
Assertion-Driven Test Repair Based on Priority
Criteria

Ruilian Zhao, Shukai Zhang, Yan Wang, Weiwei Wang

Abstract—Repairing broken test cases is an expensive and
challenging task in evolving software systems. Although an
automated repair technique with intent-preservation has been
proposed, it does not take into account the association between
test repairs and assertions, leading a large number of irrelevant
candidates and decreasing the repair capability. This paper proposes
a assertion-driven test repair approach. Furthermore, a intent-oriented
priority criterion is raised to guide the repair candidate generation,
making the repairs closer to the intent of the test. In more detail, repair
targets are determined through post-dominance relations between
assertions and the methods that directly cause compilation errors.
Then, test repairs are generated from the target in a bottom-up
way, guided by the the intent-oriented priority criteria. Finally, the
generated repair candidates are prioritized to match the original test
intent. The approach is implemented and evaluated on the benchmark
of 4 open-source programs and 91 broken test cases. The result shows
that the approach can fix 89% (81/91) broken test cases, which are
more effective than the existing intent-preserved test repair approach,
and our intent-oriented priority criteria work well.

Keywords—Test repair, test intent, software test, test case
evolution.

I. INTRODUCTION

AS we all know, the program under test (PUT) is

frequently altered due to bug fixing, refactoring, and

incremental development activities in software evolution.

Regression testing (RT) is essential to ensure the quality of

evolving software. In RT, test cases are re-executed on the

latest version to check whether the changes of PUT bring in

new bugs. However, changes to the PUT may result in some

test cases no longer being available [1]. Such test cases are

called broken test cases. It can be observed that even small

modifications can lead to lots of broken test cases, in some

cases up to 74% of test suite[2], which leads to significant

challenges in the maintenance of the test suite [3]. Hence, how

to automatically repair broken test cases has been a critical

problem in RT.

Currently, test case repair techniques are mainly divided

into two categories. One focuses on the broken test cases

caused by run-time exceptions and assertion failures. For

instance, ReAssert [1] fixes the failed assertion of broken

test cases through executing the test and observing run-time

behavior. Symbolic Test Repair [4] uses symbolic execution to

compute the expected values in the assertions, then leverages

the expected values to renovate assertions. The other category

of test repair techniques aims at compilation errors of test

Ruilian Zhao, Shukai Zhang, Yan Wang, and Weiwei Wang* are with
the College of Information Science and Technology, Beijing University of
Chemical Technology, Beijing, 100029 China (*corresponding author, e-mail:
wangww@mail.buct.edu.cn).

cases. For example, TCA [5], [6] combines static and dynamic

program analysis to correct compilation errors in broken test

cases caused by method signature changes, such as adding

parameters, removing parameters, and changing the type of

parameters or return. TestFix [7] uses a genetic algorithm to

find a sequence of method invocations to fix a broken test

case, making the broken test case pass.

In fact, run-time exceptions or assertion failures may cause

test cases to fail only after the test cases are successfully

compiled. On the other hand, previous researches on test case

evolution have shown that more than 50% of the repaired test

cases are related to compilation errors while less than 10% are

associated with assertion changes [8]. Therefore, this paper

aims at the broken test case caused by compilation errors and

studies how to repair the test cases.

As mentioned above, there are some test case repair

techniques for compilation errors. However, TCA’s repair

capability is limited because it mainly concerns fixing the

broken test cases caused by method signature modification.

TestFix does not pay close attention to the test intent, so it

does not guarantee that the repaired test cases still keep their

original test intent. Li et al. [9] proposed an intent preserving

test repair (TRIP) approach, which generates repair candidates

by a top-down approach and leverages logic expressions of

path conditions [10] to model test intent.

However, the existing test repair approaches face many

challenges. Firstly, test intent can be derived from explicit

intent and implicit intent, where implicit intent is reflected

in the execution path of test case, while explicit intent is

embodied in the test assertion. TRIP adopts a top-down

repair generation method, without considering the association

between test repairs and assertions, resulting in a lot of

irrelevant test repairs. Secondly, the more elements reused

in test case repair, and the fewer new elements added, the

closer the test case repair candidate is to the original test

case intent; namely, the smaller the difference between the

repair candidate and the original test case, the better the repair.

But the intent-oriented priority criteria of TRIP only consider

the newly added elements, and do not consider the reused

elements. In addition, the intent-oriented priority criteria of

TRIP do not take into account repair costs, which will result

in some ineffective repairs and increase repair costs.

Therefore, this paper proposes a Assertion-Driven Test

Repair approach (TRAD) for unit test cases of object-oriented

software. TRAD proceeds from assertions, and determines

the repair target related to assertions through post-dominance

relations. Furthermore, an intent-oriented priority criterion is

raised from the perspectives of reusing elements and reducing

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:3, 2024 

133International Scholarly and Scientific Research & Innovation 18(3) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
3,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
54

9.
pd

f



repair costs, which considers both newly added elements

and reused elements, as well as the repair cost. On this

foundation, TRAD generates repair candidates from the repair

target in a bottom-up manner under the guidance of the

intent-oriented priority criteria, preserving the test intent and

avoiding irrelevant repairs. In order to verify the validity of our

test repair approach, TRAD is compared with the TRIP on the

same benchmark, which contains four open-source programs

and 91 broken test cases. The experiment results show that

TRAD repaired 89% (81) broken test cases, more than 79%

(72) that TRIP repaired. Moreover, TRAD approach can not

only repair all the broken test cases that TRIP can repair, but

also repair some broken test cases that TRIP cannot repair.

The contributions of this work are summarized below:

• An assertion-driven test repair approach is proposed,

which uses the post-dominance relation to determine

the repair targets, and devises an intent-oriented priority

criterion to guide the test repairs generation from the

repair target in a bottom-up way.

