Search results for: Accuracy.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1739

Search results for: Accuracy.

449 Leukocyte Detection Using Image Stitching and Color Overlapping Windows

Authors: Lina, Arlends Chris, Bagus Mulyawan, Agus B. Dharmawan

Abstract:

Blood cell analysis plays a significant role in the diagnosis of human health. As an alternative to the traditional technique conducted by laboratory technicians, this paper presents an automatic white blood cell (leukocyte) detection system using Image Stitching and Color Overlapping Windows. The advantage of this method is to present a detection technique of white blood cells that are robust to imperfect shapes of blood cells with various image qualities. The input for this application is images from a microscope-slide translation video. The preprocessing stage is performed by stitching the input images. First, the overlapping parts of the images are determined, then stitching and blending processes of two input images are performed. Next, the Color Overlapping Windows is performed for white blood cell detection which consists of color filtering, window candidate checking, window marking, finds window overlaps, and window cropping processes. Experimental results show that this method could achieve an average of 82.12% detection accuracy of the leukocyte images.

Keywords: Color overlapping windows, image stitching, leukocyte detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
448 Adaptive Control Strategy of Robot Polishing Force Based on Position Impedance

Authors: Wang Zhan-Xi, Zhang Yi-Ming, Chen Hang, Wang Gang

Abstract:

Manual polishing has problems such as high labor intensity, low production efficiency and difficulty in guaranteeing the consistency of polishing quality. The use of robot polishing instead of manual polishing can effectively avoid these problems. Polishing force directly affects the quality of polishing, so accurate tracking and control of polishing force is one of the most important conditions for improving the accuracy of robot polishing. The traditional force control strategy is difficult to adapt to the strong coupling of force control and position control during the robot polishing process. Therefore, based on the analysis of force-based impedance control and position-based impedance control, this paper proposed a type of adaptive controller. Based on force feedback control of active compliance control, the controller can adaptively estimate the stiffness and position of the external environment and eliminate the steady-state force error produced by traditional impedance control. The simulation results of the model show that the adaptive controller has good adaptability to changing environmental positions and environmental stiffness, and can accurately track and control polishing force.

Keywords: robot polishing, force feedback, impedance control, adaptive control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616
447 Study on Performance of Wigner Ville Distribution for Linear FM and Transient Signal Analysis

Authors: Azeemsha Thacham Poyil, Nasimudeen KM

Abstract:

This research paper presents some methods to assess the performance of Wigner Ville Distribution for Time-Frequency representation of non-stationary signals, in comparison with the other representations like STFT, Spectrogram etc. The simultaneous timefrequency resolution of WVD is one of the important properties which makes it preferable for analysis and detection of linear FM and transient signals. There are two algorithms proposed here to assess the resolution and to compare the performance of signal detection. First method is based on the measurement of area under timefrequency plot; in case of a linear FM signal analysis. A second method is based on the instantaneous power calculation and is used in case of transient, non-stationary signals. The implementation is explained briefly for both methods with suitable diagrams. The accuracy of the measurements is validated to show the better performance of WVD representation in comparison with STFT and Spectrograms.

Keywords: WVD: Wigner Ville Distribution, STFT: Short Time Fourier Transform, FT: Fourier Transform, TFR: Time-Frequency Representation, FM: Frequency Modulation, LFM Signal: Linear FM Signal, JTFA: Joint time frequency analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2423
446 Traffic Density Measurement by Automatic Detection of Vehicles Using Gradient Vectors from Aerial Images

Authors: Saman Ghaffarian, Ilgın Gökasar

Abstract:

This paper presents a new automatic vehicle detection method from very high resolution aerial images to measure traffic density. The proposed method starts by extracting road regions from image using road vector data. Then, the road image is divided into equal sections considering resolution of the images. Gradient vectors of the road image are computed from edge map of the corresponding image. Gradient vectors on the each boundary of the sections are divided where the gradient vectors significantly change their directions. Finally, number of vehicles in each section is carried out by calculating the standard deviation of the gradient vectors in each group and accepting the group as vehicle that has standard deviation above predefined threshold value. The proposed method was tested in four very high resolution aerial images acquired from Istanbul, Turkey which illustrate roads and vehicles with diverse characteristics. The results show the reliability of the proposed method in detecting vehicles by producing 86% overall F1 accuracy value.

