Search results for: Fault detection and diagnosis
758 Endometrial Cancer Recognition via EEG Dependent upon 14-3-3 Protein Leading to an Ontological Diagnosis
Authors: Marios Poulos, Eirini Maliagani, Minas Paschopoulos, George Bokos
Abstract:
The purpose of my research proposal is to demonstrate that there is a relationship between EEG and endometrial cancer. The above relationship is based on an Aristotelian Syllogism; since it is known that the 14-3-3 protein is related to the electrical activity of the brain via control of the flow of Na+ and K+ ions and since it is also known that many types of cancer are associated with 14-3-3 protein, it is possible that there is a relationship between EEG and cancer. This research will be carried out by well-defined diagnostic indicators, obtained via the EEG, using signal processing procedures and pattern recognition tools such as neural networks in order to recognize the endometrial cancer type. The current research shall compare the findings from EEG and hysteroscopy performed on women of a wide age range. Moreover, this practice could be expanded to other types of cancer. The implementation of this methodology will be completed with the creation of an ontology. This ontology shall define the concepts existing in this research-s domain and the relationships between them. It will represent the types of relationships between hysteroscopy and EEG findings.Keywords: Bioinformatics, Protein 14-3-3, EEG, Endometrial cancer, Ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638757 An Intelligent Fuzzy-Neural Diagnostic System for Osteoporosis Risk Assessment
Authors: Chin-Ming Hong, Chin-Teng Lin, Chao-Yen Huang, Yi-Ming Lin
Abstract:
In this article, we propose an Intelligent Medical Diagnostic System (IMDS) accessible through common web-based interface, to on-line perform initial screening for osteoporosis. The fundamental approaches which construct the proposed system are mainly based on the fuzzy-neural theory, which can exhibit superiority over other conventional technologies in many fields. In diagnosis process, users simply answer a series of directed questions to the system, and then they will immediately receive a list of results which represents the risk degrees of osteoporosis. According to clinical testing results, it is shown that the proposed system can provide the general public or even health care providers with a convenient, reliable, inexpensive approach to osteoporosis risk assessment.Keywords: BMD, osteoporosis, IMDS, fuzzy-neural theory, web interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959756 From the Fields to the Concrete: Urban Development of Campo Mourão
Authors: Caio Fialho
Abstract:
The automobile incentive policy in Brazil since the 1950s creates several problems in its cities, more visible in large centers such as São Paulo or Rio de Janeiro, but also strongly present in smaller cities, resulting in an increase in social and spatial inequality, together with a drop in the quality of life. The analyzed city, Campo Mourão, reflects these policies, a city that is initially planned to be compact and walkable, took other directions and currently suffers from urban mobility and social inequality in this urban environment, despite being a medium-sized city in Brazil. The research aims to understand and diagnose how these policies shaped the city and what are the results in Brazilian`s inland cities. Based on historical, bibliographical and field research in the city, the result is a diagnosis of the problem faced and how it can be reversed, in search of social equality and better quality of life.
Keywords: Urban mobility, quality of life, social equality, substantiable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 586755 Elegant: An Intuitive Software Tool for Interactive Learning of Power System Analysis
Authors: Eduardo N. Velloso, Fernando M. N. Dantas, Luciano S. Barros
Abstract:
A common complaint from power system analysis students lies in the overly complex tools they need to learn and use just to simulate very basic systems or just to check the answers to power system calculations. The most basic power system studies are power-flow solutions and short-circuit calculations. This paper presents a simple tool with an intuitive interface to perform both these studies and assess its performance in comparison with existent commercial solutions. With this in mind, Elegant is a pure Python software tool for learning power system analysis developed for undergraduate and graduate students. It solves the power-flow problem by iterative numerical methods and calculates bolted short-circuit fault currents by modeling the network in the domain of symmetrical components. Elegant can be used with a user-friendly Graphical User Interface (GUI) and automatically generates human-readable reports of the simulation results. The tool is exemplified using a typical Brazilian regional system with 18 buses. This study performs a comparative experiment with 1 undergraduate and 4 graduate students who attempted the same problem using both Elegant and a commercial tool. It was found that Elegant significantly reduces the time and labor involved in basic power system simulations while still providing some insights into real power system designs.