• Considering the perspective of reused elements and

the repair costs, three intent-oriented priority criteria

are proposed to guide the repair candidates generation,

improving the quality of the repair candidates.

• A series of empirical experiments is conducted to evaluate

the effectiveness of our approach. And the experiment

results show that TRAD repaired 89% (81) broken test

cases, better than the existing intent-preserved test repair

approach.

The rest of this paper is organized as follows. Section II

describes relevant concepts. Section III presents an example

to explain our approach. In Section IV, our approach is

described in detail. The experiments and findings are reported

and discussed in Section V. Section VI illustrates threats to

validity. In Section VII, related works are depicted in section.

Section VIII is the conclusion and future work.

II. PRELIMINARIES

This section introduces basic concepts that are relevant to

the work in this paper.

A. Broken Test Case and Test Intent

In object-oriented software, test code inspect program

functionality by invoking methods and accessing field in the

PUT. So, a test case includes two parts: method sequences and

test oracles. The method sequences consist of the methods

invoked and the fields accessed. Test oracles are often in

the form of executable assertions such as in the JUnit

testing frameworkm[11], checking the return value of method

invocations or the state of receiver objects to check the

correctness of the program.

In this paper, a broken test case refers to the test case which

does not compile and is destroyed by compilation errors. It

means that for programs P and its modified version P ′, a test

case t that can be executed on P is not compilable for P ′ due

to compilation errors.

In intent-preserving test case repair, it is necessary to find a

way to model the original test intent. Intuitively, test intent is

reflected in the program behavior of the test and the expected

result. The former represents the implicit intent of the test,

while the latter represents the explicit intent of the test.

Since path conditions abstract the behavior of the program

exercised by a test case, it can express the implicit intent of a

test case. On the other hand, test assertion is to verify whether

the program meets the expected result under this executable

path. Thus, the explicit intent is embodied in the test assertion.

B. Public Program Element

The public program elements (PPEs) are basic elements

(i.e., method or field in Java) that a test case can access

in object-oriented software. Test cases validate program

functionality through invoking methods and access fields in

the program under test. Compared a program P and its

new version program P ′, basic elements can be classified as

removed PPEs (in P but not in P ′), unchanged PPEs (both

in P and P ′) and new PPEs (only in P ′). It is observed that

removed PPEs is the main reason that test case t does not

compile on P ′, and new PPEs and unchanged PPEs may be

used to repair the broken test case t.

C. Static Data Flow Graph of Test case

As mentioned above, a test case is made up of methods

invocations sequence, and PPEs are the basic elements it can

access. A PPE may be method invocations, field accesses,

and built-in language operators, which involves method names

and associated inputs and outputs. In order to describe the

methods names, associated inputs and outputs, and the data

dependencies among methods, and help identify the entities

affected by removed PPEs in broken test cases, a static data
flow graph (DFG) is provided. To be specific, a DFG is a

bipartite graph which is defined as a 3-tuple 〈Ndef , Nop, E〉,
where Ndef is a set of nodes representing definitions, Nop

is a set of nodes representing operations, and E ∈ (Ndef ×
Nop)∪(Nop×Ndef ) is a set of directed edges representing the

relations between definitions and operations. A definition can

be a literal constant or a definition generated by an operation,

and operations are the methods invoked by a test case. An

edge d1ßop1 from a datum d1 ∈ Ndef to a operation op1 ∈
Nop denotes that d1 is a parameter of operation op1, namely

operation op1 data depend on d1. Similarly, an edge op1ßd1
from a operation op1 ∈ Nop to a datum d1 ∈ Ndef denotes

that d1 is the return of operation op1. In addition, DFG label

definition nodes with their type and operation nodes with the

associated PPEs.

The DFG of a broken test case is called broken DFG. In

a broken DFG, the operations that directly cause compilation

errors are named as invalid operations, which must be removed

and correspond to removed PPEs in the broken test case. The

definitions that are affected by invalid operations directly or

indirectly are called as affected definitions. And the definitions

that do not affect by invalid operations are available in

repairing a broken test case.

For example, Fig. 1 shows the DFG of a test case, where

rectangles express operation nodes, and rounded rectangles

represent definition nodes. Nodes 0, 1, 2, 3, 4, 5 correspond to

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:3, 2024 

134International Scholarly and Scientific Research & Innovation 18(3) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
3,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
54

9.
pd

f



well-formed nodes; nodes 6 and 12 correspond invalid nodes;

nodes 7, 9, 11, 13 correspond affected definition nodes.

III. CASE STUDY

In this section, we conduct a case study on a simple broken

test case that involves compilation errors to illustrate our test

repair method. We assume that for programs P and P ′, test

case t is executable on program P but is broken on program

P ′ because of compilation errors. The broken test case is

shown in Fig. 2 (a), which has three non-compilable methods

striking in red, that is, method readlines in line 6, method

check in line 7. The corresponding DFG is shown in Fig.

1. The non-compilable methods are associated with the node

6 and node 12 in red by dashed border, which are invalid
operations in the DFG.

The affected definitions nodes of these two invalid
operations directly or indirectly are nodes 7, 9, 11 and 13,

respectively. The reusable nodes in the broken test case, that

is, nodes other than invalid operations, are all operations in

the DFG except nodes 6 and 12. The repair of this test

case requires the use of the newly added methods in program

P’, including getContent method and checkFormat method.

Their corresponding nodes are shown in blue boxes in Fig. 3.

In order to have a comparison, we first give the process by

which TRIP fixes this test case.

