Search results for: optimal Golomb ruler
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1613

Search results for: optimal Golomb ruler

263 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: Adaptive neuro-fuzzy inference system, ANFIS, artificial neural network, ANN, bridge pier, scour depth, nonlinear regression, NLR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931
262 Numerical Study on Parametrical Design of Long Shrouded Contra-Rotating Propulsion System in Hovering

Authors: Chao. Huo, Roger. Barènes, Jérémie. Gressier, Gilles.Grondin

Abstract:

The parametrical study of Shrouded Contra-rotating Rotor was done in this paper based on 2D axisymmetric simulations. The calculations were made with an actuator disk as double rotor model. It objects to explore and quantify the effects of different shroud geometry parameters mainly using the performance of power loading (PL), which could evaluate the whole propulsion system capability as 5 Newtontotal thrust generationfor hover demand. The numerical results show that:The increase of nozzle radius is desired but limited by the flow separation, its optimal design is around 1.15 times rotor radius, the viscosity effects greatly constraint the influence of nozzle shape, the divergent angle around 10.5° performs best for chosen nozzle length;The parameters of inlet such as leading edge curvature, radius and internal shape do not affect thrust great but play an important role in pressure distribution which could produce most part of shroud thrust, they should be chosen according to the reduction of adverse pressure gradients to reduce the risk of boundary separation.

Keywords: Axisymmetric simulation, parametrical design, power loading, Shrouded Contra-Rotating Rotor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
261 Cable Tension Control and Analysis of Reel Transparency for 6-DOF Haptic Foot Platform on a Cable-Driven Locomotion Interface

Authors: Martin J.-D. Otis, Thien-Ly Nguyen-Dang, Thierry Laliberte, Denis Ouellet, Denis Laurendeau, Clement Gosselin

Abstract:

A Cable-Driven Locomotion Interface provides a low inertia haptic interface and is used as a way of enabling the user to walk and interact with virtual surfaces. These surfaces generate Cartesian wrenches which must be optimized for each motorized reel in order to reproduce a haptic sensation in both feet. However, the use of wrench control requires a measure of the cable tensions applied to the moving platform. The latter measure may be inaccurate if it is based on sensors located near the reel. Moreover, friction hysteresis from the reel moving parts needs to be compensated for with an evaluation of low angular velocity of the motor shaft. Also, the pose of the platform is not known precisely due to cable sagging and mechanical deformation. This paper presents a non-ideal motorized reel design with its corresponding control strategy that aims at overcoming the aforementioned issues. A transfert function of the reel based on frequency responses in function of cable tension and cable length is presented with an optimal adaptative PIDF controller. Finally, an hybrid position/tension control is discussed with an analysis of the stability for achieving a complete functionnality of the haptic platform.

Keywords: haptic, reel, transparency, cable, tension, control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
260 Performance Comparisons between PID and Adaptive PID Controllers for Travel Angle Control of a Bench-Top Helicopter

Authors: H. Mansor, S. B. Mohd-Noor, T. S. Gunawan, S. Khan, N. I. Othman, N. Tazali, R. B. Islam

Abstract:

This paper provides a comparative study on the performances of standard PID and adaptive PID controllers tested on travel angle of a 3-Degree-of-Freedom (3-DOF) Quanser bench-top helicopter. Quanser, a well-known manufacturer of educational bench-top helicopter has developed Proportional Integration Derivative (PID) controller with Linear Quadratic Regulator (LQR) for all travel, pitch and yaw angle of the bench-top helicopter. The performance of the PID controller is relatively good; however, its performance could also be improved if the controller is combined with adaptive element. The objective of this research is to design adaptive PID controller and then compare the performances of the adaptive PID with the standard PID. The controller design and test is focused on travel angle control only. Adaptive method used in this project is self-tuning controller, which controller’s parameters are updated online. Two adaptive algorithms those are pole-placement and deadbeat have been chosen as the method to achieve optimal controller’s parameters. Performance comparisons have shown that the adaptive (deadbeat) PID controller has produced more desirable performance compared to standard PID and adaptive (poleplacement). The adaptive (deadbeat) PID controller attained very fast settling time (5 seconds) and very small percentage of overshoot (5% to 7.5%) for 10° to 30° step change of travel angle.