Keywords: Free- and open-source software, power-flow, power system analysis, Python, short-circuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 470754 The Social Reaction to the Wadi Salib Riots (1959) as Reflected in Contemporary Israeli Press
Authors: Ada Yurman
Abstract:
Social reactions to deviant groups with political goals follow two central patterns; one that associates personal characteristics with deviant behavior, and the other that claims that society is to be blamed for deviant behavior. The establishment usually tends towards the former notion and thus disclaims any responsibility for the distress of the underprivileged, while it is usually those who oppose government policies who believe that the fault lies with society. The purpose of the present research was to examine social reactions to the Wadi Salib riots that occurred in Haifa in 1959. These riots represented the first ethnic protest within Israeli society with its ideology of the ingathering of the exiles. The central question was whether this ideology contributed to the development of a different reaction when compared to reactions to similar events abroad. This question was examined by means of analyzing articles in the Israeli press of that period. The Israeli press representing the views of the establishment was at pains to point out that the rioters were criminals, their object being to obstruct the development of society. Opposition party leaders claimed that the rioters lived in poor circumstances, which constituted a direct result of government policies. An analysis of press reports on the Wadi Salib riots indicates a correspondence between the reaction to these events and similar events abroad. Nevertheless, the reaction to the Wadi Salib riots did not only express a conflict between different political camps, but also different symbolic universes. Each group exploited the events at Wadi Salib to prove that their ideology was the legitimate one.
Keywords: Riots, media, political deviance, symbolic universe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821753 Performance Based Design of Masonry Infilled Reinforced Concrete Frames for Near-Field Earthquakes Using Energy Methods
Authors: Alok Madan, Arshad K. Hashmi
Abstract:
Performance based design (PBD) is an iterative exercise in which a preliminary trial design of the building structure is selected and if the selected trial design of the building structure does not conform to the desired performance objective, the trial design is revised. In this context, development of a fundamental approach for performance based seismic design of masonry infilled frames with minimum number of trials is an important objective. The paper presents a plastic design procedure based on the energy balance concept for PBD of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames subjected to near-field earthquakes. The proposed energy based plastic design procedure was implemented for trial performance based seismic design of representative masonry infilled reinforced concrete frames with various practically relevant distributions of masonry infill panels over the frame elevation. Non-linear dynamic analyses of the trial PBD of masonry infilled R/C frames was performed under the action of near-field earthquake ground motions. The results of non-linear dynamic analyses demonstrate that the proposed energy method is effective for performance based design of masonry infilled R/C frames under near-field as well as far-field earthquakes.
Keywords: Masonry Infilled Frame, Energy Methods, Near-fault Ground Motions, Pushover Analysis, Nonlinear Dynamic Analysis, Seismic Demand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2799752 Blind Low Frequency Watermarking Method
Authors: Dimitar Taskovski, Sofija Bogdanova, Momcilo Bogdanov
Abstract:
We present a low frequency watermarking method adaptive to image content. The image content is analyzed and properties of HVS are exploited to generate a visual mask of the same size as the approximation image. Using this mask we embed the watermark in the approximation image without degrading the image quality. Watermark detection is performed without using the original image. Experimental results show that the proposed watermarking method is robust against most common image processing operations, which can be easily implemented and usually do not degrade the image quality.Keywords: Blind, digital watermarking, low frequency, visualmask.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549751 Common Carotid Artery Intima Media Thickness Segmentation Survey
Authors: L. Ashok Kumar, C. Nagarajan
Abstract:
The ultrasound imaging is very popular to diagnosis the disease because of its non-invasive nature. The ultrasound imaging slowly produces low quality images due to the presence of spackle noise and wave interferences. There are several algorithms to be proposed for the segmentation of ultrasound carotid artery images but it requires a certain limit of user interaction. The pixel in an image is highly correlated so the spatial information of surrounding pixels may be considered in the process of image segmentation which improves the results further. When data is highly correlated, one pixel may belong to more than one cluster with different degree of membership. There is an important step to computerize the evaluation of arterial disease severity using segmentation of carotid artery lumen in 2D and 3D ultrasonography and in finding vulnerable atherosclerotic plaques susceptible to rupture which can cause stroke.