TRIP first determines an initial partial DFG consisting of

nodes 0, 1, 2, 3, 4, 5, and then expands the partial DFG

by adding operation nodes with well-formed definitions as

parameters to the partial DFG. Each time an expanded DFG

is selected, it tries to replace the affected definition nodes in

the broken DFG, i.e., nodes 7, 9, 11, 13, with well-formed

definition nodes in the current DFG. When a partial DFG

can make the broken DFG have no affected definition nodes

after replacement, it is considered to have obtained a repair

candidate. In fact, TRIP may generate repairs for nodes 7,

9, 11, 13, which means that node 8 preserved in the correct

repair may be replaced by other operations that can generate

defination node of the same type as node 9 (boolean type).

Furthermore, TRIP does not consider reuse in the priority

criteria, which may lead to adding operations that are different

from operation node 4, but can generate MyFile type definition

nodes, and use this definition node to add node 17 in the

correct repair or other wrong operations. In addition, TRIP

does not consider the repair cost. These factors will eventually

cause TRIP to generate invalid or irrelevant repairs.

In contrast, our proposed assertion-driven approach can

start from the affected definitions in the assertions, and

obtain the repair target, i.e., nodes 7 and 13, through the

post-dominance relation. This can avoid the wrong repair of

operation node 8 related to the assertion, and preserve some

test intent. Furthermore, the reusable elements and repair cost

are considered in the priority criteria, which can filter out some

case where wrong parameters are added to the operation nodes,

and reduce the invalid repairs. Moreover, the bottom-up test

repair generation starting from the repair target guided by the

priority criteria can avoid generating irrelevant repairs for node

11. And when filtering repair candidates, we also select the

ones that are closest to the original broken test under the new

priority criteria. Through the bottom-up test repair generation

and the new priority criteria guidance, TRAD can generate

better test repairs more efficiently.

IV. APPROACH

In this section, we describe our assertion-driven test repair

approach, TRAD, in detail. TRAD takes program P, the

updated version of program P’, and a broken test case t as

input, and outputs a series of repair candidates for test case t.

Fig. 4 shows the skeleton of TRAD, which consists of three

parts: (1) Repair Target Determination: The repair target is a

set of affected definitions in the broken DFG, determined by

the post-dominance relationship between the assertions and the

invalid operations.

(2) Intent-Oriented Priority Criteria: TRAD raises three

priority criteria to select the partial DFG closer to the test

intent for expansion when generating repairs. Furthermore,

after repaired DFG are generated, the priority criteria are used

to select repair candidates closer to the test intent.

The three prioritization criteria are proposed considering i.

the source of the added operation; ii. the cost of the repair; and

iii. the similarity between the added operation and the invalid

operation. (3) Candidate Repaired DFGs Generation: After

deleting the nodes that need to be removed from the broken

DFG, the remaining part is an initial partial DFG. In this initial

partial DFG, TRAD uses a bottom-up approach to gradually

extend the partial DFG from the repair target, guided by the

priority criteria, until the partial DFG becomes a candidate

repaired DFG.

A. Repair Target Determination

Intuitively, all repaired DFGs should reach test assertions.

Thus, the test repair process can start from the test assertions in

a bottom-up way. But as mentioned, the smaller the difference

between the repair candidate and the original test case, the

better the test repair. That is, the more reusable nodes linking

the assertion is kept, the better the test repair. So, in order

to better preserve the intent of test repairs, we use the

post-dominance relationship to determine the repair targets
considering the association between the invalid operations and

the test assertions.

Before introducing the formal definition of post-dominance

relationship, we illustrate three basic concepts that are entry
nodes, exit nodes and path in the DFG. The entry nodes of

DFG are definitions represented literal constants or operations

without parameters, which in-degree is 0. The exit nodes are

end points of DFG, which out-degree is 0. A path in a DFG

is a finite sequence of nodes n1, n2, ...,nk such that for

i=1,2,...,k-1, there is an directed edge from ni to ni+1. The

formal definition of post-dominance relationship is described

as:

Definition 1: Post-dominance relationship: A set of nodes

S1={n1, n2, ..., ni} post-dominates another set of nodes

S2={m1,m2, ...,mj} if and only if i. every directed path from

any node m ∈ S2 to any reachable exit node contains a node

n ∈ S1 and ii. any node n ∈ S1is in a directed path from a

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:3, 2024 

135International Scholarly and Scientific Research & Innovation 18(3) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
3,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
54

9.
pd

f



Fig. 1 DFG of a test case

1 public void testMyFile() throws Exception{
2 String filename = "test.txt";
3 boolean empty = MyString.isEmpty(filename);
4 assertFalse(flag);
5 MyFile file = new MyFile(filename);
6 String content = file.readlines();
7 boolean isValid = file.check();
8 assertTrue(isValid);
9 boolean isLegal = MyString.isLegal(content);

10 assertTrue(isLegal);
11 }

(a) A broken test case

1 public void testMyFile() throws Exception{
2 String filename = "test.txt";
3 boolean empty = MyString.isEmpty(filename);
4 assertFalse(flag);
5 MyFile file = new MyFile(filename);
6 String content = file.readContent();
7 boolean isLegal = MyString.isLegal(content);
8 assertTrue(isLegal);
9 boolean isValid = MyFile.checkFormat(filename);

10 assertTrue(isValid);
11 }

(b) The repaired test case

Fig. 2 An example of test case repair

node m ∈ S2 to an exit node and iii. for any node n ∈ S1,

there must exist a path to the exit node that does not contain

any node in S2.

According to the post-dominance definition, exit nodes

post-dominate all nodes in the DFG. Assertions often are

exit nodes of DFG, except in some cases that assertions have

no data dependency with method sequences, such as using

try-catch to check exceptions with fail statements. Hence,

TRAD regards affected definitions used in exit nodes as

the initial repair target. Then, TRAD uses the replacement

relationship between the affected definitions to obtain the final

repair target.