Keywords: Adaptive control, bench-top helicopter, deadbeat, pole-placement, self-tuning control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3311
259 Calculus of Turbojet Performances for Ideal Case

Authors: S. Bennoud, S. Hocine, H. Slme

Abstract:

Developments in turbine cooling technology play an important role in increasing the thermal efficiency and the power output of recent gas turbines, in particular the turbojets.

Advanced turbojets operate at high temperatures to improve thermal efficiency and power output. These temperatures are far above the permissible metal temperatures. Therefore, there is a critical need to cool the blades in order to give theirs a maximum life period for safe operation.

The focused objective of this work is to calculate the turbojet performances, as well as the calculation of turbine blades cooling.

The developed application able the calculation of turbojet performances to different altitudes in order to find a point of optimal use making possible to maintain the turbine blades at an acceptable maximum temperature and to limit the local variations in temperatures in order to guarantee their integrity during all the lifespan of the engine.

Keywords: Brayton cycle, Turbine Blades Cooling, Turbojet Cycle, turbojet performances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
258 Public Private Partnership for Infrastructure Projects: Mapping the Key Risks

Authors: Julinda Keçi

Abstract:

In many countries, governments have been promoting the involvement of private sector entities to enter into long-term agreements for the development and delivery of large infrastructure projects, with a focus on overcoming the limitations upon public fund of the traditional approach. The involvement of private sector through public private partnerships (PPP) brings in new capital investments, value for money and additional risks to handle. Worldwide research studies have shown that an objective, systematic, reliable and useroriented risk assessment process and an optimal allocation mechanism among different stakeholders is crucial to the successful completion. In this framework, this paper, which is the first stage of a research study, aims to identify the main risks for the delivery of PPP projects. A review of cross-countries research projects and case studies was performed to map the key risks affecting PPP infrastructure delivery. The matrix of mapping offers a summary of the frequency of factors, clustered in eleven categories: construction, design, economic, legal, market, natural, operation, political, project finance, project selection and relationship. Results will highlight the most critical risk factors, and will hopefully assist the project managers in directing the managerial attention in the further stages of risk allocation.

Keywords: Construction, infrastructure, public private partnerships, risks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3524
257 Environmental Effects on Energy Consumption of Smart Grid Consumers

Authors: S. M. Ali, A. Salam Khan, A. U. Khan, M. Tariq, M. S. Hussain, B. A. Abbasi, I. Hussain, U. Farid

Abstract:

Environment and surrounding plays a pivotal rule in structuring life-style of the consumers. Living standards intern effect the energy consumption of the consumers. In smart grid paradigm, climate drifts, weather parameter and green environmental directly relates to the energy profiles of the various consumers, such as residential, commercial and industrial. Considering above factors helps policy in shaping utility load curves and optimal management of demand and supply. Thus, there is a pressing need to develop correlation models of load and weather parameters and critical analysis of the factors effecting energy profiles of smart grid consumers. In this paper, we elaborated various environment and weather parameter factors effecting demand of consumers. Moreover, we developed correlation models, such as Pearson, Spearman, and Kendall, an inter-relation between dependent (load) parameter and independent (weather) parameters. Furthermore, we validated our discussion with real-time data of Texas State. The numerical simulations proved the effective relation of climatic drifts with energy consumption of smart grid consumers.

Keywords: Climatic drifts, correlation analysis, energy consumption, smart grid, weather parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
256 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Human action recognition (HAR) modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view Football datasets. Our HAR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH Multi-view Football datasets, respectively.

Keywords: Computer vision, human motion analysis, random forest, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38
255 A New Image Psychovisual Coding Quality Measurement based Region of Interest

Authors: M. Nahid, A. Bajit, A. Tamtaoui, E. H. Bouyakhf

Abstract:

To model the human visual system (HVS) in the region of interest, we propose a new objective metric evaluation adapted to wavelet foveation-based image compression quality measurement, which exploits a foveation setup filter implementation technique in the DWT domain, based especially on the point and region of fixation of the human eye. This model is then used to predict the visible divergences between an original and compressed image with respect to this region field and yields an adapted and local measure error by removing all peripheral errors. The technique, which we call foveation wavelet visible difference prediction (FWVDP), is demonstrated on a number of noisy images all of which have the same local peak signal to noise ratio (PSNR), but visibly different errors. We show that the FWVDP reliably predicts the fixation areas of interest where error is masked, due to high image contrast, and the areas where the error is visible, due to low image contrast. The paper also suggests ways in which the FWVDP can be used to determine a visually optimal quantization strategy for foveation-based wavelet coefficients and to produce a quantitative local measure of image quality.

