Search results for: image denoising.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1562

Search results for: image denoising.

302 Texture Characterization Based on a Chandrasekhar Fast Adaptive Filter

Authors: Mounir Sayadi, Farhat Fnaiech

Abstract:

In the framework of adaptive parametric modelling of images, we propose in this paper a new technique based on the Chandrasekhar fast adaptive filter for texture characterization. An Auto-Regressive (AR) linear model of texture is obtained by scanning the image row by row and modelling this data with an adaptive Chandrasekhar linear filter. The characterization efficiency of the obtained model is compared with the model adapted with the Least Mean Square (LMS) 2-D adaptive algorithm and with the cooccurrence method features. The comparison criteria is based on the computation of a characterization degree using the ratio of "betweenclass" variances with respect to "within-class" variances of the estimated coefficients. Extensive experiments show that the coefficients estimated by the use of Chandrasekhar adaptive filter give better results in texture discrimination than those estimated by other algorithms, even in a noisy context.

Keywords: Texture analysis, statistical features, adaptive filters, Chandrasekhar algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
301 Multiple Object Tracking using Particle Swarm Optimization

Authors: Chen-Chien Hsu, Guo-Tang Dai

Abstract:

This paper presents a particle swarm optimization (PSO) based approach for multiple object tracking based on histogram matching. To start with, gray-level histograms are calculated to establish a feature model for each of the target object. The difference between the gray-level histogram corresponding to each particle in the search space and the target object is used as the fitness value. Multiple swarms are created depending on the number of the target objects under tracking. Because of the efficiency and simplicity of the PSO algorithm for global optimization, target objects can be tracked as iterations continue. Experimental results confirm that the proposed PSO algorithm can rapidly converge, allowing real-time tracking of each target object. When the objects being tracked move outside the tracking range, global search capability of the PSO resumes to re-trace the target objects.

Keywords: multiple object tracking, particle swarm optimization, gray-level histogram, image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4100
300 Face Detection using Variance based Haar-Like feature and SVM

Authors: Cuong Nguyen Khac, Ju H. Park, Ho-Youl Jung

Abstract:

This paper proposes a new approach to perform the problem of real-time face detection. The proposed method combines primitive Haar-Like feature and variance value to construct a new feature, so-called Variance based Haar-Like feature. Face in image can be represented with a small quantity of features using this new feature. We used SVM instead of AdaBoost for training and classification. We made a database containing 5,000 face samples and 10,000 non-face samples extracted from real images for learning purposed. The 5,000 face samples contain many images which have many differences of light conditions. And experiments showed that face detection system using Variance based Haar-Like feature and SVM can be much more efficient than face detection system using primitive Haar-Like feature and AdaBoost. We tested our method on two Face databases and one Non-Face database. We have obtained 96.17% of correct detection rate on YaleB face database, which is higher 4.21% than that of using primitive Haar-Like feature and AdaBoost.

Keywords: AdaBoost, Haar-Like feature, SVM, variance, Variance based Haar-Like feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3736
299 Factors Having Impact on Marketing and Improvement Measures in the Real Estate Sector of Turkey

Authors: Ali Ihtiyar, Serdar Durdyev, Syuhaida Ismail

Abstract:

Marketing is an essential issue to the survival of any real estate company in Turkey. There are some factors which are constraining the achievements of the marketing and sales strategies in the Turkey real estate industry. This study aims to identify and prioritise the most significant constraints to marketing in real estate sector and new strategies based on those constraints. This study is based on survey method, where the respondents such as credit counsellors, real estate investors, consultants, academicians and marketing representatives in Turkey were asked to rank forty seven sub-factors according to their levels of impact. The results of Multiattribute analytical technique indicated that the main subcomponents having impact on marketing in real estate sector are interest rates, real estate credit availability, accessibility, company image and consumer real income, respectively. The identified constraints are expected to guide the marketing team in a sales-effective way.

