Search results for: Automated Image alignment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1963

Search results for: Automated Image alignment

643 Novel NMR-Technology to Assess Food Quality and Safety

Authors: Markus Link, Manfred Spraul, Hartmut Schaefer, Fang Fang, Birk Schuetz

Abstract:

High Resolution NMR Spectroscopy offers unique screening capabilities for food quality and safety by combining non-targeted and targeted screening in one analysis.

The objective is to demonstrate, that due to its extreme reproducibility NMR can detect smallest changes in concentrations of many components in a mixture, which is best monitored by statistical evaluation however also delivers reliable quantification results.

The methodology typically uses a 400 MHz high resolution instrument under full automation after minimized sample preparation.

For example one fruit juice analysis in a push button operation takes at maximum 15 minutes and delivers a multitude of results, which are automatically summarized in a PDF report.

The method has been proven on fruit juices, where so far unknown frauds could be detected. In addition conventional targeted parameters are obtained in the same analysis. This technology has the advantage that NMR is completely quantitative and concentration calibration only has to be done once for all compounds. Since NMR is so reproducible, it is also transferable between different instruments (with same field strength) and laboratories. Based on strict SOP`s, statistical models developed once can be used on multiple instruments and strategies for compound identification and quantification are applicable as well across labs.

Keywords: Automated solution, NMR, non-targeted screening, targeted screening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248
642 The Implementation of the Multi-Agent Classification System (MACS) in Compliance with FIPA Specifications

Authors: Mohamed R. Mhereeg

Abstract:

The paper discusses the implementation of the MultiAgent classification System (MACS) and utilizing it to provide an automated and accurate classification of end users developing applications in the spreadsheet domain. However, different technologies have been brought together to build MACS. The strength of the system is the integration of the agent technology with the FIPA specifications together with other technologies, which are the .NET widows service based agents, the Windows Communication Foundation (WCF) services, the Service Oriented Architecture (SOA), and Oracle Data Mining (ODM). The Microsoft's .NET widows service based agents were utilized to develop the monitoring agents of MACS, the .NET WCF services together with SOA approach allowed the distribution and communication between agents over the WWW. The Monitoring Agents (MAs) were configured to execute automatically to monitor excel spreadsheets development activities by content. Data gathered by the Monitoring Agents from various resources over a period of time was collected and filtered by a Database Updater Agent (DUA) residing in the .NET client application of the system. This agent then transfers and stores the data in Oracle server database via Oracle stored procedures for further processing that leads to the classification of the end user developers.

Keywords: MACS, Implementation, Multi-Agent, SOA, Autonomous, WCF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
641 Computer Aided Diagnosis of Polycystic Kidney Disease Using ANN

Authors: Anjan Babu G, Sumana G, Rajasekhar M

Abstract:

Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multilayered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Further, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.

Keywords: Dialysis, Hereditary, Transplantation, Polycystic, Pathogenesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
640 Study on the Self-Location Estimate by the Evolutional Triangle Similarity Matching Using Artificial Bee Colony Algorithm

Authors: Yuji Kageyama, Shin Nagata, Tatsuya Takino, Izuru Nomura, Hiroyuki Kamata

Abstract:

In previous study, technique to estimate a self-location by using a lunar image is proposed.We consider the improvement of the conventional method in consideration of FPGA implementationin this paper. Specifically, we introduce Artificial Bee Colony algorithm for reduction of search time.In addition, we use fixed point arithmetic to enable high-speed operation on FPGA.

Keywords: SLIM, Artificial Bee Colony Algorithm, Location Estimate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
639 Automated Process Quality Monitoring with Prediction of Fault Condition Using Measurement Data

Authors: Hyun-Woo Cho

Abstract:

Detection of incipient abnormal events is important to improve safety and reliability of machine operations and reduce losses caused by failures. Improper set-ups or aligning of parts often leads to severe problems in many machines. The construction of prediction models for predicting faulty conditions is quite essential in making decisions on when to perform machine maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of machine measurement data. The calibration model is used to predict two faulty conditions from historical reference data. This approach utilizes genetic algorithms (GA) based variable selection, and we evaluate the predictive performance of several prediction methods using real data. The results shows that the calibration model based on supervised probabilistic principal component analysis (SPPCA) yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.