Keywords: Human Visual System, Image Quality, ImageCompression, foveation wavelet, region of interest ROI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
254 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.

Keywords: Model predictive control, unscented Kalman filter, nonlinear systems, implicit systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
253 An Optimization of Machine Parameters for Modified Horizontal Boring Tool Using Taguchi Method

Authors: Thirasak Panyaphirawat, Pairoj Sapsmarnwong, Teeratas Pornyungyuen

Abstract:

This paper presents the findings of an experimental investigation of important machining parameters for the horizontal boring tool modified to mouth with a horizontal lathe machine to bore an overlength workpiece. In order to verify a usability of a modified tool, design of experiment based on Taguchi method is performed. The parameters investigated are spindle speed, feed rate, depth of cut and length of workpiece. Taguchi L9 orthogonal array is selected for four factors three level parameters in order to minimize surface roughness (Ra and Rz) of S45C steel tubes. Signal to noise ratio analysis and analysis of variance (ANOVA) is performed to study an effect of said parameters and to optimize the machine setting for best surface finish. The controlled factors with most effect are depth of cut, spindle speed, length of workpiece, and feed rate in order. The confirmation test is performed to test the optimal setting obtained from Taguchi method and the result is satisfactory.

Keywords: Design of Experiment, Taguchi Design, Optimization, Analysis of Variance, Machining Parameters, Horizontal Boring Tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2706
252 Performance Evaluation of Clustered Routing Protocols for Heterogeneous Wireless Sensor Networks

Authors: Awatef Chniguir, Tarek Farah, Zouhair Ben Jemaa, Safya Belguith

Abstract:

Optimal routing allows minimizing energy consumption in wireless sensor networks (WSN). Clustering has proven its effectiveness in organizing WSN by reducing channel contention and packet collision and enhancing network throughput under heavy load. Therefore, nowadays, with the emergence of the Internet of Things, heterogeneity is essential. Stable election protocol (SEP) that has increased the network stability period and lifetime is the first clustering protocol for heterogeneous WSN. SEP and its descendants, namely SEP, Threshold Sensitive SEP (TSEP), Enhanced TSEP (ETSSEP) and Current Energy Allotted TSEP (CEATSEP), were studied. These algorithms’ performance was evaluated based on different metrics, especially first node death (FND), to compare their stability. Simulations were conducted on the MATLAB tool considering two scenarios: The first one demonstrates the fraction variation of advanced nodes by setting the number of total nodes. The second considers the interpretation of the number of nodes while keeping the number of advanced nodes permanent. CEATSEP outperforms its antecedents by increasing stability and, at the same time, keeping a low throughput. It also operates very well in a large-scale network. Consequently, CEATSEP has a useful lifespan and energy efficiency compared to the other routing protocol for heterogeneous WSN.

Keywords: Clustering, heterogeneous, stability, scalability, throughput, IoT, WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 423
251 Detente and Power - Conceptual Determination, Forms and Means of Education at the Preteen Age

Authors: Constantin Pehoiu

Abstract:

The scientific perspective, the practice area of physical education and sports activities improve power capacity in all its forms of expression, being a generator of the research topics. Today theories that strength training athletes and slow down development progress will affect the strength and flexibility are discredited. On the other hand there are sectors and / or samples whose results are sports of the way higher manifestation of power as a result of the composition of the force and velocity, being based in this respect on the systematic and continuous development of both bio-motric capacities said. Training of force for children was and is controversial. Teama de accidentări sau a stopării premature a procesului de creştere a făcut ca în trecut copiii să fie ţinuţi departe de lucrul cu diferite greutăţi.Fear of injury or premature stop the growth process in the past made the children to be kept away from working with different weights. Recent studies have shown that the risk of accidents is relatively small and the strength training can help prevent them. For example, most accidents occur at the level of athletics ligaments and tendons. From this point of view, it can be said that a progressive intervention of force training, optimal design, will help enhancing their process, such as athlete much better prepared to meet training requests and competitions. Preparation of force provides a solid basis for further phases in the highest performance.