Definition 2: Replacement relationship: For a set of nodes

S that post-dominates all invalid operations, and a valid

operation op, if a set of definition nodes n1 satisfies n1 ∈ S
and all nodes in n1 are directly generated by op, and a set of

definition nodes n2 satisfies n2 are all affected definitions and

n2 are parameters of op, then we say that n2 can replace n1 in

S. It is easy to prove that the replaced S still post-dominates

all invalid operation nodes.
According to the replacement relationship, TRAD starts

from the initial repair target and continuously searches for

replaceable nodes to obtain new repair target. After there are

no replaceable nodes in the repair target, TRAD obtains the

final repair target. The difference between the final repair target

and the initial repair target is that the final repair target avoids

the wrong repair of some affected definition nodes. Intuitively,

the valid operations op used in the replacement process are

often the operations that the test intent wants to preserve, while

directly using the initial repair target to generate the repaired

DFG may cause these operations not to be used.
In Fig. 1, nodes 6 and 12 are invalid operations that

correspond to non-compilable methods. The initial repair

target is the node set that includes nodes 9 and 13. There is

a replacement relationship between node 9 and node 7. After

replacement, we obtain a repair target consisting of nodes 7

and 13.

B. Intent-Oriented Priority Criteria
Ideally, the more elements reused in the test repair, and

the fewer new elements added, the closer the test intent of

repair candidate is to that of the original test case; namely,

the smaller the difference between the repair candidate and

the original test case, the better the repair. Furthermore, the

higher the repair cost of that test repair is, and the less likely

it is to be a repair that meets the test intent. Thus, in order

to make the test intent of the repair candidate more similar

to the original test cases, we design intent-oriented priority

criteria from the perspectives of newly added elements and

reused elements, as well as the repair cost.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:3, 2024 

136International Scholarly and Scientific Research & Innovation 18(3) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
3,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
54

9.
pd

f



Fig. 3 The repaired DFG

Repair Targets 
Determination

Partial DFGsBroken DFG

 Partial DFGs

Repaired DFGs

Generation
Intent Oriented 

Priority CriteriaP’

P

Broken Test Repair Candidates

Fig. 4 The skeleton of TRAD

Detailed descriptions of our priority criteria are discussed

as follows.

When generating repaired DFGs, in order to reduce repair

costs, we think that the more unassigned definitions there are

and the more of them that cannot find well-formed definitions

of the same type in the partial DFG, the higher the repair cost

of that DFG is, and the less likely it is to be a repair that

meets the intent. Equation (1) is used to calculate the priority

of the partial DFG:

f(dfg) =

∑
udef∈dfg weightudef

numudef
(1)

where udef means the unassigned definitions, weightudef
signifies the weight of unassigned definitions. The unassigned

definitions that have well-formed definitions of the same type

in partial DFG have a weight of 0.9, and those that do not have

a weight of 0.1. numudef means the number of unassigned

definitions.

Furthermore, we think that i. adding operations that are new

PPEs are more likely to be correct repairs that meet the test

intent, adding operations that exist in the broken test case itself

(i.e., except for invalid operations) are more likely to be correct

repairs that meet the test intent, and other operations are less

likely to be correct repairs that meet the test intent. ii. adding

operations that are closer to the number of invalid operations

are more likely to be correct repairs. iii. adding operations that

have higher similarity with invalid operations are more likely

to be a correct repair. Formula (2) is given to calculate the

priority of DFG.

g(dfg) =

∑
insop∈dfg weightinsop ∗ similarityinsop

diffnumop + 1
(2)

where insop refers to the added operations in the repaired

DFG, weightinsop refers to the weight of the added operations.

When the added operation is NPPE, weight is 0.9, when the

added operation is an operation that exists in the broken test

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:3, 2024 

137International Scholarly and Scientific Research & Innovation 18(3) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
3,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
54

9.
pd

f



case itself, weight is 0.7, and when the added operation is

other operations, weight is 0.5. When adding fields, weight is

also assigned similarly; diffnum refers to the absolute value

of the difference between the number of added operations and

invalid operations, and similarityinsop refers to the similarity

between the added operations and the invalid operations. The

similarity formula is as follows:

similarityinsop =
k

max
i=1

(s1(insop, invopi)+s2(insop, invopi))

(3)

where invop refers to the invalid operations. Moreover,

the similarity between an added operation and each

invalid operation consists of two parts. s1(insop, invopi
is Levenshtein ratio of fully-qualified declaration between

added operation and invalid operations shown in (4).

s2(insop, invopi is Levenshtein ratio of method name

between added operation and invalid operations shown in (5).

The value of α in TRAD is 0.4.

s1(insop, invopi) = α ∗ Leven decl(insop, invopi) (4)

s2(insop, invopi) = (1− α) ∗ Leven name(insop, invopi)
(5)

When generating repair candidates, we use f(dfg)+g(dfg)
as the final priority criteria, and when reporting possible repair

candidates, we directly use g(dfg) as the priority criteria.

C. Repaired DFG Generation

TRAD generates repaired DFGs from the repair target in a

bottom-up way under the guidance of the intention-oriented

priority criterion. TRAD starts from the repair target, making

the final repair directly related to it, avoiding irrelevant test

repairs. Meanwhile, the test intent related to the repair target

determined by the assertion is maximally retained, thereby

avoiding the repair of invalid operation outside the repair

target.

Furthermore, the guidance of priority criteria can make the

generated repaired DFGs more in line with test intent and

effectively reduce repair costs. The detailed repaired DFG

generation is shown in Algorithm 1.

Firstly, the repaired DFG generation process needs to obtain

the operations that need to be used when extending the DFG.

The function getOperations finds all operations involving

NPPE and UPPE in the program P ′ (line 3). Sometimes

it also needs to directly introduce field constants from P ′, so

the field constants are also added to the fields set (line 4).