Keywords: Prediction, operation monitoring, on-line data, nonlinear statistical methods, empirical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658
638 A Simple and Empirical Refraction Correction Method for UAV-Based Shallow-Water Photogrammetry

Authors: I GD Yudha Partama, A. Kanno, Y. Akamatsu, R. Inui, M. Goto, M. Sekine

Abstract:

The aerial photogrammetry of shallow water bottoms has the potential to be an efficient high-resolution survey technique for shallow water topography, thanks to the advent of convenient UAV and automatic image processing techniques Structure-from-Motion (SfM) and Multi-View Stereo (MVS)). However, it suffers from the systematic overestimation of the bottom elevation, due to the light refraction at the air-water interface. In this study, we present an empirical method to correct for the effect of refraction after the usual SfM-MVS processing, using common software. The presented method utilizes the empirical relation between the measured true depth and the estimated apparent depth to generate an empirical correction factor. Furthermore, this correction factor was utilized to convert the apparent water depth into a refraction-corrected (real-scale) water depth. To examine its effectiveness, we applied the method to two river sites, and compared the RMS errors in the corrected bottom elevations with those obtained by three existing methods. The result shows that the presented method is more effective than the two existing methods: The method without applying correction factor and the method utilizes the refractive index of water (1.34) as correction factor. In comparison with the remaining existing method, which used the additive terms (offset) after calculating correction factor, the presented method performs well in Site 2 and worse in Site 1. However, we found this linear regression method to be unstable when the training data used for calibration are limited. It also suffers from a large negative bias in the correction factor when the apparent water depth estimated is affected by noise, according to our numerical experiment. Overall, the good accuracy of refraction correction method depends on various factors such as the locations, image acquisition, and GPS measurement conditions. The most effective method can be selected by using statistical selection (e.g. leave-one-out cross validation).

Keywords: Bottom elevation, multi-view stereo, river, structure-from-motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
637 Refinement of Object-Z Specifications Using Morgan-s Refinement Calculus

Authors: Mehrnaz Najafi, Hassan Haghighi

Abstract:

Morgan-s refinement calculus (MRC) is one of the well-known methods allowing the formality presented in the program specification to be continued all the way to code. On the other hand, Object-Z (OZ) is an extension of Z adding support for classes and objects. There are a number of methods for obtaining code from OZ specifications that can be categorized into refinement and animation methods. As far as we know, only one refinement method exists which refines OZ specifications into code. However, this method does not have fine-grained refinement rules and thus cannot be automated. On the other hand, existing animation methods do not present mapping rules formally and do not support the mapping of several important constructs of OZ, such as all cases of operation expressions and most of constructs in global paragraph. In this paper, with the aim of providing an automatic path from OZ specifications to code, we propose an approach to map OZ specifications into their counterparts in MRC in order to use fine-grained refinement rules of MRC. In this way, having counterparts of our specifications in MRC, we can refine them into code automatically using MRC tools such as RED. Other advantages of our work pertain to proposing mapping rules formally, supporting the mapping of all important constructs of Object-Z, and considering dynamic instantiation of objects while OZ itself does not cover this facility.

Keywords: Formal method, Formal specification, Formalprogram development, Morgan's Refinement Calculus, Object-Z

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
636 Proposing Robotics Challenge Centered on Material Transportation in Smart Manufacturing

Authors: Brehme D’napoli Reis de Mesquita, Marcus Vin´ıcius de Souza Almeida, Caio Vin´ıcius Silva do Carmo

Abstract:

Educational robotics has emerged as a pedagogical tool, utilizing technological artifacts to engage students’ curiosity and interest. It fosters active learning of STEM education competencies while also cultivating essential behavioral skills. Robotic competitions provide students with platforms to collaboratively devise diverse solutions to shared problems, fostering experience exchange, collaboration, and personal growth. Despite the prevalence of current robotic competitions, especially in Brazil, simulating real-world challenges like natural disasters, there is a notable absence of industry-related tasks. This article presents an educational robotics initiative centered around material transportation within smart manufacturing using automated guided vehicles. The proposed robotics challenge was executed in a competition held in Ac¸ailˆandia city, Maranh˜ao, Brazil, yielding satisfactory results and inspiring teams to develop time-limited solution strategies.