Keywords: Detente, education, effort will, power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
250 Power System Stability Improvement by Simultaneous Tuning of PSS and SVC Based Damping Controllers Employing Differential Evolution Algorithm

Authors: Sangram Keshori Mohapatra, Sidhartha Panda, Prasant Kumar Satpathy

Abstract:

Power-system stability improvement by simultaneous tuning of power system stabilizer (PSS) and a Static Var Compensator (SVC) based damping controller is thoroughly investigated in this paper. Both local and remote signals with associated time delays are considered in the present study. The design problem of the proposed controller is formulated as an optimization problem, and differential evolution (DE) algorithm is employed to search for the optimal controller parameters. The performances of the proposed controllers are evaluated under different disturbances for both single-machine infinite bus power system and multi-machine power system. The performance of the proposed controllers with variations in the signal transmission delays has also been investigated. The proposed stabilizers are tested on a weakly connected power system subjected to different disturbances. Nonlinear simulation results are presented to show the effectiveness and robustness of the proposed control schemes over a wide range of loading conditions and disturbances. Further, the proposed design approach is found to be robust and improves stability effectively even under small disturbance conditions.

Keywords: Differential Evolution Algorithm, Power System Stability, Power System Stabilizer, Static Var Compensator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2339
249 Forecasting Optimal Production Program Using Profitability Optimization by Genetic Algorithm and Neural Network

Authors: Galal H. Senussi, Muamar Benisa, Sanja Vasin

Abstract:

In our business field today, one of the most important issues for any enterprises is cost minimization and profit maximization. Second issue is how to develop a strong and capable model that is able to give us desired forecasting of these two issues. Many researches deal with these issues using different methods. In this study, we developed a model for multi-criteria production program optimization, integrated with Artificial Neural Network.

The prediction of the production cost and profit per unit of a product, dealing with two obverse functions at same time can be extremely difficult, especially if there is a great amount of conflict information about production parameters.

Feed-Forward Neural Networks are suitable for generalization, which means that the network will generate a proper output as a result to input it has never seen. Therefore, with small set of examples the network will adjust its weight coefficients so the input will generate a proper output.

This essential characteristic is of the most important abilities enabling this network to be used in variety of problems spreading from engineering to finance etc.

From our results as we will see later, Feed-Forward Neural Networks has a strong ability and capability to map inputs into desired outputs.

Keywords: Project profitability, multi-objective optimization, genetic algorithm, Pareto set, Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
248 Automatic Generation Control of Multi-Area Electric Energy Systems Using Modified GA

Authors: Gayadhar Panda, Sidhartha Panda, C. Ardil

Abstract:

A modified Genetic Algorithm (GA) based optimal selection of parameters for Automatic Generation Control (AGC) of multi-area electric energy systems is proposed in this paper. Simulations on multi-area reheat thermal system with and without consideration of nonlinearity like governor dead band followed by 1% step load perturbation is performed to exemplify the optimum parameter search. In this proposed method, a modified Genetic Algorithm is proposed where one point crossover with modification is employed. Positional dependency in respect of crossing site helps to maintain diversity of search point as well as exploitation of already known optimum value. This makes a trade-off between exploration and exploitation of search space to find global optimum in less number of generations. The proposed GA along with decomposition technique as developed has been used to obtain the optimum megawatt frequency control of multi-area electric energy systems. Time-domain simulations are conducted with trapezoidal integration along with decomposition technique. The superiority of the proposed method over existing one is verified from simulations and comparisons.