Then the function initPartialDfg deletes the nodes that need

to be removed in the broken DFG, the removed nodes are

invalid operation nodes and nodes that are not used in the

replacement process and are reachable by invalid operation

nodes (line 5). The function getPartialDfg takes out a partial

DFG with the highest priority from the partialDfgs set (line

7). The specific calculation of priority will be introduced in the

next section. The function isRepairedDfg determines whether

the current partial DFG is a repaired DFG. If yes, it is added to

the repaired DFG set. If not, it selects an operation to extend

partial DFG(line 10-14). The function traverses the previously

Algorithm 1: Repaired DFG Generation

Input: NPPEs; UPPEs; P ′; DFG: the broken

DFG

Output: repairedDfgs: a set of repaired DFGs

1 begin
2 repairedDfgs = {};

3 operations =

getOperations(NPPEs,UPPEs,P ′);
4 fields = getFields(NPPEs,UPPEs,P ′);
5 partialDfgs = {initPartialDfg(DFG)};

6 while partialDfgs is not empty and time limit not
reached do

7 g = getPartialDfg(partialDfgs);

8 foreach op ∈ operations do
9 extendDfg = extendPartialDfg(g, op);

10 if isRepairedDfg(extendDfg) then
11 repairedDfg.add(extendDfg);

12 else
13 partialDfgs.add(extendDfg);

14 end
15 end
16 foreach field ∈ fields do
17 extendDfg = extendPartialDfg(g, field);

18 if isRepairedDfg(extendDfg) then
19 repairedDfg.add(extendDfg);

20 else
21 partialDfgs.add(extendDfg);

22 end
23 end
24 end
25 end

obtained set of operations, and the function extendPartialDfg
checks whether the return value type of the current traversed

operation op matches the type of an unassigned definition

in the current partial DFG. If it matches, the operation is

added to the partial DFG and a new DFG is generated.

The parameters used by the operation are set to unassigned

definitions. When adding an operation, if there are already k

unreachable operations with the same name in the partial DFG,

then k+1 new partial DFGs are generated, where k are partial

DFGs merged with k operations with the same name, and 1

is a partial DFG with a new operation added. After merging

with an operation with the same name, the parameters of that

operation are no longer set to unassigned definitions. For the

fields set, it looks for fields that match the type of unassigned

definitions and directly assigns that field as a parameter value.

If there is already a field definition node with the same type

in that partial DFG, then that definition node is used as that

unassigned definition (line 9,17). At the end of the loop, the

DFGs in repairedDfgs are converted to code and executed

on P ′. If they pass, they are reported as repair candidates.

In the example, the repair target is nodes 7 and 13, and

the removed nodes are 6, 11, 12. The initial partial DFG is

nodes 0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 13, 14. After searching

all the operations, the getContent method is selected as the

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:3, 2024 

138International Scholarly and Scientific Research & Innovation 18(3) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
3,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
54

9.
pd

f



operation node to be added to the initial partial DFG, and

its parameter MyFile is set to unassigned definition. For the

definition MyFile, the operation MyFile.¡init¿ is selected to be

added to the DFG, which has the same name as the operation

node 4 in the partial DFG. It is chosen to merge it, that is,

directly use node 5 as the parameter of getContent. Then, the

checkFormat method is selected, and its parameter String is

set to unassigned definition. For the definition node String, we

choose the String field ”test.txt” as its assignment. This field

node has the same name as node 0 in the partial DFG, so we

choose to merge it. At this point, there are no unassigned

parameters in the entire partial DFG, so it is a repaired

DFG and added to repairedDfgs. After converting to code

and executing successfully, it is reported as a possible repair

candidate after guidance of priority criteria. The following

describes the priority criteria when generating repaired DFGs

and reporting possible repair candidates.

V. EVALUATION

In this section, we describe our experimental setup and

findings.

A. Implementation

We implemented our approach based on TRIP[9]. TRIP

builds DFGs by Java Parser [12] extracts path conditions by a

modified version of Java Pathfinder [13] as dynamic symbolic

execution engine. The max time for each broken test case is

5 minutes. Our experiments were conducted on Windows 10

with 8GB RAM and Intel i5-9400 CPU (2.90 GHz).

TABLE I
PROGRAMS IN BENCHMARK

Program Versions Classes LOC Tests
commons-lang 8 67–99 36K–52K 1193–2051
commons-math 7 614–990 12K–20K 2379–4587

gson 10 77–96 8K–12K 204–939
joda-time 13 142–157 47K–63K 2420–3838

B. Benchmark

We evaluated our approach on the same benchmark with

TRIP. The benchmark contains four open-source programs.

Some of them also are used in the previous research of test

suite evolution [8]. Table I shows the details of the benchmark.

For each program in the benchmark, P and P ′ represent

a pair of consecutive versions, T and T ′ represent their

corresponding test suites. The benchmark contains 91 broken

test cases which test case t′ in T ′ has the same name, and

each test case t in P ′ has compiled error. We judge a repair

candidate as a actual repair for t or not, depends on whether

it is semantically equivalent to t′.

C. Research Questions

Our study aims to generate repair candidates with more

similar test intent for a better repair capability. Hence, we

ask:

RQ1: Does TRAD improve the repair capability compared
to TRIP?

RQ2: How accurate is the selection of the repair targets?
RQ3: What is the influence of the priority criteria?
To answer RQ1, we evaluated the repair capability by the

number of actual repairs generated and compared TRAD with

TRIP. To answer RQ2, We analyzed the accuracy of the

selection of repair targets by comparing the actual repairs.

To answer RQ3, we conducted a series of experiments with

different combinations of priority criteria to investigate each

priority criteria’ role. Furthermore, we analyzed the feature of

those broken test cases further.

D. Result and Analysis

TABLE II
EMPIRICAL EVALUATION RESULTS

Program
Broken

TRIP TRAD
Top

Test Cases 5 10 30
commons-lang 14 14 14 14 14 14
commons-math 3 1 2 1 1 2

gosn 69 54 61 40 49 57
joda-time 5 3 4 4 4 4

total 91 72 81 59 68 77

1) Answer for RQ1: Table II shows the results. The

first column represents the four programs in the benchmark.