Keywords: Marketing, marketing constraints, Real estate marketing, Turkey real estate sector

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
298 Comparing Hilditch, Rosenfeld, Zhang-Suen,and Nagendraprasad -Wang-Gupta Thinning

Authors: Anastasia Rita Widiarti

Abstract:

This paper compares Hilditch, Rosenfeld, Zhang- Suen, dan Nagendraprasad Wang Gupta (NWG) thinning algorithms for Javanese character image recognition. Thinning is an effective process when the focus in not on the size of the pattern, but rather on the relative position of the strokes in the pattern. The research analyzes the thinning of 60 Javanese characters. Time-wise, Zhang-Suen algorithm gives the best results with the average process time being 0.00455188 seconds. But if we look at the percentage of pixels that meet one-pixel thickness, Rosenfelt algorithm gives the best results, with a 99.98% success rate. From the number of pixels that are erased, NWG algorithm gives the best results with the average number of pixels erased being 84.12%. It can be concluded that the Hilditch algorithm performs least successfully compared to the other three algorithms.

Keywords: Hilditch algorithm, Nagendraprasad-Wang-Guptaalgorithm, Rosenfeld algorithm, Thinning, Zhang-suen algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3920
297 Mean Shift-based Preprocessing Methodology for Improved 3D Buildings Reconstruction

Authors: Nikolaos Vassilas, Theocharis Tsenoglou, Djamchid Ghazanfarpour

Abstract:

In this work, we explore the capability of the mean shift algorithm as a powerful preprocessing tool for improving the quality of spatial data, acquired from airborne scanners, from densely built urban areas. On one hand, high resolution image data corrupted by noise caused by lossy compression techniques are appropriately smoothed while at the same time preserving the optical edges and, on the other, low resolution LiDAR data in the form of normalized Digital Surface Map (nDSM) is upsampled through the joint mean shift algorithm. Experiments on both the edge-preserving smoothing and upsampling capabilities using synthetic RGB-z data show that the mean shift algorithm is superior to bilateral filtering as well as to other classical smoothing and upsampling algorithms. Application of the proposed methodology for 3D reconstruction of buildings of a pilot region of Athens, Greece results in a significant visual improvement of the 3D building block model.

Keywords: 3D buildings reconstruction, data fusion, data upsampling, mean shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
296 Computer Aided Detection on Mammography

Authors: Giovanni Luca Masala

Abstract:

A typical definition of the Computer Aided Diagnosis (CAD), found in literature, can be: A diagnosis made by a radiologist using the output of a computerized scheme for automated image analysis as a diagnostic aid. Often it is possible to find the expression Computer Aided Detection (CAD or CADe): this definition emphasizes the intent of CAD to support rather than substitute the human observer in the analysis of radiographic images. In this article we will illustrate the application of CAD systems and the aim of these definitions. Commercially available CAD systems use computerized algorithms for identifying suspicious regions of interest. In this paper are described the general CAD systems as an expert system constituted of the following components: segmentation / detection, feature extraction, and classification / decision making. As example, in this work is shown the realization of a Computer- Aided Detection system that is able to assist the radiologist in identifying types of mammary tumor lesions. Furthermore this prototype of station uses a GRID configuration to work on a large distributed database of digitized mammographic images.

Keywords: Computer Aided Detection, Computer Aided Diagnosis, mammography, GRID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
295 Connect among Green, Sustainability and Hotel Industry: A Prospective Simulation Study

Authors: Leena N. Fukey, Surya S. Issac

Abstract:

This review paper aims at understanding the importance of implementing sustainable green practices in the current hotel industry and the perception of the same from the point of view of the customers as well as the industry experts. Many hotels have benefited from green management such as enhanced reputation of the firm and more worth customers. For the business standing, it reduces business’s cost for posting advertisements and the clear hotel’s orientation shows hotels’ positive image which might increase employees’ recognition toward the business. Sustainability in business is the growth in lively processes which enable people to understand the potential to protect the Earth’s existent support systems. Well, looking to the future today’s green concerns will definitely become facet of more synchronized business environment, perhaps the concerns discussed in this study, may exchange a few words which hotels may consider in near future to widen awareness and improve business model.