Keywords: Educational robotics, STEM education, robotic competitions, material transportation, smart manufacturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 296
635 Definition and Core Components of the Role-Partner Allocation Problem in Collaborative Networks

Authors: J. Andrade-Garda, A. Anguera, J. Ares-Casal, M. Hidalgo-Lorenzo, J.-A. Lara, D. Lizcano, S. Suárez-Garaboa

Abstract:

In the current constantly changing economic context, collaborative networks allow partners to undertake projects that would not be possible if attempted by them individually. These projects usually involve the performance of a group of tasks (named roles) that have to be distributed among the partners. Thus, an allocation/matching problem arises that will be referred to as Role-Partner Allocation problem. In real life this situation is addressed by negotiation between partners in order to reach ad hoc agreements. Besides taking a long time and being hard work, both historical evidence and economic analysis show that such approach is not recommended. Instead, the allocation process should be automated by means of a centralized matching scheme. However, as a preliminary step to start the search for such a matching mechanism (or even the development of a new one), the problem and its core components must be specified. To this end, this paper establishes (i) the definition of the problem and its constraints, (ii) the key features of the involved elements (i.e., roles and partners); and (iii) how to create preference lists both for roles and partners. Only this way it will be possible to conduct subsequent methodological research on the solution method.     

Keywords: Collaborative network, matching, partner, preference list, role.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819
634 Development System for Emotion Detection Based on Brain Signals and Facial Images

Authors: Suprijanto, Linda Sari, Vebi Nadhira , IGN. Merthayasa. Farida I.M

Abstract:

Detection of human emotions has many potential applications. One of application is to quantify attentiveness audience in order evaluate acoustic quality in concern hall. The subjective audio preference that based on from audience is used. To obtain fairness evaluation of acoustic quality, the research proposed system for multimodal emotion detection; one modality based on brain signals that measured using electroencephalogram (EEG) and the second modality is sequences of facial images. In the experiment, an audio signal was customized which consist of normal and disorder sounds. Furthermore, an audio signal was played in order to stimulate positive/negative emotion feedback of volunteers. EEG signal from temporal lobes, i.e. T3 and T4 was used to measured brain response and sequence of facial image was used to monitoring facial expression during volunteer hearing audio signal. On EEG signal, feature was extracted from change information in brain wave, particularly in alpha and beta wave. Feature of facial expression was extracted based on analysis of motion images. We implement an advance optical flow method to detect the most active facial muscle form normal to other emotion expression that represented in vector flow maps. The reduce problem on detection of emotion state, vector flow maps are transformed into compass mapping that represents major directions and velocities of facial movement. The results showed that the power of beta wave is increasing when disorder sound stimulation was given, however for each volunteer was giving different emotion feedback. Based on features derived from facial face images, an optical flow compass mapping was promising to use as additional information to make decision about emotion feedback.

Keywords: Multimodal Emotion Detection, EEG, Facial Image, Optical Flow, compass mapping, Brain Wave

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292
633 An Approximation of Daily Rainfall by Using a Pixel Value Data Approach

Authors: Sarisa Pinkham, Kanyarat Bussaban

Abstract:

The research aims to approximate the amount of daily rainfall by using a pixel value data approach. The daily rainfall maps from the Thailand Meteorological Department in period of time from January to December 2013 were the data used in this study. The results showed that this approach can approximate the amount of daily rainfall with RMSE=3.343.

Keywords: Daily rainfall, Image processing, Approximation, Pixel value data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
632 Statistics over Lyapunov Exponents for Feature Extraction: Electroencephalographic Changes Detection Case

Authors: Elif Derya UBEYLI, Inan GULER

Abstract:

A new approach based on the consideration that electroencephalogram (EEG) signals are chaotic signals was presented for automated diagnosis of electroencephalographic changes. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. This paper presented the usage of statistics over the set of the Lyapunov exponents in order to reduce the dimensionality of the extracted feature vectors. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of electroencephalographic changes. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified. The selected Lyapunov exponents of the EEG signals were used as inputs of the MLPNN trained with Levenberg- Marquardt algorithm. The classification results confirmed that the proposed MLPNN has potential in detecting the electroencephalographic changes.