The second column shows the number of broken test cases

in those programs. In the third and fourth column, the

numbers represent broken test cases TRIP and TRAD fixed,

respectively. To select the actual repair, TRAD ranked repair

candidates according to the similarity of path conditions. The

last three columns show the number of actual repairs in Top-5,

Top-10, and Top-30.

The result shows that TRAD repairs more broken test cases

than TRIP. From the table, TRIP fixed 79% (72/91) broken test

cases, and TRAD fixed 89% (81/91). TRAD fixed 9 broken

test cases more than TRIP and improved almost 10% (9/91)

repair rate. After manually checking, TRAD contains all of

the broken test cases which TRIP fixed.

TRAD uses the same approach to extract and compare path

conditions with TRIP. The actual repairs of TRAD in top-5,

top-10, top-30 are 73% (59/81), 84% (68/81), 95% (77/81),

compared to 94% (68/72) broken test cases in Top-3 of

TRIP [9]. Repair candidates TRAD generated candidates had

higher similarities in path conditions, which also proves our

approach’s effectiveness. The result shows that our approach

has better repair capability.

2) Answer for RQ2: We select the repair targets from

the affected definition nodes in the assertion through

post-dominance and substitution relations.

Because we preserve some of the affected definitions when

we obtain the final repair targets from the initial repair targets

through replacement relations, the repair targets may be invalid

that cause TRAD cannot generates the actual repair. For each

broken test case, we check whether the selection of repair

target is valid or not. The result in Table III shows that almost

97% (88/91) of the repair target selection is valid.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:3, 2024 

139International Scholarly and Scientific Research & Innovation 18(3) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
3,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
54

9.
pd

f



TABLE III
THE VALIDITY OF REPAIR TARGET D SELECTION

Repair Target Valid Invalid Total
Numbers 88 3 91

TABLE IV
THE NUMBER OF OPERATIONS

Program Operations ALL Available Actual

commons-lang
All 2411 2368 0.98 2098 0.87
new 192 189 0.98 163 0.85

unchanged 2219 2179 0.98 1935 0.87

joda-time
All 3554 3360 0.95 3056 0.86
new 48 48 1.00 46 0.96

unchanged 3506 3312 0.94 3010 0.86

commons-math
All 9028 8768 0.97 7505 0.83
new 1141 1044 0.92 938 0.82

unchanged 7888 7724 0.98 6567 0.83

gosn
All 838 710 0.85 590 0.70
new 212 175 0.82 153 0.72

unchanged 626 535 0.85 437 0.70

Furthermore, we analyzed the influence of repair targets on

operations. An operation is available when all of its parameters

can have a proper assignment. The actual operations are that

operations may use in the partial DFG in our approach. The

result in Table IV shows that the repair target decreases the

number of operations. The actual operations are about 70–96%

of all operations. The number of operations is the average of

broken test cases in the versions of programs.

3) Answer for RQ3: TRAD has three priority criteria: (1)

source of the added methods, (2) text-similarity, (3) repair cost.

To answer Q3, we conducted three experiments with different

priority criteria. The first is TRAD-MS, which represents

TRAD without source of the added methods. The second is

TRAD-TS, which represents TRAD without text-similarity.

Moreover, the final is TRAD-RC which means TRAD without

repair cost. Table V shows the results.

TABLE V
THE RESULT WITH DIFFERENT PRIORITY CRITERIA

Program TRAD TRAD-MS TRRP-TS TRRP-RC
commons-lang 14 14 14 14
commons-math 2 1 2 2

gosn 61 43 55 51
joda-time 4 4 4 4

total 81 62 75 71

Table V, the results with different priority criteria vary a lot.

TRAD-MS decreased the most in the number of actual repairs,

which only fixed 62 broken test cases. TRAD-RC decreased

secondly, which fixed 71 broken test cases. Moreover,

TRAD-TS decreased the least, which fixed 75 broken test

cases. The result shows that the priority criteria have an

important influence on the repair capability.

We conclude that all of the priority criteria have their own

advantages and combine them to fix broken test cases.

Fig. 5 shows the composition of the broken DFG and the

repaired DFG and relations between them. For a broken test

case, n1 represented the elements in the broken DFG and

reused in the repaired DFG, n2 represents the newly added

elements in the repaired DFG, n3 represents the elements that

Broken DFG
Repaired DFG

n1 n2n3

n4

Fig. 5 The composition of DFGs

do not reuse in the broken DFG, n4 represents the elements

about invalid operations that cannot reuse. To represent the

feature of broken test cases, we use r1 represent the nominal
reuse rate of the broken DFG shown in (6).

r1 =
n1

n1 + n3
(6)

The actual reuse rate of the broken DFG is r2.

r2 =
n1

n1 + n3 − n4
(7)

and r3 represents the reuse rate in the repaired DFG.

r3 =
n1

n1 + n2
(8)

Fig. 6 The distribution of reuse rates

To investigate the feature of broken test cases, we analyzed

those broken test cases in the benchmark further. Fig. 6

shows the distribution of reuse rates. As mentioned above, r1
represents the nominal reuse rate, r2 represents the actual reuse

rate, and r3 represents the reuse rate in the repaired DFG. The

results show that the median of them is all higher than 0.7.

The median of r1 is 0.8, the median of r2 is 1, which means

most broken test cases have a high reuse rate, and a large

part of the non-reusable methods are methods directly cause

compilation errors. This also indirectly verifies that the method

sequence retained by the repair target is basically reusable, that

is, the selection of the repair target has a high accuracy rate.

The median of r3 is about 0.75, and the numbers are evenly

distributed on both sides of the median.

Finally, we analyzed all 10 broken test cases that our

approach cannot fix. Three of them are due to invalid repair

targets. Two are due to the side effects of operations added.

