Proposing Robotics Challenge Centered on Material Transportation in Smart Manufacturing
Authors: Brehme D’napoli Reis de Mesquita, Marcus Vin´ıcius de Souza Almeida, Caio Vin´ıcius Silva do Carmo
Abstract:
Educational robotics has emerged as a pedagogical tool, utilizing technological artifacts to engage students’ curiosity and interest. It fosters active learning of STEM education competencies while also cultivating essential behavioral skills. Robotic competitions provide students with platforms to collaboratively devise diverse solutions to shared problems, fostering experience exchange, collaboration, and personal growth. Despite the prevalence of current robotic competitions, especially in Brazil, simulating real-world challenges like natural disasters, there is a notable absence of industry-related tasks. This article presents an educational robotics initiative centered around material transportation within smart manufacturing using automated guided vehicles. The proposed robotics challenge was executed in a competition held in Ac¸ailˆandia city, Maranh˜ao, Brazil, yielding satisfactory results and inspiring teams to develop time-limited solution strategies.
Keywords: Educational robotics, STEM education, robotic competitions, material transportation, smart manufacturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 322References:
[1] S. Evripidou, K. Georgiou, L. Doitsidis, A. A. Amanatiadis, Z. Zinonos e S. A. Chatzichristofis, ”Educational Robotics: Platforms, Competitions and Expected Learning Outcomes”, IEEE Access, vol. 8, p. 219534–219562, 2020. DOI: https://doi.org/10.1109/access.2020.3042555.
[2] F. R. Campos, A rob´otica para uso educacional. S˜ao Paulo: SENAC, 2019.
[3] M. V. de Souza Almeida, A. B. Alves, E. S. Carvalho, E. C. C. da Silva e B. D. R. de Mesquita, ”Educational Robotics as a Teaching Field and Technology Integration: Application of CAD, CAM and 3D printing in structural robot construction”, in 2020 IEEE World Conf. Eng. Educ. (EDUNINE), Bogota, Colombia, 2020-03-15–18. IEEE, 2020. DOI: https://doi.org/10.1109/edunine48860.2020.9149541.
[4] M. J. V. Corino e S. C. Bertagnolli, ”Rob´otica educacional como ferramenta pedag´ogica para ensinar os conceitos b´asicos de hardware de computadores”, in Anais da VIII Mostra Nacional de Rob´otica, Jo˜ao Pessoa, Brazil, 2018-11-06–10. Universidade Estadual Paulista, 2022, p. 693–697.
[5] J. A. Oliveira, H. R. Silva e A. J. S. Silva Junior, ”Inovando os conceitos de geometria com a rob´otica educacional”, in Anais da VIII Mostra Nacional de Rob´otica, Jo˜ao Pessoa, Brazil, 2018-11-06–10. Universidade Estadual Paulista, 2022, p. 646–648.
[6] A. J. Silva, A. R. T. Rabelo, B. B. V. Lima, M. A. M. Farias, R. A. Lima e J. C. Santos, ”Aliando o ensino de qu´ımica com a rob´otica educacional: robˆo agitador de soluc¸ ˜oes”, in Anais da VIII Mostra Nacional de Rob´otica, Jo˜ao Pessoa, Brazil, 2018-11-06–10. Universidade Estadual Paulista, 2022, p. 27–29.
[7] B. D. R. d. Mesquita, Ed., ROBO´ TICA EDUCACIONAL NO BRASIL (1a edic¸ ˜ao). Editora Itacai´unas, 2021. Consult. DOI: https://doi.org/10.36599/itac-reb.
[8] V. C. Santos e A. B. Paiva, ”O uso do som aud´ıvel para germinac¸ ˜ao de sementes de feij˜ao carioca (P. vulgaris)”, in Anais da VI Mostra Nacional de Rob´otica, Recife, Brazil, 2016-10-09–12. Universidade Estadual Paulista, 2016, p. 236–238.
[9] F. B. d. S. Filho, J. S. Vieira e J. R. Santana, ”An´alise de referˆencias veiculadas pelo Google relativas `a rob´otica educacional de 2010 a 2019 / Analysis of references provided by Google regarding educational robotics between 2010 and 2019”, Brazilian J. Develop., vol. 8, n.º 3, p. 19037–19050, marc¸o de 2022. DOI: https://doi.org/10.34117/bjdv8n3-240.
[10] F. R. CAMPOS, ”Rob´otica Educacional no Brasil: quest˜oes em aberto, desafios e perspectivas futuras”, Revista ibero-americana de estudos em educac¸ ˜ao, vol. 12, n.º 4, p. 2108–2121, dezembro de 2017. DOI: https://doi.org/10.21723/riaee.v12.n4.out./dez.2017.8778.
[11] F. Rubinacci, M. Ponticorvo, R. Passariello e O. Miglino, ”Robotics for soft skills training”, Res. Educ. Media, vol. 9, n.º 2, p. 20–25, dezembro de 2017. DOI: https://doi.org/10.1515/rem-2017-0010.
[12] Banco Mundial, ”Competˆencias e empregos: uma agenda para a juventude”, 2018. Available in: https://bit.ly/3P17oI7.