Keywords: Chaotic signal, Electroencephalogram (EEG) signals, Feature extraction/selection, Lyapunov exponents

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509
631 Calibration Method for an Augmented Reality System

Authors: S. Malek, N. Zenati-Henda, M. Belhocine, S. Benbelkacem

Abstract:

In geometrical camera calibration, the objective is to determine a set of camera parameters that describe the mapping between 3D references coordinates and 2D image coordinates. In this paper, a technique of calibration and tracking based on both a least squares method is presented and a correlation technique developed as part of an augmented reality system. This approach is fast and it can be used for a real time system

Keywords: Camera calibration, pinhole model, least squares method, augmented reality, strong calibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
630 Development of an Automated Quality Management System to Control District Heating

Authors: Nigina Toktasynova, Sholpan Sagyndykova, Zhanat Kenzhebayeva, Maksat Kalimoldayev, Mariya Ishimova, Irbulat Utepbergenov

Abstract:

To solve these problems, we investigated the management system of heating enterprise, including strategic planning based on the balanced scorecard (BSC), quality management in accordance with the standards of the Quality Management System (QMS) ISO 9001 and analysis of the system based on expert judgment using fuzzy inference. To carry out our work we used the theory of fuzzy sets, the QMS in accordance with ISO 9001, BSC, method of construction of business processes according to the notation IDEF0, theory of modeling using Matlab software simulation tools and graphical programming LabVIEW. The results of the work are as follows: We determined possibilities of improving the management of heat-supply plant-based on QMS; after the justification and adaptation of software tool it has been used to automate a series of functions for the management and reduction of resources and for the maintenance of the system up to date; an application for the analysis of the QMS based on fuzzy inference has been created with novel organization of communication software with the application enabling the analysis of relevant data of enterprise management system. 

Keywords: Balanced scorecard, heat supply, quality management system, the theory of fuzzy sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
629 Person Identification using Gait by Combined Features of Width and Shape of the Binary Silhouette

Authors: M.K. Bhuyan, Aragala Jagan.

Abstract:

Current image-based individual human recognition methods, such as fingerprints, face, or iris biometric modalities generally require a cooperative subject, views from certain aspects, and physical contact or close proximity. These methods cannot reliably recognize non-cooperating individuals at a distance in the real world under changing environmental conditions. Gait, which concerns recognizing individuals by the way they walk, is a relatively new biometric without these disadvantages. The inherent gait characteristic of an individual makes it irreplaceable and useful in visual surveillance. In this paper, an efficient gait recognition system for human identification by extracting two features namely width vector of the binary silhouette and the MPEG-7-based region-based shape descriptors is proposed. In the proposed method, foreground objects i.e., human and other moving objects are extracted by estimating background information by a Gaussian Mixture Model (GMM) and subsequently, median filtering operation is performed for removing noises in the background subtracted image. A moving target classification algorithm is used to separate human being (i.e., pedestrian) from other foreground objects (viz., vehicles). Shape and boundary information is used in the moving target classification algorithm. Subsequently, width vector of the outer contour of binary silhouette and the MPEG-7 Angular Radial Transform coefficients are taken as the feature vector. Next, the Principal Component Analysis (PCA) is applied to the selected feature vector to reduce its dimensionality. These extracted feature vectors are used to train an Hidden Markov Model (HMM) for identification of some individuals. The proposed system is evaluated using some gait sequences and the experimental results show the efficacy of the proposed algorithm.

Keywords: Gait Recognition, Gaussian Mixture Model, PrincipalComponent Analysis, MPEG-7 Angular Radial Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
628 Reliability of Chute-Feeders in Automatic Machines of High Production Capacity

Authors: R. Usubamatov, A. Usubamatova, S. Hussain

Abstract:

Modern highly automated production systems faces problems of reliability. Machine function reliability results in changes of productivity rate and efficiency use of expensive industrial facilities. Predicting of reliability has become an important research and involves complex mathematical methods and calculation. The reliability of high productivity technological automatic machines that consists of complex mechanical, electrical and electronic components is important. The failure of these units results in major economic losses of production systems. The reliability of transport and feeding systems for automatic technological machines is also important, because failure of transport leads to stops of technological machines. This paper presents reliability engineering on the feeding system and its components for transporting a complex shape parts to automatic machines. It also discusses about the calculation of the reliability parameters of the feeding unit by applying the probability theory. Equations produced for calculating the limits of the geometrical sizes of feeders and the probability of sticking the transported parts into the chute represents the reliability of feeders as a function of its geometrical parameters.