Keywords: IMT measurement, Image Segmentation, common carotid artery, internal and external carotid arteries, ultrasound imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002750 Risk of Occupational Exposure to Cytotoxic Drugs: The Role of Handling Procedures of Hospital Workers
Authors: J. Silva, P. Arezes, R. Schierl, N. Costa
Abstract:
In order to study environmental contamination by cytostatic drugs in Portugal hospitals, sampling campaigns were conducted in three hospitals in 2015 (112 samples). Platinum containing drugs and fluorouracil were chosen because both were administered in high amounts. The detection limit was 0.01 pg/cm² for platinum and 0.1 pg/cm² for fluorouracil. The results show that spills occur mainly on the patient`s chair, while the most referenced occurrence is due to an inadequately closed wrapper. Day hospitals facilities were detected as having the largest number of contaminated samples and with higher levels of contamination.
Keywords: Antineoplastic, drugs, exposure, surface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060749 Multi-Line Flexible Alternating Current Transmission System (FACTS) Controller for Transient Stability Analysis of a Multi-Machine Power System Network
Authors: A.V.Naresh Babu, S.Sivanagaraju
Abstract:
A considerable progress has been achieved in transient stability analysis (TSA) with various FACTS controllers. But, all these controllers are associated with single transmission line. This paper is intended to discuss a new approach i.e. a multi-line FACTS controller which is interline power flow controller (IPFC) for TSA of a multi-machine power system network. A mathematical model of IPFC, termed as power injection model (PIM) presented and this model is incorporated in Newton-Raphson (NR) power flow algorithm. Then, the reduced admittance matrix of a multi-machine power system network for a three phase fault without and with IPFC is obtained which is required to draw the machine swing curves. A general approach based on L-index has also been discussed to find the best location of IPFC to reduce the proximity to instability of a power system. Numerical results are carried out on two test systems namely, 6-bus and 11-bus systems. A program in MATLAB has been written to plot the variation of generator rotor angle and speed difference curves without and with IPFC for TSA and also a simple approach has been presented to evaluate critical clearing time for test systems. The results obtained without and with IPFC are compared and discussed.Keywords: Flexible alternating current transmission system (FACTS), first swing stability, interline power flow controller (IPFC), power injection model (PIM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2202748 Support Vector Machine Approach for Classification of Cancerous Prostate Regions
Authors: Metehan Makinacı
Abstract:
The objective of this paper, is to apply support vector machine (SVM) approach for the classification of cancerous and normal regions of prostate images. Three kinds of textural features are extracted and used for the analysis: parameters of the Gauss- Markov random field (GMRF), correlation function and relative entropy. Prostate images are acquired by the system consisting of a microscope, video camera and a digitizing board. Cross-validated classification over a database of 46 images is implemented to evaluate the performance. In SVM classification, sensitivity and specificity of 96.2% and 97.0% are achieved for the 32x32 pixel block sized data, respectively, with an overall accuracy of 96.6%. Classification performance is compared with artificial neural network and k-nearest neighbor classifiers. Experimental results demonstrate that the SVM approach gives the best performance.
Keywords: Computer-aided diagnosis, support vector machines, Gauss-Markov random fields, texture classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804747 Diagnosis of Hate Schemas in Prisoners with Antisocial Personality Disorder (ASPD)
Authors: Barbara Gawda
Abstract:
The aim of this study is to show innovative techniques that describe the effectiveness of individuals diagnosed with antisocial personality disorders (ASPD). The author presents information about hate schemas regarding persons with ASPD and their understanding of the role of hate. The data of 60 prisoners with ASPD, 40 prisoners without ASPD, and 60 men without antisocial tendencies, has been analyzed. The participants were asked to describe their hate inspired by a photograph. The narrative discourse was analyzed, the three groups were compared. The results show the differences between the inmates with ASPD, those without ASPD, and the controls. The antisocial individuals describe hate as an ambivalent feeling with low emotional intensity, i.e., actors (in stories) are presented more as positives than as partners. They use different mechanisms to keep them from understanding the meaning of the emotional situation. The schema's characteristics were expressed in narratives attributed to high Psychopathy.