Keywords: Automatic Generation Control (AGC), Reheat, Proportional Integral (PI) controller, Dead Band, Genetic Algorithm(GA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2658
247 Bit Model Based Key Management Scheme for Secure Group Communication

Authors: R. Varalakshmi

Abstract:

For the last decade, researchers have started to focus their interest on Multicast Group Key Management Framework. The central research challenge is secure and efficient group key distribution. The present paper is based on the Bit model based Secure Multicast Group key distribution scheme using the most popular absolute encoder output type code named Gray Code. The focus is of two folds. The first fold deals with the reduction of computation complexity which is achieved in our scheme by performing fewer multiplication operations during the key updating process. To optimize the number of multiplication operations, an O(1) time algorithm to multiply two N-bit binary numbers which could be used in an N x N bit-model of reconfigurable mesh is used in this proposed work. The second fold aims at reducing the amount of information stored in the Group Center and group members while performing the update operation in the key content. Comparative analysis to illustrate the performance of various key distribution schemes is shown in this paper and it has been observed that this proposed algorithm reduces the computation and storage complexity significantly. Our proposed algorithm is suitable for high performance computing environment.

Keywords: Multicast Group key distribution, Bit model, Integer Multiplications, reconfigurable mesh, optimal algorithm, Gray Code, Computation Complexity, Storage Complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
246 Skin Lesion Segmentation Using Color Channel Optimization and Clustering-based Histogram Thresholding

Authors: Rahil Garnavi, Mohammad Aldeen, M. Emre Celebi, Alauddin Bhuiyan, Constantinos Dolianitis, George Varigos

Abstract:

Automatic segmentation of skin lesions is the first step towards the automated analysis of malignant melanoma. Although numerous segmentation methods have been developed, few studies have focused on determining the most effective color space for melanoma application. This paper proposes an automatic segmentation algorithm based on color space analysis and clustering-based histogram thresholding, a process which is able to determine the optimal color channel for detecting the borders in dermoscopy images. The algorithm is tested on a set of 30 high resolution dermoscopy images. A comprehensive evaluation of the results is provided, where borders manually drawn by four dermatologists, are compared to automated borders detected by the proposed algorithm, applying three previously used metrics of accuracy, sensitivity, and specificity and a new metric of similarity. By performing ROC analysis and ranking the metrics, it is demonstrated that the best results are obtained with the X and XoYoR color channels, resulting in an accuracy of approximately 97%. The proposed method is also compared with two state-of-theart skin lesion segmentation methods.

Keywords: Border detection, Color space analysis, Dermoscopy, Histogram thresholding, Melanoma, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
245 Benchmarking Cleaner Production Performance of Coal-fired Power Plants Using Two-stage Super-efficiency Data Envelopment Analysis

Authors: Shao-lun Zeng, Yu-long Ren

Abstract:

Benchmarking cleaner production performance is an effective way of pollution control and emission reduction in coal-fired power industry. A benchmarking method using two-stage super-efficiency data envelopment analysis for coal-fired power plants is proposed – firstly, to improve the cleaner production performance of DEA-inefficient or weakly DEA-efficient plants, then to select the benchmark from performance-improved power plants. An empirical study is carried out with the survey data of 24 coal-fired power plants. The result shows that in the first stage the performance of 16 plants is DEA-efficient and that of 8 plants is relatively inefficient. The target values for improving DEA-inefficient plants are acquired by projection analysis. The efficient performance of 24 power plants and the benchmarking plant is achieved in the second stage. The two-stage benchmarking method is practical to select the optimal benchmark in the cleaner production of coal-fired power industry and will continuously improve plants- cleaner production performance.

Keywords: benchmarking, cleaner production performance, coal-fired power plant, super-efficiency data envelopment analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433
244 Development of Software Complex for Digitalization of Enterprise Activities

Authors: G. T. Balakayeva, K. K. Nurlybayeva, M. B. Zhanuzakov

Abstract:

In the proposed work, we have developed software and designed a software architecture for the implementation of enterprise business processes. The proposed software has a multi-level architecture using a domain-specific tool. The developed architecture is a guarantor of the availability, reliability and security of the system and the implementation of business processes, which are the basis for effective enterprise management. Automating business processes, automating the algorithmic stages of an enterprise, developing optimal algorithms for managing activities, controlling and monitoring, reducing risks and improving results help organizations achieve strategic goals quickly and efficiently. The software described in this article can connect to the corporate information system via two methods: a desktop client and a web client. With an appeal to the application server, the desktop client program connects to the information system on the company's work PCs over a local network. Outside the organization, the user can interact with the information system via a web browser, which acts as a web client and connects to a web server. The developed software consists of several integrated modules that share resources and interact with each other through an API. The following technology stack was used during development: Node js, React js, MongoDB, Ngnix, Cloud Technologies, Python.