Keywords: Chute-feeder, parts, reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
627 Health Monitoring and Failure Detection of Electronic and Structural Components in Small Unmanned Aerial Vehicles

Authors: Gopi Kandaswamy, P. Balamuralidhar

Abstract:

Fully autonomous small Unmanned Aerial Vehicles (UAVs) are increasingly being used in many commercial applications. Although a lot of research has been done to develop safe, reliable and durable UAVs, accidents due to electronic and structural failures are not uncommon and pose a huge safety risk to the UAV operators and the public. Hence there is a strong need for an automated health monitoring system for UAVs with a view to minimizing mission failures thereby increasing safety. This paper describes our approach to monitoring the electronic and structural components in a small UAV without the need for additional sensors to do the monitoring. Our system monitors data from four sources; sensors, navigation algorithms, control inputs from the operator and flight controller outputs. It then does statistical analysis on the data and applies a rule based engine to detect failures. This information can then be fed back into the UAV and a decision to continue or abort the mission can be taken automatically by the UAV and independent of the operator. Our system has been verified using data obtained from real flights over the past year from UAVs of various sizes that have been designed and deployed by us for various applications.

Keywords: Fault detection, health monitoring, unmanned aerial vehicles, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
626 Traumatic Ankle Pain: Adequacy of Clinical Information in X-Ray Request with Reference to the Ottawa Ankle Rule

Authors: Rania Mustafa

Abstract:

This audit was conducted at Manchester University NHS Foundation Trust, Wythenshawe Hospital Radiology and Accident and Emergency [A&E] Department to assess the appropriateness of clinical information in X-ray requests, specifically in cases of acute ankle injuries. As per the Ottawa Ankle Rules and the recommendations of National Institute for Health and Care Excellence [NICE] and the Royal College of Radiology, we aimed to evaluate the appropriateness of referrals and the thoroughness of clinical information provided by Emergency Department [ED] clinicians for ankle radiography. Our goal was to achieve 100% compliance with these guidelines. The audit involved a comprehensive analysis spanning the period from August 2022 to January 2023, encompassing patient records, radiographic orders, and clinical assessments. Data collection included patient demographics, presenting complaints, clinical assessments, adherence to Ottawa Ankle Rules criteria, and subsequent radiography orders. Here we conducted two audit cycles, involving 38 patients in the first cycle and 86 patients in the second cycle. The data were furtherly filtered to include all patients who were referred from the ED for an ankle Xray with a history of acute trauma and age of more than 18 years. The key finding was that in August 2022, 60% of cases met the Ottawa Ankle Rules criteria accurately, indicating a need for improvement in adherence. However, by January 2023, there was a notable improvement, with 95% of cases accurately meeting the criteria. This significant change reflects an increased alignment with best practices for ankle radiography referrals.

Keywords: Ankle, injuries, Ottawa Ankle Rule, X-rays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 290
625 Assertion-Driven Test Repair Based on Priority Criteria

Authors: Ruilian Zhao, Shukai Zhang, Yan Wang, Weiwei Wang

Abstract:

Repairing broken test cases is an expensive and challenging task in evolving software systems. Although an automated repair technique with intent-preservation has been proposed, it does not take into account the association between test repairs and assertions, leading a large number of irrelevant candidates and decreasing the repair capability. This paper proposes a assertion-driven test repair approach. Furthermore, a intent-oriented priority criterion is raised to guide the repair candidate generation, making the repairs closer to the intent of the test. In more detail, repair targets are determined through post-dominance relations between assertions and the methods that directly cause compilation errors. Then, test repairs are generated from the target in a bottom-up way, guided by the the intent-oriented priority criteria. Finally, the generated repair candidates are prioritized to match the original test intent. The approach is implemented and evaluated on the benchmark of 4 open-source programs and 91 broken test cases. The result shows that the approach can fix 89% (81/91) broken test cases, which are more effective than the existing intent-preserved test repair approach, and our intent-oriented priority criteria work well.

Keywords: Test repair, test intent, software test, test case evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156
624 2D Graphical Analysis of Wastewater Influent Capacity Time Series

Authors: Monika Chuchro, Maciej Dwornik

Abstract:

The extraction of meaningful information from image could be an alternative method for time series analysis. In this paper, we propose a graphical analysis of time series grouped into table with adjusted colour scale for numerical values. The advantages of this method are also discussed. The proposed method is easy to understand and is flexible to implement the standard methods of pattern recognition and verification, especially for noisy environmental data.