Keywords: Antisocial personality disorder, Emotional narratives, Hate schemas, Psychopathy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1281746 A Growing Natural Gas Approach for Evaluating Quality of Software Modules
Authors: Parvinder S. Sandhu, Sandeep Khimta, Kiranpreet Kaur
Abstract:
The prediction of Software quality during development life cycle of software project helps the development organization to make efficient use of available resource to produce the product of highest quality. “Whether a module is faulty or not" approach can be used to predict quality of a software module. There are numbers of software quality prediction models described in the literature based upon genetic algorithms, artificial neural network and other data mining algorithms. One of the promising aspects for quality prediction is based on clustering techniques. Most quality prediction models that are based on clustering techniques make use of K-means, Mixture-of-Guassians, Self-Organizing Map, Neural Gas and fuzzy K-means algorithm for prediction. In all these techniques a predefined structure is required that is number of neurons or clusters should be known before we start clustering process. But in case of Growing Neural Gas there is no need of predetermining the quantity of neurons and the topology of the structure to be used and it starts with a minimal neurons structure that is incremented during training until it reaches a maximum number user defined limits for clusters. Hence, in this work we have used Growing Neural Gas as underlying cluster algorithm that produces the initial set of labeled cluster from training data set and thereafter this set of clusters is used to predict the quality of test data set of software modules. The best testing results shows 80% accuracy in evaluating the quality of software modules. Hence, the proposed technique can be used by programmers in evaluating the quality of modules during software development.
Keywords: Growing Neural Gas, data clustering, fault prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870745 Comparing SVM and Naïve Bayes Classifier for Automatic Microaneurysm Detections
Authors: A. Sopharak, B. Uyyanonvara, S. Barman
Abstract:
Diabetic retinopathy is characterized by the development of retinal microaneurysms. The damage can be prevented if disease is treated in its early stages. In this paper, we are comparing Support Vector Machine (SVM) and Naïve Bayes (NB) classifiers for automatic microaneurysm detection in images acquired through non-dilated pupils. The Nearest Neighbor classifier is used as a baseline for comparison. Detected microaneurysms are validated with expert ophthalmologists’ hand-drawn ground-truths. The sensitivity, specificity, precision and accuracy of each method are also compared.
Keywords: Diabetic retinopathy, microaneurysm, Naïve Bayes classifier, SVM classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6116744 Lung Segmentation Algorithm for CAD System in CTA Images
Authors: H. Özkan, O. Osman, S. Şahin, M. M. Atasoy, H. Barutca, A. F. Boz, A. Olsun
Abstract:
In this study, we present a new and fast algorithm for lung segmentation using CTA images. This process is quite important especially at lung vessel segmentation, detection of pulmonary emboly, finding nodules or segmentation of airways. Applied method has been carried out at four steps. At first step, images have been applied optimal threshold. At the second one, the subsegment vessels, which have a place in lung region and which are in small dimension, have been removed. At the third one, identifying and segmentation of lungs and airway edges have been carried out. Lastly, by throwing away the airway, lung segmentation has been presented.