Two involve methods out of the program, such as List(). Two

are due to long repair sequences. The last one is due to the

parser error of complex type conversion.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:3, 2024 

140International Scholarly and Scientific Research & Innovation 18(3) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
3,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
54

9.
pd

f



VI. THREATS TO VALIDITY

In this section, we discuss the internal and external threats

to the validity of this paper.

Internal: There might be mistakes in manually matching the
repair candidates and the actual repairs written by developers.

To mitigate this threat, we examined results multiple times and

compared them to the previous study results. There might be

faults in our implements. To mitigate this threat, we check the

interim results of each step manually.

External: The external threat is that programs in the
benchmark might not be representative. Those program

are used in previous study [8], [9]. They involve

different domains—manipulation of the java core class,

data and time computation, numeric computation, and

serialization/deserialization. All of them are open-source in

long-term maintenance. Therefore, we believe that this threat

is limited.

VII. RELATED WORK

Daniel et al. proposed a JUnit tests repair tool, ReAssert

[1], which analyzes the exception information return by test

cases and provides repair suggestions, including replacing

literal values in test cases, changing assertion methods, or

replacing one assertion with several. In subsequent work [14],

they improved the result of ReAssert both quantitatively and

qualitatively with Symbolic Test Repair that uses symbolic

execution to compute the expected values in the assertions.

Both of them focus on runtime exceptions and assertion

failures rather than compilation errors.

Mirzaaghaei et al. presented TestCareAssistant (TCA) [5],

[6] that fixes non-compilable test cases caused by changes of

method signatures, i.e., addition, deletion, or modification of

parameters. TCA uses static and dynamic program analysis

to identify changes of method signatures and variables and

possible initialization for variables. TCA restricts the repair

situation to method signature modifications and cannot repair

the test cases that involve new method sequences.

Xu et al. proposed TestFix [7], that synthesises method

sequence by genetic algorithm to repair JUnit test cases. The

fitness function of TestFix consists of two components, one

aims to the more coverage, and the other is how to make the

assertion true. However, TestFix can find a sequence of method

invocations to make broken test case pass. However, it cannot

guarantee that the repaired test cases still keep their original

test intent.

Li et al. present TRIP [9], which is an intent-aware

automated repair technique of unit test case. TRIP replaces

the non-compilable statements with new statements to generate

repair candidates. TRIP models test intent with path conditions

extracted by dynamic symbol execution and select the repair

candidates with more similar test intent as a result. However,

TRIP only evaluates test intent on a whole repair candidate.

A large number of irrelevant candidates decrease the repair

capability.

ITRACK [15], presented by Nguyen et al., is a tool that

matches program entities (i.e., classes, methods) based on the

similarity of their interactions, such as inheritance, invocation,

and collaboration. ITRACK repairs test cases by replacing

entities. Those mapping relations between program entities

help developers manually fix test cases.

API migration techniques replace obsolete code with new

code sequences with new APIs while preserving original

program semantics. Balaban et al. [16] proposed a technique

that automatically migrates a program to the new APIs

according to the mapping between legacy and new APIs. Some

technologies [17], [18] perform API migration by mining

usage patterns from a large number of client applications.

A mass of researches focuses on program repair. Yuan et

al. proposed ARJA [19], a new genetic programming based

repair approach for automated repair of Java programs. Hua

et al. introduced a program repair technique, SketchFix, which

generates candidate program fixes on demand during the test

execution [20].

Several pieces of research proposed techniques to repair

GUI and web test cases. GUIAnalyzer [21] provides a general

solution for GUI test case maintenance by using the set of

heuristics. Flowrepairer [22] uses dynamic profiling, static

analysis, and random testing to suggest a replacement UI

action that repairs a broken workflow. ATOM [23] uses an

event sequence model to abstract possible event sequences

on a GUI and a delta ESM to abstract the changes made

to the GUI. WATER [24] is to test the behavior of the

test case on two successive versions of the web application

to repair the broken Selenium test scripts for evolving web

applications. WATERFALL [25] applies test repair techniques

iteratively across a sequence of fine-grained versions of a web

application. VISTA [26] collects various visual information

for each test and analyzes this information through a fast

image processing pipeline after the application is updated.

By analyzing the information, it identifies the damaged test

cases and attempts to find candidate repair methods that can

fix them.

VIII. CONCLUSION

We presented a test repair approach, TRAD, that focuses

on generating repair candidates with more similar test intent.

TRAD relies on the post-dominance relationship in the broken

test cases to determine the repair targets and generate repairs

from the targets in a bottom-up way, so as to retain as much as

possible the explicit test intent associated with the assertion.

Furthermore, TRAD characterizes test intent with the source of

the added methods, the similarity between them and the invalid

operations and the repair cost, and raise intent-oriented priority

criteria. With the priority criteria, TRAD gradually extends

the partial DFGs and prioritizes the repair candidates. The

empirical experiment was performed on 91 broken test cases

in 4 open-source programs. The result shows that our approach

generates 81 actual repairs, more than 72 of TRIP. Moreover,

the two priority criteria proposed from reused elements can

improve the repair capability.

In addition to performing more experiments, we plan

to explore in the future works in several directions. First,

because extracting and comparing many repair candidates is

computationally expensive, we will attempt to select relative

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:3, 2024 

141International Scholarly and Scientific Research & Innovation 18(3) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
3,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
54

9.
pd

f



methods for reducing the number of repair candidates and

model test intent from the interactions between program

entities. Second, we plan to generate repair candidates with

meta-heuristic methods and guide the generation process by

test intent similarity. Finally, classes and test cases in the same

programs are not isolated. So we will explore the repair of

broken test cases from the perspective of the whole test suite.