Keywords: Aerial images, intelligent transportation systems, traffic density measurement, vehicle detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2935
445 Extraction of Symbolic Rules from Artificial Neural Networks

Authors: S. M. Kamruzzaman, Md. Monirul Islam

Abstract:

Although backpropagation ANNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained ANNs for the users to gain a better understanding of how the networks solve the problems. A new rule extraction algorithm, called rule extraction from artificial neural networks (REANN) is proposed and implemented to extract symbolic rules from ANNs. A standard three-layer feedforward ANN is the basis of the algorithm. A four-phase training algorithm is proposed for backpropagation learning. Explicitness of the extracted rules is supported by comparing them to the symbolic rules generated by other methods. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy. Extensive experimental studies on several benchmarks classification problems, such as breast cancer, iris, diabetes, and season classification problems, demonstrate the effectiveness of the proposed approach with good generalization ability.

Keywords: Backpropagation, clustering algorithm, constructivealgorithm, continuous activation function, pruning algorithm, ruleextraction algorithm, symbolic rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
444 Stress and Strain Analysis of Notched Bodies Subject to Non-Proportional Loadings

Authors: A. Ince

Abstract:

In this paper, an analytical simplified method for calculating elasto-plastic stresses strains of notched bodies subject to non-proportional loading paths is discussed. The method was based on the Neuber notch correction, which relates the incremental elastic and elastic-plastic strain energy densities at the notch root and the material constitutive relationship. The validity of the method was presented by comparing computed results of the proposed model against finite element numerical data of notched shaft. The comparison showed that the model estimated notch-root elasto-plastic stresses strains with good accuracy using linear-elastic stresses. The prosed model provides more efficient and simple analysis method preferable to expensive experimental component tests and more complex and time consuming incremental non-linear FE analysis. The model is particularly suitable to perform fatigue life and fatigue damage estimates of notched components subjected to nonproportional loading paths.

Keywords: Elasto-plastic, stress-strain, notch analysis, nonprortional loadings, cyclic plasticity, fatigue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
443 A Study on the Assessment of Prosthetic Infection after Total Knee Replacement Surgery

Authors: Chang, Chun-Lang, Liu, Chun-Kai

Abstract:

This study, for its research subjects, uses patients who had undergone total knee replacement surgery from the database of the National Health Insurance Administration. Through the review of literatures and the interviews with physicians, important factors are selected after careful screening. Then using Cross Entropy Method, Genetic Algorithm Logistic Regression, and Particle Swarm Optimization, the weight of each factor is calculated and obtained. In the meantime, Excel VBA and Case Based Reasoning are combined and adopted to evaluate the system. Results show no significant difference found through Genetic Algorithm Logistic Regression and Particle Swarm Optimization with over 97% accuracy in both methods. Both ROC areas are above 0.87. This study can provide critical reference to medical personnel as clinical assessment to effectively enhance medical care quality and efficiency, prevent unnecessary waste, and provide practical advantages to resource allocation to medical institutes.

Keywords: Total knee replacement, Case Based Reasoning, Cross Entropy Method, Genetic Algorithm Logistic Regression, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
442 Trap Assisted Tunneling Model for Gate Current in Nano Scale MOSFET with High-K Gate Dielectrics

Authors: Ashwani K. Rana, Narottam Chand, Vinod Kapoor

Abstract:

This paper presents a new compact analytical model of the gate leakage current in high-k based nano scale MOSFET by assuming a two-step inelastic trap-assisted tunneling (ITAT) process as the conduction mechanism. This model is based on an inelastic trap-assisted tunneling (ITAT) mechanism combined with a semiempirical gate leakage current formulation in the BSIM 4 model. The gate tunneling currents have been calculated as a function of gate voltage for different gate dielectrics structures such as HfO2, Al2O3 and Si3N4 with EOT (equivalent oxide thickness) of 1.0 nm. The proposed model is compared and contrasted with santaurus simulation results to verify the accuracy of the model and excellent agreement is found between the analytical and simulated data. It is observed that proposed analytical model is suitable for different highk gate dielectrics simply by adjusting two fitting parameters. It was also shown that gate leakages reduced with the introduction of high-k gate dielectric in place of SiO2.