Keywords: Lung segmentation, computed tomography angiography, computer-aided diagnostic system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015743 A New Spectral-based Approach to Query-by-Humming for MP3 Songs Database
Authors: Leon Fu, Xiangyang Xue
Abstract:
In this paper, we propose a new approach to query-by-humming, focusing on MP3 songs database. Since MP3 songs are much more difficult in melody representation than symbolic performance data, we adopt to extract feature descriptors from the vocal sounds part of the songs. Our approach is based on signal filtering, sub-band spectral processing, MDCT coefficients analysis and peak energy detection by ignorance of the background music as much as possible. Finally, we apply dual dynamic programming algorithm for feature similarity matching. Experiments will show us its online performance in precision and efficiency. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787742 Manifold Analysis by Topologically Constrained Isometric Embedding
Authors: Guy Rosman, Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel
Abstract:
We present a new algorithm for nonlinear dimensionality reduction that consistently uses global information, and that enables understanding the intrinsic geometry of non-convex manifolds. Compared to methods that consider only local information, our method appears to be more robust to noise. Unlike most methods that incorporate global information, the proposed approach automatically handles non-convexity of the data manifold. We demonstrate the performance of our algorithm and compare it to state-of-the-art methods on synthetic as well as real data.
Keywords: Dimensionality reduction, manifold learning, multidimensional scaling, geodesic distance, boundary detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458741 Towards a Sustainable Regeneration: The Case Study of the San Mateo Neighborhood, in Jerez de la Frontera (Andalusia)
Authors: J.L. Higuera Trujillo, F.J. Montero Fernández
Abstract:
Based on different experiences in the historic centers of Spain, we propose an global strategy for the regeneration of the pre-tertiary fabrics and its application to the specific case of San Mateo neighborhood, in Jerez de la Frontera (Andalusia), through a diagnosis that focus particularly on the punishments the last-decade economic situation (building boom and crisis) and shows the tragic transition from economic center to an imminent disappearance with an image similar to the ruins of war, due to the loss of their traditional roles. From it we will learn their historically-tested mechanisms of environment adaptation, which distill the vernacular architecture essence and that we will apply to our strategy of action based on a dotacional-and-free-space rhizome which rediscovers its hidden character. The architectural fact will be crystallized in one of the example-pieces proposed: The Artistic Revitalization Center.Keywords: Jerez de la Frontera, pre-tertiary fabrics, sustainable architecture, urban regeneration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318740 Bayesian Network Based Intelligent Pediatric System
Authors: Jagmohan Mago, Parvinder S. Sandhu, Neeru Chawla
Abstract:
In this paper, a Bayesian Network (BN) based system is presented for providing clinical decision support to healthcare practitioners in rural or remote areas of India for young infants or children up to the age of 5 years. The government is unable to appoint child specialists in rural areas because of inadequate number of available pediatricians. It leads to a high Infant Mortality Rate (IMR). In such a scenario, Intelligent Pediatric System provides a realistic solution. The prototype of an intelligent system has been developed that involves a knowledge component called an Intelligent Pediatric Assistant (IPA); and User Agents (UA) along with their Graphical User Interfaces (GUI). The GUI of UA provides the interface to the healthcare practitioner for submitting sign-symptoms and displaying the expert opinion as suggested by IPA. Depending upon the observations, the IPA decides the diagnosis and the treatment plan. The UA and IPA form client-server architecture for knowledge sharing.Keywords: Network, Based Intelligent, Pediatric System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228739 Adaptive Skin Segmentation Using Color Distance Map
Authors: Mohammad Shoyaib, M. Abdullah-Al-Wadud, Oksam Chae
Abstract:
In this paper an effective approach for segmenting human skin regions in images taken at different environment is proposed. The proposed method uses a color distance map that is flexible enough to reliably detect the skin regions even if the illumination conditions of the image vary. Local image conditions is also focused, which help the technique to adaptively detect differently illuminated skin regions of an image. Moreover, usage of local information also helps the skin detection process to get rid of picking up much noisy pixels.Keywords: Color Distance map, Reference skin color, Regiongrowing, Skin segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014738 EEG-Based Screening Tool for School Student’s Brain Disorders Using Machine Learning Algorithms
Authors: Abdelrahman A. Ramzy, Bassel S. Abdallah, Mohamed E. Bahgat, Sarah M. Abdelkader, Sherif H. ElGohary
Abstract:
Attention-Deficit/Hyperactivity Disorder (ADHD), epilepsy, and autism affect millions of children worldwide, many of which are undiagnosed despite the fact that all of these disorders are detectable in early childhood. Late diagnosis can cause severe problems due to the late treatment and to the misconceptions and lack of awareness as a whole towards these disorders. Moreover, electroencephalography (EEG) has played a vital role in the assessment of neural function in children. Therefore, quantitative EEG measurement will be utilized as a tool for use in the evaluation of patients who may have ADHD, epilepsy, and autism. We propose a screening tool that uses EEG signals and machine learning algorithms to detect these disorders at an early age in an automated manner. The proposed classifiers used with epilepsy as a step taken for the work done so far, provided an accuracy of approximately 97% using SVM, Naïve Bayes and Decision tree, while 98% using KNN, which gives hope for the work yet to be conducted.