Keywords: Algorithms, document processing, automation, integrated modules, software architecture, software design, information system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 207
243 Rotation Invariant Face Recognition Based on Hybrid LPT/DCT Features

Authors: Rehab F. Abdel-Kader, Rabab M. Ramadan, Rawya Y. Rizk

Abstract:

The recognition of human faces, especially those with different orientations is a challenging and important problem in image analysis and classification. This paper proposes an effective scheme for rotation invariant face recognition using Log-Polar Transform and Discrete Cosine Transform combined features. The rotation invariant feature extraction for a given face image involves applying the logpolar transform to eliminate the rotation effect and to produce a row shifted log-polar image. The discrete cosine transform is then applied to eliminate the row shift effect and to generate the low-dimensional feature vector. A PSO-based feature selection algorithm is utilized to search the feature vector space for the optimal feature subset. Evolution is driven by a fitness function defined in terms of maximizing the between-class separation (scatter index). Experimental results, based on the ORL face database using testing data sets for images with different orientations; show that the proposed system outperforms other face recognition methods. The overall recognition rate for the rotated test images being 97%, demonstrating that the extracted feature vector is an effective rotation invariant feature set with minimal set of selected features.

Keywords: Discrete Cosine Transform, Face Recognition, Feature Extraction, Log Polar Transform, Particle SwarmOptimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
242 A Method to Compute Efficient 3D Helicopters Flight Trajectories Based on a Motion Polymorph-Primitives Algorithm

Authors: Konstanca Nikolajevic, Nicolas Belanger, David Duvivier, Rabie Ben Atitallah, Abdelhakim Artiba

Abstract:

Finding the optimal 3D path of an aerial vehicle under flight mechanics constraints is a major challenge, especially when the algorithm has to produce real time results in flight. Kinematics models and Pythagorian Hodograph curves have been widely used in mobile robotics to solve this problematic. The level of difficulty is mainly driven by the number of constraints to be saturated at the same time while minimizing the total length of the path. In this paper, we suggest a pragmatic algorithm capable of saturating at the same time most of dimensioning helicopter 3D trajectories’ constraints like: curvature, curvature derivative, torsion, torsion derivative, climb angle, climb angle derivative, positions. The trajectories generation algorithm is able to generate versatile complex 3D motion primitives feasible by a helicopter with parameterization of the curvature and the climb angle. An upper ”motion primitives’ concatenation” algorithm is presented based. In this article we introduce a new way of designing three-dimensional trajectories based on what we call the ”Dubins gliding symmetry conjecture”. This extremely performing algorithm will be soon integrated to a real-time decisional system dealing with inflight safety issues.

Keywords: Aerial robots, Motion primitives, Robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
241 Coordinated Design of TCSC Controller and PSS Employing Particle Swarm Optimization Technique

Authors: Sidhartha Panda, N. P. Padhy

Abstract:

This paper investigates the application of Particle Swarm Optimization (PSO) technique for coordinated design of a Power System Stabilizer (PSS) and a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the power system stability. The design problem of PSS and TCSC-based controllers is formulated as a time domain based optimization problem. PSO algorithm is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. To compare the capability of PSS and TCSC-based controller, both are designed independently first and then in a coordinated manner for individual and coordinated application. The proposed controllers are tested on a weakly connected power system. The eigenvalue analysis and non-linear simulation results are presented to show the effectiveness of the coordinated design approach over individual design. The simulation results show that the proposed controllers are effective in damping low frequency oscillations resulting from various small disturbances like change in mechanical power input and reference voltage setting.