Keywords: graphical analysis, time series, seasonality, noisy environmental data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
623 Laboratory Experimentation for Supporting Collaborative Working in Engineering Education over the Internet

Authors: S. Odeh, E. Abdelghani

Abstract:

Collaborative working environments for distance education can be considered as a more generic form of contemporary remote labs. At present, the majority of existing real laboratories are not constructed to allow the involved participants to collaborate in real time. To make this revolutionary learning environment possible we must allow the different users to carry out an experiment simultaneously. In recent times, multi-user environments are successfully applied in many applications such as air traffic control systems, team-oriented military systems, chat-text tools, multi-player games etc. Thus, understanding the ideas and techniques behind these systems could be of great importance in the contribution of ideas to our e-learning environment for collaborative working. In this investigation, collaborative working environments from theoretical and practical perspectives are considered in order to build an effective collaborative real laboratory, which allows two students or more to conduct remote experiments at the same time as a team. In order to achieve this goal, we have implemented distributed system architecture, enabling students to obtain an automated help by either a human tutor or a rule-based e-tutor.

Keywords: Collaboration environment, e-tutor, multi-user environments, socio-technical system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
622 A Selective Markovianity Approach for Image Segmentation

Authors: A. Melouah, H. Merouani

Abstract:

A new Markovianity approach is introduced in this paper. This approach reduces the response time of classic Markov Random Fields approach. First, one region is determinated by a clustering technique. Then, this region is excluded from the study. The remaining pixel form the study zone and they are selected for a Markovianity segmentation task. With Selective Markovianity approach, segmentation process is faster than classic one.

Keywords: Markovianity, response time, segmentation, study zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
621 An Efficient Segmentation Method Based on Local Entropy Characteristics of Iris Biometrics

Authors: Ali Shojaee Bakhtiari, Ali Asghar Beheshti Shirazi, Amir Sepasi Zahmati

Abstract:

An efficient iris segmentation method based on analyzing the local entropy characteristic of the iris image, is proposed in this paper and the strength and weaknesses of the method are analyzed for practical purposes. The method shows special strength in providing designers with an adequate degree of freedom in choosing the proper sections of the iris for their application purposes.

Keywords: Iris segmentation, entropy, biocryptosystem, biometric identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
620 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra, Abdus Sobur

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of artificial intelligence (AI), specifically deep learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images, representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our approach presents a hybrid model, amalgamating the strengths of two renowned convolutional neural networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: Artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
619 Validation of Visibility Data from Road Weather Information Systems by Comparing Three Data Resources: Case Study in Ohio

Authors: Fan Ye

Abstract:

Adverse weather conditions, particularly those with low visibility, are critical to the driving tasks. However, the direct relationship between visibility distances and traffic flow/roadway safety is uncertain due to the limitation of visibility data availability. The recent growth of deployment of Road Weather Information Systems (RWIS) makes segment-specific visibility information available which can be integrated with other Intelligent Transportation System, such as automated warning system and variable speed limit, to improve mobility and safety. Before applying the RWIS visibility measurements in traffic study and operations, it is critical to validate the data. Therefore, an attempt was made in the paper to examine the validity and viability of RWIS visibility data by comparing visibility measurements among RWIS, airport weather stations, and weather information recorded by police in crash reports, based on Ohio data. The results indicated that RWIS visibility measurements were significantly different from airport visibility data in Ohio, but no conclusion regarding the reliability of RWIS visibility could be drawn in the consideration of no verified ground truth in the comparisons. It was suggested that more objective methods are needed to validate the RWIS visibility measurements, such as continuous in-field measurements associated with various weather events using calibrated visibility sensors.

Keywords: Low visibility, RWIS, traffic safety, visibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1334
618 Multi-Agent System for Irrigation Using Fuzzy Logic Algorithm and Open Platform Communication Data Access

Authors: T. Wanyama, B. Far

Abstract:

Automatic irrigation systems usually conveniently protect landscape investment. While conventional irrigation systems are known to be inefficient, automated ones have the potential to optimize water usage. In fact, there is a new generation of irrigation systems that are smart in the sense that they monitor the weather, soil conditions, evaporation and plant water use, and automatically adjust the irrigation schedule. In this paper, we present an agent based smart irrigation system. The agents are built using a mix of commercial off the shelf software, including MATLAB, Microsoft Excel and KEPServer Ex5 OPC server, and custom written code. The Irrigation Scheduler Agent uses fuzzy logic to integrate the information that affect the irrigation schedule. In addition, the Multi-Agent system uses Open Platform Connectivity (OPC) technology to share data. OPC technology enables the Irrigation Scheduler Agent to communicate over the Internet, making the system scalable to a municipal or regional agent based water monitoring, management, and optimization system. Finally, this paper presents simulation and pilot installation test result that show the operational effectiveness of our system.