Keywords: ADHD, autism, epilepsy, EEG, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1008737 Fusion of Colour and Depth Information to Enhance Wound Tissue Classification
Authors: Darren Thompson, Philip Morrow, Bryan Scotney, John Winder
Abstract:
Patients with diabetes are susceptible to chronic foot wounds which may be difficult to manage and slow to heal. Diagnosis and treatment currently rely on the subjective judgement of experienced professionals. An objective method of tissue assessment is required. In this paper, a data fusion approach was taken to wound tissue classification. The supervised Maximum Likelihood and unsupervised Multi-Modal Expectation Maximisation algorithms were used to classify tissues within simulated wound models by weighting the contributions of both colour and 3D depth information. It was found that, at low weightings, depth information could show significant improvements in classification accuracy when compared to classification by colour alone, particularly when using the maximum likelihood method. However, larger weightings were found to have an entirely negative effect on accuracy.Keywords: Classification, data fusion, diabetic foot, stereophotogrammetry, tissue colour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722736 Inhibition Kinetic Determination of Trace Amounts of Ruthenium(III) by the Spectrophotometric method with Rhodamine B in Micellar Medium
Authors: Mohsen Keyvanfard
Abstract:
A new, simple and highly sensitive kinetic spectrophotometric method was developed for the determination of trace amounts of Ru(III) in the range of 0.06-20 ng/ml .The method is based on the inhibitory effect of ruthenium(III) on the oxidation of Rhodamine B by bromate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decreasing in absorbance of Rhodamine B at 554 nm with a fixedtime method..The limit of detection is 0.04 ng/ml Ru(III).The relative standard deviation of 5 and 10 ng/ml Ru(III) was 2.3 and 2.7 %, respectively. The method was applied to the determination of ruthenium in real water samplesKeywords: Ruthenium ;Inhibitory; Rhodamine B; bromate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716735 Fast Extraction of Edge Histogram in DCT Domain based on MPEG7
Authors: Minyoung Eom, Yoonsik Choe
Abstract:
In these days, multimedia data is transmitted and processed in compressed format. Due to the decoding procedure and filtering for edge detection, the feature extraction process of MPEG-7 Edge Histogram Descriptor is time-consuming as well as computationally expensive. To improve efficiency of compressed image retrieval, we propose a new edge histogram generation algorithm in DCT domain in this paper. Using the edge information provided by only two AC coefficients of DCT coefficients, we can get edge directions and strengths directly in DCT domain. The experimental results demonstrate that our system has good performance in terms of retrieval efficiency and effectiveness.Keywords: DCT, Descriptor, EHD, MPEG7.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135734 Performance and Availability Analyses of PV Generation Systems in Taiwan
Authors: H. S. Huang, J. C. Jao, K. L. Yen, C. T. Tsai
Abstract:
The purpose of this article applies the monthly final energy yield and failure data of 202 PV systems installed in Taiwan to analyze the PV operational performance and system availability. This data is collected by Industrial Technology Research Institute through manual records. Bad data detection and failure data estimation approaches are proposed to guarantee the quality of the received information. The performance ratio value and system availability are then calculated and compared with those of other countries. It is indicated that the average performance ratio of Taiwan-s PV systems is 0.74 and the availability is 95.7%. These results are similar with those of Germany, Switzerland, Italy and Japan.Keywords: availability, performance ratio, PV system, Taiwan
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4449733 Monitoring the Effect of Doxorubicin Liposomal in VX2 Tumor Using Magnetic Resonance Imaging
Authors: Ren-Jy Ben, Jo-Chi Jao, Chiu-Ya Liao, Ya-Ru Tsai, Lain-Chyr Hwang, Po-Chou Chen
Abstract:
Cancer is still one of the serious diseases threatening the lives of human beings. How to have an early diagnosis and effective treatment for tumors is a very important issue. The animal carcinoma model can provide a simulation tool for the studies of pathogenesis, biological characteristics, and therapeutic effects. Recently, drug delivery systems have been rapidly developed to effectively improve the therapeutic effects. Liposome plays an increasingly important role in clinical diagnosis and therapy for delivering a pharmaceutic or contrast agent to the targeted sites. Liposome can be absorbed and excreted by the human body, and is well known that no harm to the human body. This study aimed to compare the therapeutic effects between encapsulated (doxorubicin liposomal, Lipodox) and un-encapsulated (doxorubicin, Dox) anti-tumor drugs using magnetic resonance imaging (MRI). Twenty-four New Zealand rabbits implanted with VX2 carcinoma at left thighs were classified into three groups: control group (untreated), Dox-treated group, and LipoDox-treated group, 8 rabbits for each group. MRI scans were performed three days after tumor implantation. A 1.5T GE Signa HDxt whole body MRI scanner with a high resolution knee coil was used in this study. After a 3-plane localizer scan was performed, three-dimensional (3D) fast spin echo (FSE) T2-weighted Images (T2WI) was used for tumor volumetric quantification. Afterwards, two-dimensional (2D) spoiled gradient recalled echo (SPGR) dynamic contrast-enhanced (DCE) MRI was used for tumor perfusion evaluation. DCE-MRI was designed to acquire four baseline images, followed by contrast agent Gd-DOTA injection through the ear vein of rabbit. A series of 32 images were acquired to observe the signals change over time in the tumor and muscle. The MRI scanning was scheduled on a weekly basis for a period of four weeks to observe the tumor progression longitudinally. The Dox and LipoDox treatments were prescribed 3 times in the first week immediately after the first MRI scan; i.e. 3 days after VX2 tumor implantation. ImageJ was used to quantitate tumor volume and time course signal enhancement on DCE images. The changes of tumor size showed that the growth of VX2 tumors was effectively inhibited for both LipoDox-treated and Dox-treated groups. Furthermore, the tumor volume of LipoDox-treated group was significantly lower than that of Dox-treated group, which implies that LipoDox has better therapeutic effect than Dox. The signal intensity of LipoDox-treated group is significantly lower than that of the other two groups, which implies that targeted therapeutic drug remained in the tumor tissue. This study provides a radiation-free and non-invasive MRI method for therapeutic monitoring of targeted liposome on an animal tumor model.Keywords: Doxorubicin, dynamic contrast-enhanced MRI, lipodox, magnetic resonance imaging, VX2 tumor model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996732 Hybrid MIMO-OFDM Detection Scheme for High Performance
Authors: Young-Min Ko, Dong-Hyun Ha, Chang-Bin Ha, Hyoung-Kyu Song
Abstract:
In recent years, a multi-antenna system is actively used to improve the performance of the communication. A MIMO-OFDM system can provide multiplexing gain or diversity gain. These gains are obtained in proportion to the increase of the number of antennas. In order to provide the optimal gain of the MIMO-OFDM system, various transmission and reception schemes are presented. This paper aims to propose a hybrid scheme that base station provides both diversity gain and multiplexing gain at the same time.Keywords: DFE, diversity gain, hybrid, MIMO, multiplexing gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220731 Grid Artifacts Suppression in Computed Radiographic Images
Authors: Igor Belykh
Abstract:
Anti-scatter grids used in radiographic imaging for the contrast enhancement leave specific artifacts. Those artifacts may be visible or may cause Moiré effect when digital image is resized on a diagnostic monitor. In this paper we propose an automated grid artifactsdetection and suppression algorithm which is still an actual problem. Grid artifacts detection is based on statistical approach in spatial domain. Grid artifacts suppression is based on Kaiser bandstop filter transfer function design and application avoiding ringing artifacts. Experimental results are discussed and concluded with description of advantages over existing approaches.