[13] A. T. Angonese, P. F. F. Rosa e S. H. Rodrigues, ”Projeto de integrac¸ ˜ao engenharia-escola para competic¸ ˜oes de rob´otica”, in Workshop de Rob´otica Educacional, Natal, Brazil, 2012-10-18–19. 2012. Available in: http://www.natalnet.br/wre2012/pdf/106428.pdf.
[14] G. L. Reis et al., ”As competic¸ ˜oes universit´arias e a carreira profissional do aluno de graduac¸ ˜ao: um estudo de caso sobre a equipe UAIrobots-SEK”, in Workshop de Rob´otica Educacional, Natal, Brazil, 2012-10-18–19. 2012. Available in: http://www.natalnet.br/wre2012/pdf/106501.pdf.
[15] J. R. Miranda e M. V. R. Suanno, ”Rob´otica na escola: ferramenta pedag´ogica inovadora”, in Workshop de Rob´otica Educacional, Natal, Brazil, 2012-10-18–19. 2012. Available in: http://www.natalnet.br/wre2012/pdf/106596.pdf.
[16] R. R. Magalh˜aes, R. Marengo e N. J. Ferreira, ”Rob´otica educacional para inclus˜ao social: relato de uma experiˆencia extensionista em Lavras/MG”, Revista Ciˆencia em Extens˜ao, vol. 11, n.º 3, p. 120–131, 2015. Available in: https://bit.ly/3zYQbdW.
[17] F. N. Martins, H. C. Oliveira e G. F. Oliveira, ”Rob´otica como meio de promoc¸ ˜ao da interdisciplinaridade no ensino profissionalizante”, in Workshop de Rob´otica Educacional, Natal, Brazil, 2012-10-18–19. 2012. Available in: http://www.natalnet.br/wre2012/pdf/106420.pdf.
[18] J. M. Mirats Tur e C. F. Pfeiffer, ”Mobile robot design in education”, IEEE Robot. & Automat. Mag., vol. 13, n.º 1, p. 69–75, 2006. DOI: https://doi.org/10.1109/mra.2006.1598055.
[19] J. M. Conrad, ”Stiquito for robotics and embedded systems education”, Computer, vol. 38, n.º 6, p. 77–81, maio de 2005. DOI: https://doi.org/10.1109/mc.2005.202.
[20] R. A. Aroca, D. O. H. Bon´ıcio, C. K. Aihara, S. T. L. S´a e T. F. P. A. T. Pazelli, ”Rob´otica educacional e as ”competic¸ ˜oes””, in Rob´otica e processos formativos: da epistemologia aos kits. Porto Alegre: Editora Fi, 2019, p. 245–269. Available in: https://bit.ly/3SFaTqL.
[21] M. Usart, D. Schina, V. Esteve-Gonzalez e M. Gisbert, ”Are 21st Century Skills Evaluated in Robotics Competitions? The Case of First LEGO League Competition”, in 11th Int. Conf. Comput. Supported Educ., Heraklion, Crete, Greece, 2019-05-02–04. SCITEPRESS - Science and Technology Publications, 2019. DOI: https://doi.org/10.5220/0007757404450452.
[22] A. Eguchi, ”RoboCupJunior for promoting STEM education, 21st century skills, and technological advancement through robotics competition”, Robot. Auton. Syst., vol. 75, p. 692–699, 2016. DOI: https://doi.org/10.1016/j.robot.2015.05.013.
[23] B. Y. Qi, Y. Y. Zhou e Q. L. Yang, ”Application of AGV in intelligent logistics system”, in Fifth Asia Int. Symp. Mechatronics (AISM 2015), Guilin, China. Institution of Engineering and Technology, 2015. DOI: https://doi.org/10.1049/cp.2015.1527.
[24] T. Luettel, M. Himmelsbach e H.-J. Wuensche, ”Autonomous Ground Vehicles—Concepts and a Path to the Future”, Proc. IEEE, vol. 100, Special Centennial Issue, p. 1831–1839, 2012. DOI: https://doi.org/10.1109/jproc.2012.2189803.
[25] L. Lynch, T. Newe, J. Clifford, J. Coleman, J. Walsh e D. Toal, ”Automated Ground Vehicle (AGV) and Sensor Technologies- A Review”, in 2018 12th Int. Conf. Sens. Technol. (ICST), Limerick, 2018-12-04–06. IEEE, 2018. DOI: https://doi.org/10.1109/icsenst.2018.8603640.
[26] B. Veeravalli, G. Rajesh e N. Viswanadham, ”Design and analysis of optimal material distribution policies in flexible manufacturing systems using a single AGV”, Int. J. Prod. Res., vol. 40, n.º 12, p. 2937–2954, 2002. DOI: https://doi.org/10.1080/00207540210137648.
[27] M. Ali e W. U. Khan, ”Implementation Issues of AGVs in Flexible Manufacturing System : A Review”, Global J. Flexible Syst. Manage., vol. 11, n.º 1-2, p. 55–61, 2010. DOI: https://doi.org/10.1007/bf03396578.
[28] G. Ullrich, Automated Guided Vehicle Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. DOI: https://doi.org/10.1007/978-3-662-44814-4.
[29] M. Kaighobadi e K. Venkatesh, ”Flexible Manufacturing Systems: An Overview”, Int. J. Operations & Prod. Manage., vol. 14, n.º 4, p. 26–49, 1994. DOI: https://doi.org/10.1108/01443579410056029.