Keywords: Analytical model, High-k gate dielectrics, inelastic trap assisted tunneling, metal–oxide–semiconductor (MOS) devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3307
441 Effects of the Mass and Damping Matrix Model in the Nonlinear Seismic Response of Steel Frames

Authors: A. Reyes-Salazar, M. D. Llanes-Tizoc, E. Bojorquez, F. Valenzuela-Beltran, J. Bojorquez, J. R. Gaxiola-Camacho, A. Haldar

Abstract:

Seismic analysis of steel buildings is usually based on the use of the concentrated mass (ML) matrix and the Rayleigh damping matrix (C). Similarly, the initial stiffness matrix (KO) and the first two modes associated to lateral vibrations are commonly used to develop the matrix C. The evaluation of the accuracy of these practices for the particular case of steel buildings with moment-resisting steel frames constitutes the main objective of this research. For this, the nonlinear seismic responses of three models of steel frames, representing low-, medium- and high-rise steel buildings, are considered. Results indicate that if the ML matrix is used, shears and bending moments in columns are underestimated by up to 30% and 65%, respectively, when compared to the corresponding results obtained with the consistent mass matrix (MC). It is also shown that if KO is used in C instead the tangent stiffness matrix (Kt), axial loads in columns are underestimated by up to 80%. It is concluded that the consistent mass matrix should be used in the structural modelling of moment resisting steel frames and the tangent stiffness matrix should be used to develop the Rayleigh damping matrix.

Keywords: Moment-resisting steel frames, consistent and concentrated mass matrices, nonlinear seismic response, Rayleigh damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 399
440 Fast 3D Collision Detection Algorithm using 2D Intersection Area

Authors: Taehyun Yoon, Keechul Jung

Abstract:

There are many researches to detect collision between real object and virtual object in 3D space. In general, these techniques are need to huge computing power. So, many research and study are constructed by using cloud computing, network computing, and distribute computing. As a reason of these, this paper proposed a novel fast 3D collision detection algorithm between real and virtual object using 2D intersection area. Proposed algorithm uses 4 multiple cameras and coarse-and-fine method to improve accuracy and speed performance of collision detection. In the coarse step, this system examines the intersection area between real and virtual object silhouettes from all camera views. The result of this step is the index of virtual sensors which has a possibility of collision in 3D space. To decide collision accurately, at the fine step, this system examines the collision detection in 3D space by using the visual hull algorithm. Performance of the algorithm is verified by comparing with existing algorithm. We believe proposed algorithm help many other research, study and application fields such as HCI, augmented reality, intelligent space, and so on.

Keywords: Collision Detection, Computer Vision, Human Computer Interaction, Visual Hull

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406
439 Satellite Imagery Classification Based on Deep Convolution Network

Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu

Abstract:

Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.

Keywords: Satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2346
438 Coupling Time-Domain Analysis for Dynamic Positioning during S-Lay Installation

Authors: Sun Li-ping, Zhu Jian-xun, Liu Sheng-nan

Abstract:

In order to study the performance of dynamic positioning system during S-lay operations, dynamic positioning system is simulated with the hull-stinger-pipe coupling effect. The roller of stinger is simulated by the generalized elastic contact theory. The stinger is composed of Morrison members. Force on pipe is calculated by lumped mass method. Time domain of fully coupled barge model is analyzed combining with PID controller, Kalman filter and allocation of thrust using Sequential Quadratic Programming method. It is also analyzed that the effect of hull wave frequency motion on pipe-stinger coupling force and dynamic positioning system. Besides, it is studied that how S-lay operations affect the dynamic positioning accuracy. The simulation results are proved to be available by checking pipe stress with API criterion. The effect of heave and yaw motion cannot be ignored on hull-stinger-pipe coupling force and dynamic positioning system. It is important to decrease the barge’s pitch motion and lay pipe in head sea in order to improve safety of the S-lay installation and dynamic positioning.

Keywords: S-lay operation, dynamic positioning, coupling motion; time domain, allocation of thrust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2778
437 A Copyright Protection Scheme for Color Images using Secret Sharing and Wavelet Transform

Authors: Shang-Lin Hsieh, Lung-Yao Hsu, I-Ju Tsai

Abstract:

This paper proposes a copyright protection scheme for color images using secret sharing and wavelet transform. The scheme contains two phases: the share image generation phase and the watermark retrieval phase. In the generation phase, the proposed scheme first converts the image into the YCbCr color space and creates a special sampling plane from the color space. Next, the scheme extracts the features from the sampling plane using the discrete wavelet transform. Then, the scheme employs the features and the watermark to generate a principal share image. In the retrieval phase, an expanded watermark is first reconstructed using the features of the suspect image and the principal share image. Next, the scheme reduces the additional noise to obtain the recovered watermark, which is then verified against the original watermark to examine the copyright. The experimental results show that the proposed scheme can resist several attacks such as JPEG compression, blurring, sharpening, noise addition, and cropping. The accuracy rates are all higher than 97%.