Keywords: Computed radiography, grid artifacts, image filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4296730 Assessing the Theoretical Suitability of Sentinel-2 and WorldView-3 Data for Hydrocarbon Mapping of Spill Events, Using HYSS
Authors: K. Tunde Olagunju, C. Scott Allen, F.D. (Freek) van der Meer
Abstract:
Identification of hydrocarbon oil in remote sensing images is often the first step in monitoring oil during spill events. Most remote sensing methods adopt techniques for hydrocarbon identification to achieve detection in order to model an appropriate cleanup program. Identification on optical sensors does not only allow for detection but also for characterization and quantification. Until recently, in optical remote sensing, quantification and characterization were only potentially possible using high-resolution laboratory and airborne imaging spectrometers (hyperspectral data). Unlike multispectral, hyperspectral data are not freely available, as this data category is mainly obtained via airborne survey at present. In this research, two operational high-resolution multispectral satellites (WorldView-3 and Sentinel-2) are theoretically assessed for their suitability for hydrocarbon characterization, using the Hydrocarbon Spectra Slope model (HYSS). This method utilized the two most persistent hydrocarbon diagnostic/absorption features at 1.73 µm and 2.30 µm for hydrocarbon mapping on multispectral data. In this research, spectra measurement of seven different hydrocarbon oils (crude and refined oil) taken on 10 different substrates with the use of laboratory ASD Fieldspec were convolved to Sentinel-2 and WorldView-3 resolution, using their full width half maximum (FWHM) parameter. The resulting hydrocarbon slope values obtained from the studied samples enable clear qualitative discrimination of most hydrocarbons, despite the presence of different background substrates, particularly on WorldView-3. Due to close conformity of central wavelengths and narrow bandwidths to key hydrocarbon bands used in HYSS, the statistical significance for qualitative analysis on WorldView-3 sensors for all studied hydrocarbon oil returned with 95% confidence level (P-value ˂ 0.01), except for Diesel. Using multifactor analysis of variance (MANOVA), the discriminating power of HYSS is statistically significant for most hydrocarbon-substrate combinations on Sentinel-2 and WorldView-3 FWHM, revealing the potential of these two operational multispectral sensors as rapid response tools for hydrocarbon mapping. One notable exception is highly transmissive hydrocarbons on Sentinel-2 data due to the non-conformity of spectral bands with key hydrocarbon absorptions and the relatively coarse bandwidth (> 100 nm).
Keywords: hydrocarbon, oil spill, remote sensing, hyperspectral, multispectral, hydrocarbon – substrate combination, Sentinel-2, WorldView-3
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 717729 Observations about the Principal Components Analysis and Data Clustering Techniques in the Study of Medical Data
Authors: Cristina G. Dascâlu, Corina Dima Cozma, Elena Carmen Cotrutz
Abstract:
The medical data statistical analysis often requires the using of some special techniques, because of the particularities of these data. The principal components analysis and the data clustering are two statistical methods for data mining very useful in the medical field, the first one as a method to decrease the number of studied parameters, and the second one as a method to analyze the connections between diagnosis and the data about the patient-s condition. In this paper we investigate the implications obtained from a specific data analysis technique: the data clustering preceded by a selection of the most relevant parameters, made using the principal components analysis. Our assumption was that, using the principal components analysis before data clustering - in order to select and to classify only the most relevant parameters – the accuracy of clustering is improved, but the practical results showed the opposite fact: the clustering accuracy decreases, with a percentage approximately equal with the percentage of information loss reported by the principal components analysis.Keywords: Data clustering, medical data, principal components analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510