Keywords: Community water usage, fuzzy logic, irrigation, multi-agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338
617 New Approach for Constructing a Secure Biometric Database

Authors: A. Kebbeb, M. Mostefai, F. Benmerzoug, Y. Chahir

Abstract:

The multimodal biometric identification is the combination of several biometric systems; the challenge of this combination is to reduce some limitations of systems based on a single modality while significantly improving performance. In this paper, we propose a new approach to the construction and the protection of a multimodal biometric database dedicated to an identification system. We use a topological watermarking to hide the relation between face image and the registered descriptors extracted from other modalities of the same person for more secure user identification.

Keywords: Biometric databases, Multimodal biometrics, security authentication, Digital watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
616 Analysis of the Communication Methods of an iCIM 3000 System within the Frame of Research Purpose

Authors: Radovan Holubek, Daynier Rolando Delgado Sobrino, Roman Ruzarovsky

Abstract:

Current trends in manufacturing are characterized by production broadening, innovation cycle shortening, and the products having a new shape, material and functions. The production strategy focused on time needed change from the traditional functional production structure to flexible manufacturing cells and lines. Production by automated manufacturing system (AMS) is one of the most important manufacturing philosophies in the last years. The main goals of the project we are involved in lies on building a laboratory in which will be located a flexible manufacturing system consisting of at least two production machines with NC control (milling machines, lathe). These machines will be linked to a transport system and they will be served by industrial robots. Within this flexible manufacturing system a station for the quality control consisting of a camera system and rack warehouse will be also located. The design, analysis and improvement of this manufacturing system, specially with a special focus on the communication among devices constitute the main aims of this paper. The key determining factors for the manufacturing system design are: the product, the production volume, the used machines, the disposable manpower, the disposable infrastructure and the legislative frame for the specific cases.

Keywords: Paperless manufacturing, flexible manufacturing, robotized manufacturing, material flow, iCIM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
615 A New Implementation of PCA for Fast Face Detection

Authors: Hazem M. El-Bakry

Abstract:

Principal Component Analysis (PCA) has many different important applications especially in pattern detection such as face detection / recognition. Therefore, for real time applications, the response time is required to be as small as possible. In this paper, new implementation of PCA for fast face detection is presented. Such new implementation is designed based on cross correlation in the frequency domain between the input image and eigenvectors (weights). Simulation results show that the proposed implementation of PCA is faster than conventional one.

Keywords: Fast Face Detection, PCA, Cross Correlation, Frequency Domain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
614 A Decision Support System Based on Leprosy Scales

Authors: Dennys Robson Girardi, Hugo Bulegon, Claudia Maria Moro Barra

Abstract:

Leprosy is an infectious disease caused by Mycobacterium Leprae, this disease, generally, compromises the neural fibers, leading to the development of disability. Disabilities are changes that limit daily activities or social life of a normal individual. When comes to leprosy, the study of disability considered the functional limitation (physical disabilities), the limitation of activity and social participation, which are measured respectively by the scales: EHF, SALSA and PARTICIPATION SCALE. The objective of this work is to propose an on-line monitoring of leprosy patients, which is based on information scales EHF, SALSA and PARTICIPATION SCALE. It is expected that the proposed system is applied in monitoring the patient during treatment and after healing therapy of the disease. The correlations that the system is between the scales create a variety of information, presented the state of the patient and full of changes or reductions in disability. The system provides reports with information from each of the scales and the relationships that exist between them. This way, health professionals, with access to patient information, can intervene with techniques for the Prevention of Disability. Through the automated scale, the system shows the level of the patient and allows the patient, or the responsible, to take a preventive measure. With an online system, it is possible take the assessments and monitor patients from anywhere.

Keywords: Leprosy, Medical Informatics, Decision SupportSystem, Disability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048