Keywords: Color image, copyright protection, discrete wavelet transform, secret sharing, watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
436 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier

Authors: Atanu K Samanta, Asim Ali Khan

Abstract:

Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.

Keywords: Artificial neural network, ANN, brain tumor, computer-aided diagnostic, CAD system, gray-level co-occurrence matrix, GLCM, level set method, tumor segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
435 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network

Authors: Shoujia Fang, Guoqing Ding, Xin Chen

Abstract:

The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.

Keywords: Keypoint detection, curve feature, convolutional neural network, press-fit assembly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
434 Time-Dependent Behavior of Damaged Reinforced Concrete Shear Walls Strengthened with Composite Plates Having Variable Fibers Spacing

Authors: R. Yeghnem, L. Boulefrakh, S. A. Meftah, A. Tounsi, E. A. Adda Bedia

Abstract:

In this study, the time-dependent behavior of damaged reinforced concrete shear wall structures strengthened with composite plates having variable fibers spacing was investigated to analyze their seismic response. In the analytical formulation, the adherent and the adhesive layers are all modeled as shear walls, using the mixed Finite Element Method (FEM). The anisotropic damage model is adopted to describe the damage extent of the Reinforced Concrete shear walls. The phenomenon of creep and shrinkage of concrete has been determined by Eurocode 2. Large earthquakes recorded in Algeria (El-Asnam and Boumerdes) have been tested to demonstrate the accuracy of the proposed method. Numerical results are obtained for non-uniform distributions of carbon fibers in epoxy matrices. The effects of damage extent and the delay mechanism creep and shrinkage of concrete are highlighted. Prospects are being studied.

Keywords: RC shear wall structures, composite plates, creep and shrinkage, damaged reinforced concrete structures, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
433 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: Classification algorithms; data mining; tourism; knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546
432 Recognition of Gene Names from Gene Pathway Figures Using Siamese Network

Authors: Muhammad Azam, Micheal Olaolu Arowolo, Fei He, Mihail Popescu, Dong Xu

Abstract:

The number of biological papers is growing quickly, which means that the number of biological pathway figures in those papers is also increasing quickly. Each pathway figure shows extensive biological information, like the names of genes and how the genes are related. However, manually annotating pathway figures takes a lot of time and work. Even though using advanced image understanding models could speed up the process of curation, these models still need to be made more accurate. To improve gene name recognition from pathway figures, we applied a Siamese network to map image segments to a library of pictures containing known genes in a similar way to person recognition from photos in many photo applications. We used a triple loss function and a triplet spatial pyramid pooling network by combining the triplet convolution neural network and the spatial pyramid pooling (TSPP-Net). We compared VGG19 and VGG16 as the Siamese network model. VGG16 achieved better performance with an accuracy of 93%, which is much higher than Optical Character Recognition (OCR) results.

Keywords: Biological pathway, image understanding, gene name recognition, object detection, Siamese network, Visual Geometry Group.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 675
431 Constitutive Modeling of Different Types of Concrete under Uniaxial Compression

Authors: Mostafa Jafarian Abyaneh, Khashayar Jafari, Vahab Toufigh

Abstract:

The cost of experiments on different types of concrete has raised the demand for prediction of their behavior with numerical analysis. In this research, an advanced numerical model has been presented to predict the complete elastic-plastic behavior of polymer concrete (PC), high-strength concrete (HSC), high performance concrete (HPC) along with different steel fiber contents under uniaxial compression. The accuracy of the numerical response was satisfactory as compared to other conventional simple models such as Mohr-Coulomb and Drucker-Prager. In order to predict the complete elastic-plastic behavior of specimens including softening behavior, disturbed state concept (DSC) was implemented by nonlinear finite element analysis (NFEA) and hierarchical single surface (HISS) failure criterion, which is a failure surface without any singularity.