Keywords: Environmental Protection, Green Hotel Concept, Hotel Industry, Sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8862
294 Developing Damage Assessment Model for Bridge Surroundings: A Study of Disaster by Typhoon Morakot in Taiwan

Authors: Jieh-Haur Chen, Pei-Fen Huang

Abstract:

This paper presents an integrated model that automatically measures the change of rivers, damage area of bridge surroundings, and change of vegetation. The proposed model is on the basis of a neurofuzzy mechanism enhanced by SOM optimization algorithm, and also includes three functions to deal with river imagery. High resolution imagery from FORMOSAT-2 satellite taken before and after the invasion period is adopted. By randomly selecting a bridge out of 129 destroyed bridges, the recognition results show that the average width has increased 66%. The ruined segment of the bridge is located exactly at the most scour region. The vegetation coverage has also reduced to nearly 90% of the original. The results yielded from the proposed model demonstrate a pinpoint accuracy rate at 99.94%. This study brings up a successful tool not only for large-scale damage assessment but for precise measurement to disasters.

Keywords: remote sensing image, damage assessment, typhoon disaster, bridge, ANN, fuzzy, SOM, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
293 Supervisory Fuzzy Learning Control for Underwater Target Tracking

Authors: C.Kia, M.R.Arshad, A.H.Adom, P.A.Wilson

Abstract:

This paper presents recent work on the improvement of the robotics vision based control strategy for underwater pipeline tracking system. The study focuses on developing image processing algorithms and a fuzzy inference system for the analysis of the terrain. The main goal is to implement the supervisory fuzzy learning control technique to reduce the errors on navigation decision due to the pipeline occlusion problem. The system developed is capable of interpreting underwater images containing occluded pipeline, seabed and other unwanted noise. The algorithm proposed in previous work does not explore the cooperation between fuzzy controllers, knowledge and learnt data to improve the outputs for underwater pipeline tracking. Computer simulations and prototype simulations demonstrate the effectiveness of this approach. The system accuracy level has also been discussed.

Keywords: Fuzzy logic, Underwater target tracking, Autonomous underwater vehicles, Artificial intelligence, Simulations, Robot navigation, Vision system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
292 Edge Detection in Digital Images Using Fuzzy Logic Technique

Authors: Abdallah A. Alshennawy, Ayman A. Aly

Abstract:

The fuzzy technique is an operator introduced in order to simulate at a mathematical level the compensatory behavior in process of decision making or subjective evaluation. The following paper introduces such operators on hand of computer vision application. In this paper a novel method based on fuzzy logic reasoning strategy is proposed for edge detection in digital images without determining the threshold value. The proposed approach begins by segmenting the images into regions using floating 3x3 binary matrix. The edge pixels are mapped to a range of values distinct from each other. The robustness of the proposed method results for different captured images are compared to those obtained with the linear Sobel operator. It is gave a permanent effect in the lines smoothness and straightness for the straight lines and good roundness for the curved lines. In the same time the corners get sharper and can be defined easily.

Keywords: Fuzzy logic, Edge detection, Image processing, computer vision, Mechanical parts, Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4768
291 An Improved Algorithm for Calculation of the Third-order Orthogonal Tensor Product Expansion by Using Singular Value Decomposition

Authors: Chiharu Okuma, Naoki Yamamoto, Jun Murakami

Abstract:

As a method of expanding a higher-order tensor data to tensor products of vectors we have proposed the Third-order Orthogonal Tensor Product Expansion (3OTPE) that did similar expansion as Higher-Order Singular Value Decomposition (HOSVD). In this paper we provide a computation algorithm to improve our previous method, in which SVD is applied to the matrix that constituted by the contraction of original tensor data and one of the expansion vector obtained. The residual of the improved method is smaller than the previous method, truncating the expanding tensor products to the same number of terms. Moreover, the residual is smaller than HOSVD when applying to color image data. It is able to be confirmed that the computing time of improved method is the same as the previous method and considerably better than HOSVD.

Keywords: Singular value decomposition (SVD), higher-orderSVD (HOSVD), outer product expansion, power method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
290 Localisation of Anatomical Soft Tissue Landmarks of the Head in CT Images

Authors: M. Ovinis, D. Kerr, K. Bouazza-Marouf, M. Vloeberghs

Abstract:

In this paper, algorithms for the automatic localisation of two anatomical soft tissue landmarks of the head the medial canthus (inner corner of the eye) and the tragus (a small, pointed, cartilaginous flap of the ear), in CT images are describet. These landmarks are to be used as a basis for an automated image-to-patient registration system we are developing. The landmarks are localised on a surface model extracted from CT images, based on surface curvature and a rule based system that incorporates prior knowledge of the landmark characteristics. The approach was tested on a dataset of near isotropic CT images of 95 patients. The position of the automatically localised landmarks was compared to the position of the manually localised landmarks. The average difference was 1.5 mm and 0.8 mm for the medial canthus and tragus, with a maximum difference of 4.5 mm and 2.6 mm respectively.The medial canthus and tragus can be automatically localised in CT images, with performance comparable to manual localisation

Keywords: Anatomical soft tissue landmarks, automatic localisation, Computed Tomography (CT)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
289 Human Facial Expression Recognition using MANFIS Model

Authors: V. Gomathi, Dr. K. Ramar, A. Santhiyaku Jeevakumar

Abstract:

Facial expression analysis plays a significant role for human computer interaction. Automatic analysis of human facial expression is still a challenging problem with many applications. In this paper, we propose neuro-fuzzy based automatic facial expression recognition system to recognize the human facial expressions like happy, fear, sad, angry, disgust and surprise. Initially facial image is segmented into three regions from which the uniform Local Binary Pattern (LBP) texture features distributions are extracted and represented as a histogram descriptor. The facial expressions are recognized using Multiple Adaptive Neuro Fuzzy Inference System (MANFIS). The proposed system designed and tested with JAFFE face database. The proposed model reports 94.29% of classification accuracy.

Keywords: Adaptive neuro-fuzzy inference system, Facialexpression, Local binary pattern, Uniform Histogram

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103
288 Identification of Healthy and BSR-Infected Oil Palm Trees Using Color Indices

Authors: Siti Khairunniza-Bejo, Yusnida Yusoff, Nik Salwani Nik Yusoff, Idris Abu Seman, Mohamad Izzuddin Anuar

Abstract:

Most of the oil palm plantations have been threatened by Basal Stem Rot (BSR) disease which causes serious economic impact. This study was conducted to identify the healthy and BSRinfected oil palm tree using thirteen color indices. Multispectral and thermal camera was used to capture 216 images of the leaves taken from frond number 1, 9 and 17. Indices of normalized difference vegetation index (NDVI), red (R), green (G), blue (B), near infrared (NIR), green – blue (GB), green/blue (G/B), green – red (GR), green/red (G/R), hue (H), saturation (S), intensity (I) and thermal index (T) were used. From this study, it can be concluded that G index taken from frond number 9 is the best index to differentiate between the healthy and BSR-infected oil palm trees. It not only gave high value of correlation coefficient (R=-0.962), but also high value of separation between healthy and BSR-infected oil palm tree. Furthermore, power and S model developed using G index gave the highest R2 value which is 0.985.

Keywords: Oil palm, image processing, disease, leaves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2960
287 Feature Extraction for Surface Classification – An Approach with Wavelets

Authors: Smriti H. Bhandari, S. M. Deshpande

Abstract:

Surface metrology with image processing is a challenging task having wide applications in industry. Surface roughness can be evaluated using texture classification approach. Important aspect here is appropriate selection of features that characterize the surface. We propose an effective combination of features for multi-scale and multi-directional analysis of engineering surfaces. The features include standard deviation, kurtosis and the Canny edge detector. We apply the method by analyzing the surfaces with Discrete Wavelet Transform (DWT) and Dual-Tree Complex Wavelet Transform (DT-CWT). We used Canberra distance metric for similarity comparison between the surface classes. Our database includes the surface textures manufactured by three machining processes namely Milling, Casting and Shaping. The comparative study shows that DT-CWT outperforms DWT giving correct classification performance of 91.27% with Canberra distance metric.

Keywords: Dual-tree complex wavelet transform, surface metrology, surface roughness, texture classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245
286 Evolutionary Eigenspace Learning using CCIPCA and IPCA for Face Recognition

Authors: Ghazy M.R. Assassa, Mona F. M. Mursi, Hatim A. Aboalsamh

Abstract:

Traditional principal components analysis (PCA) techniques for face recognition are based on batch-mode training using a pre-available image set. Real world applications require that the training set be dynamic of evolving nature where within the framework of continuous learning, new training images are continuously added to the original set; this would trigger a costly continuous re-computation of the eigen space representation via repeating an entire batch-based training that includes the old and new images. Incremental PCA methods allow adding new images and updating the PCA representation. In this paper, two incremental PCA approaches, CCIPCA and IPCA, are examined and compared. Besides, different learning and testing strategies are proposed and applied to the two algorithms. The results suggest that batch PCA is inferior to both incremental approaches, and that all CCIPCAs are practically equivalent.