REFERENCES

[1] B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “ReAssert: Suggesting
repairs for broken unit tests,” ASE2009 - 24th IEEE/ACM International
Conference on Automated Software Engineering, pp. 433–444, 2009.

[2] A. M. Memon and M. L. Soffa, “Regression testing of GUIs,”
Proceedings of the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, vol. 28, no. 5, pp. 118–127, 2003.

[3] J. Imtiaz, S. Sherin, M. U. Khan, and M. Z. Iqbal, “A systematic
literature review of test breakage prevention and repair techniques,”
Information and Software Technology, vol. 113, no. May, pp. 1–19,
2019. [Online]. Available: https://doi.org/10.1016/j.infsof.2019.05.001

[4] B. Daniel, D. Dig, T. Gvero, V. Jagannath, J. Jiaa, D. Mitchell, J. Nogiec,
S. H. Tan, and D. Marinov, “ReAssert: A tool for repairing broken
unit tests,” in Proceedings - International Conference on Software
Engineering, 2011, pp. 1010–1012.

[5] M. Mirzaaghaei, F. Pastore, and M. Pezzé, “Automatically repairing
test cases for evolving method declarations,” in IEEE International
Conference on Software Maintenance, ICSM. IEEE, sep 2010, pp.
1–5. [Online]. Available: http://ieeexplore.ieee.org/document/5609549/

[6] M. Mirzaaghaei, F. Pastore, and M. Pezzè, “Supporting test
suite evolution through test case adaptation,” Proceedings - IEEE
5th International Conference on Software Testing, Verification and
Validation, ICST 2012, vol. 2, pp. 231–240, 2012.

[7] Y. Xu, B. Huang, G. Wu, and M. Yuan, “Using genetic algorithms to
repair JUnit test cases,” Proceedings - Asia-Pacific Software Engineering
Conference, APSEC, vol. 1, pp. 287–294, 2014.

[8] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths and
realities of test-suite evolution,” Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
FSE 2012, vol. 1, pp. 1–11, 2012.

[9] X. Li, M. D’Amorim, and A. Orso, “Intent-preserving test repair,”
Proceedings - 2019 IEEE 12th International Conference on Software
Testing, Verification and Validation, ICST 2019, pp. 217–227, 2019.

[10] R. A. Assi, W. Masri, and F. Zaraket, “UCov: a user-defined coverage
criterion for test case intent verification,” Software Testing Verification
and Reliability, vol. 26, no. 6, pp. 460–491, 2016.

[11] T. Xie, D. Marinov, and D. Notkin, “Rostra: A framework for
detecting redundant object-oriented unit tests,” Proceedings - 19th
International Conference on Automated Software Engineering, ASE
2004, pp. 196–205, 2004.

[12] D. van Bruggen. JavaParser : Analyse, transform and generate your
Java codebase. [Online]. Available: http://javaparser.org/

[13] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid, “Test input generation with
Java PathFinder,” in ISSTA 2004 - Proceedings of the ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2004, pp.
97–107.

[14] B. Daniel, T. Gvero, and D. Marinov, “On test repair using symbolic
execution,” ISSTA’10 - Proceedings of the 2010 International Symposium
on Software Testing and Analysis, pp. 207–217, 2010.

[15] H. A. Nguyen, T. T. Nguyen, T. N. Nguyen, and H. V. Nguyen,
“Interaction-based tracking of program entities for test case evolution,”
Proceedings - 2017 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2017, pp. 433–443, 2017.

[16] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring support for class library
migration,” ACM SIGPLAN Notices, vol. 40, no. 10, pp. 265–279, 2005.

[17] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang, “Mining
API mapping for language migration,” Proceedings - International
Conference on Software Engineering, vol. 1, pp. 195–204, 2010.

[18] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen,
“Statistical learning approach for mining API usage mappings for
code migration,” in ASE 2014 - Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, 2014, pp.
457–468.

[19] Y. Yuan and W. Banzhaf, “ARjA: Automated repair of Java programs
via multi-objective genetic programming,” arXiv, vol. 46, no. 10, pp.
1040–1067, 2017.

[20] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Towards practical
program repair with on-demand candidate generation,” pp. 12–23, 2018.

[21] S. McMaster and A. M. Memon, “An extensible heuristic-based
framework for GUI test case maintenance,” IEEE International
Conference on Software Testing, Verification, and Validation Workshops,
ICSTW 2009, pp. 251–254, 2009.

[22] S. Zhang, H. Lü, and M. D. Ernst, “Automatically repairing broken
workflows for evolving GUI applications,” in 2013 International
Symposium on Software Testing and Analysis, ISSTA 2013 - Proceedings,
2013, pp. 45–55.

[23] X. Li, N. Chang, Y. Wang, H. Huang, Y. Pei, L. Wang, and
X. Li, “ATOM: Automatic Maintenance of GUI Test Scripts for
Evolving Mobile Applications,” Proceedings - 10th IEEE International
Conference on Software Testing, Verification and Validation, ICST 2017,
pp. 161–171, 2017.

[24] S. R. Choudhary, D. Zhao, H. Versee, and A. Orso, “WATER: Web
application TEst repair,” in 2011 International Workshop on End-to-End
Test Script Engineering, ETSE 2011 - Proceedings, 2011, pp. 24–29.

[25] M. Hammoudi, G. Rothermel, and A. Stocco, “WATERFALL:
An incremental approach for repairing record-replay tests of web
applications,” in Proceedings of the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, vol. 13-18-Nove, 2016, pp.
751–762.

[26] A. Stocco, R. Yandrapally, and A. Mesbah, “Visual web test repair,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. New York, NY, USA: ACM, oct 2018, pp. 503–514.
[Online]. Available: https://dl.acm.org/doi/10.1145/3236024.3236063

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:3, 2024 

142International Scholarly and Scientific Research & Innovation 18(3) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
3,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
54

9.
pd

f