Keywords: Disturbed state concept, hierarchical single surface, failure criterion, high performance concrete, high-strength concrete, nonlinear finite element analysis, polymer concrete, steel fibers, uniaxial compression test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1238
430 Pressure Losses on Realistic Geometry of Tracheobronchial Tree

Authors: Michaela Chovancova, Jakub Elcner

Abstract:

Real bronchial tree is very complicated piping system. Analysis of flow and pressure losses in this system is very difficult. Due to the complex geometry and the very small size in the lower generations is examination by CFD possible only in the central part of bronchial tree. For specify the pressure losses of lower generations is necessary to provide a mathematical equation. Determination of mathematical formulas for calculation of pressure losses in the real lungs is time consuming and inefficient process due to its complexity and diversity. For these calculations is necessary to slightly simplify the geometry of lungs (same cross-section over the length of individual generation) or use one of the idealized models of lungs (Horsfield, Weibel). The article compares the values of pressure losses obtained from CFD simulation of air flow in the central part of the real bronchial tree with the values calculated in a slightly simplified real lungs by using a mathematical relationship derived from the Bernoulli and continuity equations. The aim of the article is to analyse the accuracy of the analytical method and its possibility of use for the calculation of pressure losses in lower generations, which is difficult to solve by numerical method due to the small geometry.

Keywords: Pressure gradient, airways resistance, real geometry of bronchial tree, breathing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
429 Investigating the Thermal Characteristics of Reclaimed Solid Waste from a Landfill Site Using Thermogravimetry

Authors: S. M. Al-Salem, G.A. Leeke, H. J. Karam, R. Al-Enzi, A. T. Al-Dhafeeri, J. Wang

Abstract:

Thermogravimetry has been popularized as a thermal characterization technique since the 1950s. It aims at investigating the weight loss against both reaction time and temperature, whilst being able to characterize the evolved gases from the volatile components of the organic material being tested using an appropriate hyphenated analytical technique. In an effort to characterize and identify the reclaimed waste from an unsanitary landfill site, this approach was initiated. Solid waste (SW) reclaimed from an active landfill site in the State of Kuwait was collected and prepared for characterization in accordance with international protocols. The SW was segregated and its major components were identified after washing and air drying. Shredding and cryomilling was conducted on the plastic solid waste (PSW) component to yield a material that is representative for further testing and characterization. The material was subjected to five heating rates (b) with minimal repeatable weight for high accuracy thermogravimetric analysis (TGA) following the recommendation of the International Confederation for Thermal Analysis and Calorimetry (ICTAC). The TGA yielded thermograms that showed an off-set from typical behavior of commercial grade resin which was attributed to contact of material with soil and thermal/photo-degradation.

Keywords: Polymer, TGA, Pollution, Landfill, Waste, Plastic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 704
428 Support Vector Machine based Intelligent Watermark Decoding for Anticipated Attack

Authors: Syed Fahad Tahir, Asifullah Khan, Abdul Majid, Anwar M. Mirza

Abstract:

In this paper, we present an innovative scheme of blindly extracting message bits from an image distorted by an attack. Support Vector Machine (SVM) is used to nonlinearly classify the bits of the embedded message. Traditionally, a hard decoder is used with the assumption that the underlying modeling of the Discrete Cosine Transform (DCT) coefficients does not appreciably change. In case of an attack, the distribution of the image coefficients is heavily altered. The distribution of the sufficient statistics at the receiving end corresponding to the antipodal signals overlap and a simple hard decoder fails to classify them properly. We are considering message retrieval of antipodal signal as a binary classification problem. Machine learning techniques like SVM is used to retrieve the message, when certain specific class of attacks is most probable. In order to validate SVM based decoding scheme, we have taken Gaussian noise as a test case. We generate a data set using 125 images and 25 different keys. Polynomial kernel of SVM has achieved 100 percent accuracy on test data.