Keywords: Candid covariance-free incremental principal components analysis (CCIPCA), face recognition, incremental principal components analysis (IPCA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
285 Image Analysis of Fine Structures of Supercavitation in the Symmetric Wake of a Cylinder

Authors: Y. Obikane , M.Kaneko, K.Kakioka, K.Ogura

Abstract:

The fine structure of supercavitation in the wake of a symmetrical cylinder is studied with high-speed video cameras. The flow is observed in a cavitation tunnel at the speed of 8m/sec when the sidewall and the wake are partially filled with the massive cavitation bubbles. The present experiment observed that a two-dimensional ripple wave with a wave length of 0.3mm is propagated in a downstream direction, and then abruptly increases to a thicker three-dimensional layer. IR-photography recorded that the wakes originated from the horseshoe vortexes alongside the cylinder. The wake was developed to inside the dead water zone, which absorbed the bubbly wake propelled from the separated vortices at the center of the cylinder. A remote sensing classification technique (maximum most likelihood) determined that the surface porosity was 0.2, and the mean speed in the mixed wake was 7m/sec. To confirm the existence of two-dimensional wave motions in the interface, the experiments were conducted at a very low frequency, and showed similar gravity waves in both the upper and lower interfaces.

Keywords: Supercavitation, density gradient correlation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
284 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries

Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammadhossein Sedaaghi

Abstract:

Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy CMeans (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic CMeans (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.

Keywords: Facial image, segmentation, PCM, FCM, skin error, facial surgery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
283 A Weighted Approach to Unconstrained Iris Recognition

Authors: Yao-Hong Tsai

Abstract:

This paper presents a weighted approach to unconstrained iris recognition. In nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition.

Keywords: Authentication, iris recognition, Adaboost, local binary pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
282 Analysis of Feature Space for a 2d/3d Vision based Emotion Recognition Method

Authors: Robert Niese, Ayoub Al-Hamadi, Bernd Michaelis

Abstract:

In modern human computer interaction systems (HCI), emotion recognition is becoming an imperative characteristic. The quest for effective and reliable emotion recognition in HCI has resulted in a need for better face detection, feature extraction and classification. In this paper we present results of feature space analysis after briefly explaining our fully automatic vision based emotion recognition method. We demonstrate the compactness of the feature space and show how the 2d/3d based method achieves superior features for the purpose of emotion classification. Also it is exposed that through feature normalization a widely person independent feature space is created. As a consequence, the classifier architecture has only a minor influence on the classification result. This is particularly elucidated with the help of confusion matrices. For this purpose advanced classification algorithms, such as Support Vector Machines and Artificial Neural Networks are employed, as well as the simple k- Nearest Neighbor classifier.

Keywords: Facial expression analysis, Feature extraction, Image processing, Pattern Recognition, Application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
281 Fingerprint Image Encryption Using a 2D Chaotic Map and Elliptic Curve Cryptography

Authors: D. M. S. Bandara, Yunqi Lei, Ye Luo

Abstract:

Fingerprints are suitable as long-term markers of human identity since they provide detailed and unique individual features which are difficult to alter and durable over life time. In this paper, we propose an algorithm to encrypt and decrypt fingerprint images by using a specially designed Elliptic Curve Cryptography (ECC) procedure based on block ciphers. In addition, to increase the confusing effect of fingerprint encryption, we also utilize a chaotic-behaved method called Arnold Cat Map (ACM) for a 2D scrambling of pixel locations in our method. Experimental results are carried out with various types of efficiency and security analyses. As a result, we demonstrate that the proposed fingerprint encryption/decryption algorithm is advantageous in several different aspects including efficiency, security and flexibility. In particular, using this algorithm, we achieve a margin of about 0.1% in the test of Number of Pixel Changing Rate (NPCR) values comparing to the-state-of-the-art performances.