Keywords: Particle swarm optimization, Phillips-Heffron model, power system stability, PSS, TCSC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
240 Application of a Similarity Measure for Graphs to Web-based Document Structures

Authors: Matthias Dehmer, Frank Emmert Streib, Alexander Mehler, Jürgen Kilian, Max Mühlhauser

Abstract:

Due to the tremendous amount of information provided by the World Wide Web (WWW) developing methods for mining the structure of web-based documents is of considerable interest. In this paper we present a similarity measure for graphs representing web-based hypertext structures. Our similarity measure is mainly based on a novel representation of a graph as linear integer strings, whose components represent structural properties of the graph. The similarity of two graphs is then defined as the optimal alignment of the underlying property strings. In this paper we apply the well known technique of sequence alignments for solving a novel and challenging problem: Measuring the structural similarity of generalized trees. In other words: We first transform our graphs considered as high dimensional objects in linear structures. Then we derive similarity values from the alignments of the property strings in order to measure the structural similarity of generalized trees. Hence, we transform a graph similarity problem to a string similarity problem for developing a efficient graph similarity measure. We demonstrate that our similarity measure captures important structural information by applying it to two different test sets consisting of graphs representing web-based document structures.

Keywords: Graph similarity, hierarchical and directed graphs, hypertext, generalized trees, web structure mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
239 Entropy Based Spatial Design: A Genetic Algorithm Approach (Case Study)

Authors: Abbas Siefi, Mohammad Javad Karimifar

Abstract:

We study the spatial design of experiment and we want to select a most informative subset, having prespecified size, from a set of correlated random variables. The problem arises in many applied domains, such as meteorology, environmental statistics, and statistical geology. In these applications, observations can be collected at different locations and possibly at different times. In spatial design, when the design region and the set of interest are discrete then the covariance matrix completely describe any objective function and our goal is to choose a feasible design that minimizes the resulting uncertainty. The problem is recast as that of maximizing the determinant of the covariance matrix of the chosen subset. This problem is NP-hard. For using these designs in computer experiments, in many cases, the design space is very large and it's not possible to calculate the exact optimal solution. Heuristic optimization methods can discover efficient experiment designs in situations where traditional designs cannot be applied, exchange methods are ineffective and exact solution not possible. We developed a GA algorithm to take advantage of the exploratory power of this algorithm. The successful application of this method is demonstrated in large design space. We consider a real case of design of experiment. In our problem, design space is very large and for solving the problem, we used proposed GA algorithm.

Keywords: Spatial design of experiments, maximum entropy sampling, computer experiments, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
238 Mining Network Data for Intrusion Detection through Naïve Bayesian with Clustering

Authors: Dewan Md. Farid, Nouria Harbi, Suman Ahmmed, Md. Zahidur Rahman, Chowdhury Mofizur Rahman

Abstract:

Network security attacks are the violation of information security policy that received much attention to the computational intelligence society in the last decades. Data mining has become a very useful technique for detecting network intrusions by extracting useful knowledge from large number of network data or logs. Naïve Bayesian classifier is one of the most popular data mining algorithm for classification, which provides an optimal way to predict the class of an unknown example. It has been tested that one set of probability derived from data is not good enough to have good classification rate. In this paper, we proposed a new learning algorithm for mining network logs to detect network intrusions through naïve Bayesian classifier, which first clusters the network logs into several groups based on similarity of logs, and then calculates the prior and conditional probabilities for each group of logs. For classifying a new log, the algorithm checks in which cluster the log belongs and then use that cluster-s probability set to classify the new log. We tested the performance of our proposed algorithm by employing KDD99 benchmark network intrusion detection dataset, and the experimental results proved that it improves detection rates as well as reduces false positives for different types of network intrusions.

Keywords: Clustering, detection rate, false positive, naïveBayesian classifier, network intrusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5536
237 Performance of an Improved Fluidized System for Processing Green Tea

Authors: Nickson Kipng’etich Lang’at, Thomas Thoruwa, John Abraham, John Wanyoko

Abstract:

Green tea is made from the top two leaves and buds of a shrub, Camellia sinensis, of the family Theaceae and the order Theales. The green tea leaves are picked and immediately sent to be dried or steamed to prevent fermentation. Fluid bed drying technique is a common drying method used in drying green tea because of its ease in design and construction and fluidization of fine tea particles. Major problems in this method are significant loss of chemical content of the leaf and green appearance of tea, retention of high moisture content in the leaves and bed channeling and defluidization. The energy associated with the drying technology has been shown to be a vital factor in determining the quality of green tea. As part of the implementation, prototype dryer was built that facilitated sequence of operations involving steaming, cooling, pre-drying and final drying. The major findings of the project were in terms of quality characteristics of tea leaves and energy consumption during processing. The optimal design achieved a moisture content of 4.2 ± 0.84%. With the optimum drying temperature of 100 ºC, the specific energy consumption was 1697.8 kj.Kg-1 and evaporation rate of 4.272 x 10-4 Kg.m-2.s-1. The energy consumption in a fluidized system can be further reduced by focusing on energy saving designs.