Keywords: Bit Correct Ratio (BCR), Grid Search, Intelligent Decoding, Jackknife Technique, Support Vector Machine (SVM), Watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
427 A Review and Comparative Analysis on Cluster Ensemble Methods

Authors: S. Sarumathi, P. Ranjetha, C. Saraswathy, M. Vaishnavi, S. Geetha

Abstract:

Clustering is an unsupervised learning technique for aggregating data objects into meaningful classes so that intra cluster similarity is maximized and inter cluster similarity is minimized in data mining. However, no single clustering algorithm proves to be the most effective in producing the best result. As a result, a new challenging technique known as the cluster ensemble approach has blossomed in order to determine the solution to this problem. For the cluster analysis issue, this new technique is a successful approach. The cluster ensemble's main goal is to combine similar clustering solutions in a way that achieves the precision while also improving the quality of individual data clustering. Because of the massive and rapid creation of new approaches in the field of data mining, the ongoing interest in inventing novel algorithms necessitates a thorough examination of current techniques and future innovation. This paper presents a comparative analysis of various cluster ensemble approaches, including their methodologies, formal working process, and standard accuracy and error rates. As a result, the society of clustering practitioners will benefit from this exploratory and clear research, which will aid in determining the most appropriate solution to the problem at hand.

Keywords: Clustering, cluster ensemble methods, consensus function, data mining, unsupervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 820
426 Order Statistics-based “Anti-Bayesian“ Parametric Classification for Asymmetric Distributions in the Exponential Family

Authors: A. Thomas, B. John Oommen

Abstract:

Although the field of parametric Pattern Recognition (PR) has been thoroughly studied for over five decades, the use of the Order Statistics (OS) of the distributions to achieve this has not been reported. The pioneering work on using OS for classification was presented in [1] for the Uniform distribution, where it was shown that optimal PR can be achieved in a counter-intuitive manner, diametrically opposed to the Bayesian paradigm, i.e., by comparing the testing sample to a few samples distant from the mean. This must be contrasted with the Bayesian paradigm in which, if we are allowed to compare the testing sample with only a single point in the feature space from each class, the optimal strategy would be to achieve this based on the (Mahalanobis) distance from the corresponding central points, for example, the means. In [2], we showed that the results could be extended for a few symmetric distributions within the exponential family. In this paper, we attempt to extend these results significantly by considering asymmetric distributions within the exponential family, for some of which even the closed form expressions of the cumulative distribution functions are not available. These distributions include the Rayleigh, Gamma and certain Beta distributions. As in [1] and [2], the new scheme, referred to as Classification by Moments of Order Statistics (CMOS), attains an accuracy very close to the optimal Bayes’ bound, as has been shown both theoretically and by rigorous experimental testing.

Keywords: Classification using Order Statistics (OS), Exponential family, Moments of OS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
425 Auto-regressive Recurrent Neural Network Approach for Electricity Load Forecasting

Authors: Tarik Rashid, B. Q. Huang, M-T. Kechadi, B. Gleeson

Abstract:

this paper presents an auto-regressive network called the Auto-Regressive Multi-Context Recurrent Neural Network (ARMCRN), which forecasts the daily peak load for two large power plant systems. The auto-regressive network is a combination of both recurrent and non-recurrent networks. Weather component variables are the key elements in forecasting because any change in these variables affects the demand of energy load. So the AR-MCRN is used to learn the relationship between past, previous, and future exogenous and endogenous variables. Experimental results show that using the change in weather components and the change that occurred in past load as inputs to the AR-MCRN, rather than the basic weather parameters and past load itself as inputs to the same network, produce higher accuracy of predicted load. Experimental results also show that using exogenous and endogenous variables as inputs is better than using only the exogenous variables as inputs to the network.

Keywords: Daily peak load forecasting, neural networks, recurrent neural networks, auto regressive multi-context neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2543
424 Computer Aided Design of Reshaping Process of Circular Pipes into Square Pipes

Authors: Parviz Alinezhad, Ali Sanati, Koorosh Naser Momtahen

Abstract:

Square pipes (pipes with square cross sections) are being used for various industrial objectives, such as machine structure components and housing/building elements. The utilization of them is extending rapidly and widely. Hence, the out-put of those pipes is increasing and new application fields are continually developing. Due to various demands in recent time, the products have to satisfy difficult specifications with high accuracy in dimensions. The reshaping process design of pipes with square cross sections; however, is performed by trial and error and based on expert-s experience. In this paper, a computer-aided simulation is developed based on the 2-D elastic-plastic method with consideration of the shear deformation to analyze the reshaping process. Effect of various parameters such as diameter of the circular pipe and mechanical properties of metal on product dimension and quality can be evaluated by using this simulation. Moreover, design of reshaping process include determination of shrinkage of cross section, necessary number of stands, radius of rolls and height of pipe at each stand, are investigated. Further, it is shown that there are good agreements between the results of the design method and the experimental results.

