, the penetration rate and so forth can be calculated and reported in a standard format.
Keywords: Engineering geology, rock mass classification, rock mechanic, tunnel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1227016 The Effect of Breaststroke Swimming Exercise to Increase the Value of Peak Expiratory Flow
Authors: Sri Sumartiningsih, Anies Setiowati
Abstract:
The purpose of this study is to investigate the influence of breaststroke swimming exercise to improving the peak expiratory flow. Methode: This study used 17 students of men aged 19-21 years, APE values measured before and after the study. Style swimming workout done in accordance with a program that has been made. Result: Value of peak expiratory flow in male students obtained on average before exercise (530 ± 15 811) liters / min and after doing the exercises (540.59 ± 17 092) liters / minute. Paired ttest showed t = -6.446 and p = 0.000, which means there are differences in peak expiratory flow values before and after exercise swimming breaststroke. Conclusion: The conclusion is the breaststroke swimming exercise can be improving of peak expiratory flow.
Keywords: Breaststroke, peak expiratory flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25747015 The Quality Assessment of Seismic Reflection Survey Data Using Statistical Analysis: A Case Study of Fort Abbas Area, Cholistan Desert, Pakistan
Authors: U. Waqas, M. F. Ahmed, A. Mehmood, M. A. Rashid
Abstract:
In geophysical exploration surveys, the quality of acquired data holds significant importance before executing the data processing and interpretation phases. In this study, 2D seismic reflection survey data of Fort Abbas area, Cholistan Desert, Pakistan was taken as test case in order to assess its quality on statistical bases by using normalized root mean square error (NRMSE), Cronbach’s alpha test (α) and null hypothesis tests (t-test and F-test). The analysis challenged the quality of the acquired data and highlighted the significant errors in the acquired database. It is proven that the study area is plain, tectonically least affected and rich in oil and gas reserves. However, subsurface 3D modeling and contouring by using acquired database revealed high degrees of structural complexities and intense folding. The NRMSE had highest percentage of residuals between the estimated and predicted cases. The outcomes of hypothesis testing also proved the biasness and erraticness of the acquired database. Low estimated value of alpha (α) in Cronbach’s alpha test confirmed poor reliability of acquired database. A very low quality of acquired database needs excessive static correction or in some cases, reacquisition of data is also suggested which is most of the time not feasible on economic grounds. The outcomes of this study could be used to assess the quality of large databases and to further utilize as a guideline to establish database quality assessment models to make much more informed decisions in hydrocarbon exploration field.
Keywords: Data quality, null hypothesis, seismic lines, seismic reflection survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6157014 Performance Evaluation of Neural Network Prediction for Data Prefetching in Embedded Applications
Authors: Sofien Chtourou, Mohamed Chtourou, Omar Hammami
Abstract:
Embedded systems need to respect stringent real time constraints. Various hardware components included in such systems such as cache memories exhibit variability and therefore affect execution time. Indeed, a cache memory access from an embedded microprocessor might result in a cache hit where the data is available or a cache miss and the data need to be fetched with an additional delay from an external memory. It is therefore highly desirable to predict future memory accesses during execution in order to appropriately prefetch data without incurring delays. In this paper, we evaluate the potential of several artificial neural networks for the prediction of instruction memory addresses. Neural network have the potential to tackle the nonlinear behavior observed in memory accesses during program execution and their demonstrated numerous hardware implementation emphasize this choice over traditional forecasting techniques for their inclusion in embedded systems. However, embedded applications execute millions of instructions and therefore millions of addresses to be predicted. This very challenging problem of neural network based prediction of large time series is approached in this paper by evaluating various neural network architectures based on the recurrent neural network paradigm with pre-processing based on the Self Organizing Map (SOM) classification technique.Keywords: Address, data set, memory, prediction, recurrentneural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16757013 Sparsity-Based Unsupervised Unmixing of Hyperspectral Imaging Data Using Basis Pursuit
Authors: Ahmed Elrewainy
Abstract:
Mixing in the hyperspectral imaging occurs due to the low spatial resolutions of the used cameras. The existing pure materials “endmembers” in the scene share the spectra pixels with different amounts called “abundances”. Unmixing of the data cube is an important task to know the present endmembers in the cube for the analysis of these images. Unsupervised unmixing is done with no information about the given data cube. Sparsity is one of the recent approaches used in the source recovery or unmixing techniques. The l1-norm optimization problem “basis pursuit” could be used as a sparsity-based approach to solve this unmixing problem where the endmembers is assumed to be sparse in an appropriate domain known as dictionary. This optimization problem is solved using proximal method “iterative thresholding”. The l1-norm basis pursuit optimization problem as a sparsity-based unmixing technique was used to unmix real and synthetic hyperspectral data cubes.
Keywords: Basis pursuit, blind source separation, hyperspectral imaging, spectral unmixing, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8377012 Lime-Pozzolan Plasters with Enhanced Thermal Capacity
Authors: Z. Pavlík, A. Trník, M. Pavlíková, M. Keppert, R. Černý
Abstract:
A new type of lightweight plaster with the thermal capacity enhanced by PCM (Phase Change Material) addition is analyzed. The basic physical characteristics, namely the bulk density, matrix density, total open porosity, and pore size distribution are measured at first. For description of mechanical properties, compressive strength measurements are done. The thermal properties are characterized by transient impulse techniques as well as by DSC analysis that enables determination of the specific heat capacity as a function of temperature. The resistivity against the liquid water ingress is described by water absorption coefficient measurement. The experimental results indicate a good capability of the designed plaster to moderate effectively the interior climate of buildings.
Keywords: Lime-pozzolan plaster, PCM addition, enhanced thermal capacity, DSC analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436