Keywords: Evaporation rate, fluid bed dryer, maceration, specific energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
236 Investigating the Effect of Uncertainty on a LP Model of a Petrochemical Complex: Stability Analysis Approach

Authors: Abdallah Al-Shammari

Abstract:

This study discusses the effect of uncertainty on production levels of a petrochemical complex. Uncertainly or variations in some model parameters, such as prices, supply and demand of materials, can affect the optimality or the efficiency of any chemical process. For any petrochemical complex with many plants, there are many sources of uncertainty and frequent variations which require more attention. Many optimization approaches are proposed in the literature to incorporate uncertainty within the model in order to obtain a robust solution. In this work, a stability analysis approach is applied to a deterministic LP model of a petrochemical complex consists of ten plants to investigate the effect of such variations on the obtained optimal production levels. The proposed approach can determinate the allowable variation ranges of some parameters, mainly objective or RHS coefficients, before the system lose its optimality. Parameters with relatively narrow range of variations, i.e. stability limits, are classified as sensitive parameters or constraints that need accurate estimate or intensive monitoring. These stability limits offer easy-to-use information to the decision maker and help in understanding the interaction between some model parameters and deciding when the system need to be re-optimize. The study shows that maximum production of ethylene and the prices of intermediate products are the most sensitive factors that affect the stability of the optimum solution

Keywords: Linear programming, Petrochemicals, stability analysis, uncertainty

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
235 Design and Optimization for a Compliant Gripper with Force Regulation Mechanism

Authors: Nhat Linh Ho, Thanh-Phong Dao, Shyh-Chour Huang, Hieu Giang Le

Abstract:

This paper presents a design and optimization for a compliant gripper. The gripper is constructed based on the concept of compliant mechanism with flexure hinge. A passive force regulation mechanism is presented to control the grasping force a micro-sized object instead of using a sensor force. The force regulation mechanism is designed using the planar springs. The gripper is expected to obtain a large range of displacement to handle various sized objects. First of all, the statics and dynamics of the gripper are investigated by using the finite element analysis in ANSYS software. And then, the design parameters of the gripper are optimized via Taguchi method. An orthogonal array L9 is used to establish an experimental matrix. Subsequently, the signal to noise ratio is analyzed to find the optimal solution. Finally, the response surface methodology is employed to model the relationship between the design parameters and the output displacement of the gripper. The design of experiment method is then used to analyze the sensitivity so as to determine the effect of each parameter on the displacement. The results showed that the compliant gripper can move with a large displacement of 213.51 mm and the force regulation mechanism is expected to be used for high precision positioning systems.

Keywords: Flexure hinge, compliant mechanism, compliant gripper, force regulation mechanism, Taguchi method, response surface methodology, design of experiment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
234 Temporal Signal Processing by Inference Bayesian Approach for Detection of Abrupt Variation of Statistical Characteristics of Noisy Signals

Authors: Farhad Asadi, Hossein Sadati

Abstract:

In fields such as neuroscience and especially in cognition modeling of mental processes, uncertainty processing in temporal zone of signal is vital. In this paper, Bayesian online inferences in estimation of change-points location in signal are constructed. This method separated the observed signal into independent series and studies the change and variation of the regime of data locally with related statistical characteristics. We give conditions on simulations of the method when the data characteristics of signals vary, and provide empirical evidence to show the performance of method. It is verified that correlation between series around the change point location and its characteristics such as Signal to Noise Ratios and mean value of signal has important factor on fluctuating in finding proper location of change point. And one of the main contributions of this study is related to representing of these influences of signal statistical characteristics for finding abrupt variation in signal. There are two different structures for simulations which in first case one abrupt change in temporal section of signal is considered with variable position and secondly multiple variations are considered. Finally, influence of statistical characteristic for changing the location of change point is explained in details in simulation results with different artificial signals.

Keywords: Time series, fluctuation in statistical characteristics, optimal learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 564