Keywords: Circular Pipes, Square Pipes, Shear Deformation, Reshaping Process, Numerical Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
423 Secure Socket Layer in the Network and Web Security

Authors: Roza Dastres, Mohsen Soori

Abstract:

In order to electronically exchange information between network users in the web of data, different software such as outlook is presented. So, the traffic of users on a site or even the floors of a building can be decreased as a result of applying a secure and reliable data sharing software. It is essential to provide a fast, secure and reliable network system in the data sharing webs to create an advanced communication systems in the users of network. In the present research work, different encoding methods and algorithms in data sharing systems is studied in order to increase security of data sharing systems by preventing the access of hackers to the transferred data. To increase security in the networks, the possibility of textual conversation between customers of a local network is studied. Application of the encryption and decryption algorithms is studied in order to increase security in networks by preventing hackers from infiltrating. As a result, a reliable and secure communication system between members of a network can be provided by preventing additional traffic in the website environment in order to increase speed, accuracy and security in the network and web systems of data sharing.

Keywords: Secure Socket Layer, Security of networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 510
422 Adomian Decomposition Method Associated with Boole-s Integration Rule for Goursat Problem

Authors: Mohd Agos Salim Nasir, Ros Fadilah Deraman, Siti Salmah Yasiran

Abstract:

The Goursat partial differential equation arises in linear and non linear partial differential equations with mixed derivatives. This equation is a second order hyperbolic partial differential equation which occurs in various fields of study such as in engineering, physics, and applied mathematics. There are many approaches that have been suggested to approximate the solution of the Goursat partial differential equation. However, all of the suggested methods traditionally focused on numerical differentiation approaches including forward and central differences in deriving the scheme. An innovation has been done in deriving the Goursat partial differential equation scheme which involves numerical integration techniques. In this paper we have developed a new scheme to solve the Goursat partial differential equation based on the Adomian decomposition (ADM) and associated with Boole-s integration rule to approximate the integration terms. The new scheme can easily be applied to many linear and non linear Goursat partial differential equations and is capable to reduce the size of computational work. The accuracy of the results reveals the advantage of this new scheme over existing numerical method.

Keywords: Goursat problem, partial differential equation, Adomian decomposition method, Boole's integration rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
421 A Multigrid Approach for Three-Dimensional Inverse Heat Conduction Problems

Authors: Jianhua Zhou, Yuwen Zhang

Abstract:

A two-step multigrid approach is proposed to solve the inverse heat conduction problem in a 3-D object under laser irradiation. In the first step, the location of the laser center is estimated using a coarse and uniform grid system. In the second step, the front-surface temperature is recovered in good accuracy using a multiple grid system in which fine mesh is used at laser spot center to capture the drastic temperature rise in this region but coarse mesh is employed in the peripheral region to reduce the total number of sensors required. The effectiveness of the two-step approach and the multiple grid system are demonstrated by the illustrative inverse solutions. If the measurement data for the temperature and heat flux on the back surface do not contain random error, the proposed multigrid approach can yield more accurate inverse solutions. When the back-surface measurement data contain random noise, accurate inverse solutions cannot be obtained if both temperature and heat flux are measured on the back surface.

Keywords: Conduction, inverse problems, conjugated gradient method, laser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 843
420 Educational Data Mining: The Case of Department of Mathematics and Computing in the Period 2009-2018

Authors: M. Sitoe, O. Zacarias

Abstract:

University education is influenced by several factors that range from the adoption of strategies to strengthen the whole process to the academic performance improvement of the students themselves. This work uses data mining techniques to develop a predictive model to identify students with a tendency to evasion and retention. To this end, a database of real students’ data from the Department of University Admission (DAU) and the Department of Mathematics and Informatics (DMI) was used. The data comprised 388 undergraduate students admitted in the years 2009 to 2014. The Weka tool was used for model building, using three different techniques, namely: K-nearest neighbor, random forest, and logistic regression. To allow for training on multiple train-test splits, a cross-validation approach was employed with a varying number of folds. To reduce bias variance and improve the performance of the models, ensemble methods of Bagging and Stacking were used. After comparing the results obtained by the three classifiers, Logistic Regression using Bagging with seven folds obtained the best performance, showing results above 90% in all evaluated metrics: accuracy, rate of true positives, and precision. Retention is the most common tendency.

Keywords: Evasion and retention, cross validation, bagging, stacking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120