Keywords: Arnold cat map, biometric encryption, block cipher, elliptic curve cryptography, fingerprint encryption, Koblitz’s Encoding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
280 Video Shot Detection and Key Frame Extraction Using Faber Shauder DWT and SVD

Authors: Assma Azeroual, Karim Afdel, Mohamed El Hajji, Hassan Douzi

Abstract:

Key frame extraction methods select the most representative frames of a video, which can be used in different areas of video processing such as video retrieval, video summary, and video indexing. In this paper we present a novel approach for extracting key frames from video sequences. The frame is characterized uniquely by his contours which are represented by the dominant blocks. These dominant blocks are located on the contours and its near textures. When the video frames have a noticeable changement, its dominant blocks changed, then we can extracte a key frame. The dominant blocks of every frame is computed, and then feature vectors are extracted from the dominant blocks image of each frame and arranged in a feature matrix. Singular Value Decomposition is used to calculate sliding windows ranks of those matrices. Finally the computed ranks are traced and then we are able to extract key frames of a video. Experimental results show that the proposed approach is robust against a large range of digital effects used during shot transition.

Keywords: Key Frame Extraction, Shot detection, FSDWT, Singular Value Decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2521
279 Frame Texture Classification Method (FTCM) Applied on Mammograms for Detection of Abnormalities

Authors: Kjersti Engan, Karl Skretting, Jostein Herredsvela, Thor Ole Gulsrud

Abstract:

Texture classification is an important image processing task with a broad application range. Many different techniques for texture classification have been explored. Using sparse approximation as a feature extraction method for texture classification is a relatively new approach, and Skretting et al. recently presented the Frame Texture Classification Method (FTCM), showing very good results on classical texture images. As an extension of that work the FTCM is here tested on a real world application as detection of abnormalities in mammograms. Some extensions to the original FTCM that are useful in some applications are implemented; two different smoothing techniques and a vector augmentation technique. Both detection of microcalcifications (as a primary detection technique and as a last stage of a detection scheme), and soft tissue lesions in mammograms are explored. All the results are interesting, and especially the results using FTCM on regions of interest as the last stage in a detection scheme for microcalcifications are promising.

Keywords: detection, mammogram, texture classification, dictionary learning, FTCM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393
278 Real Time Speed Estimation of Vehicles

Authors: Azhar Hussain, Kashif Shahzad, Chunming Tang

Abstract:

this paper gives a novel approach towards real-time speed estimation of multiple traffic vehicles using fuzzy logic and image processing techniques with proper arrangement of camera parameters. The described algorithm consists of several important steps. First, the background is estimated by computing median over time window of specific frames. Second, the foreground is extracted using fuzzy similarity approach (FSA) between estimated background pixels and the current frame pixels containing foreground and background. Third, the traffic lanes are divided into two parts for both direction vehicles for parallel processing. Finally, the speeds of vehicles are estimated by Maximum a Posterior Probability (MAP) estimator. True ground speed is determined by utilizing infrared sensors for three different vehicles and the results are compared to the proposed algorithm with an accuracy of ± 0.74 kmph.

Keywords: Defuzzification, Fuzzy similarity approach, lane cropping, Maximum a Posterior Probability (MAP) estimator, Speed estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2807
277 The Temperature Effects on the Microstructure and Profile in Laser Cladding

Authors: P. C. Chiu, Jehnming Lin

Abstract:

In this study, a 50-W CO2 laser was used for the clad of 304L powders on the stainless steel substrate with a temperature sensor and image monitoring system. The laser power and cladding speed and focal position were modified to achieve the requirement of the workpiece flatness and mechanical properties. The numerical calculation is based on ANSYS to analyze the temperature change of the moving heat source at different surface positions when coating the workpiece, and the effect of the process parameters on the bath size was discussed. The temperature of stainless steel powder in the nozzle outlet reacting with the laser was simulated as a process parameter. In the experiment, the difference of the thermal conductivity in three-dimensional space is compared with single-layer cladding and multi-layer cladding. The heat dissipation pattern of the single-layer cladding is the steel plate and the multi-layer coating is the workpiece itself. The relationship between the multi-clad temperature and the profile was analyzed by the temperature signal from an IR pyrometer.

Keywords: Laser cladding, temperature, profile, microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1070
276 A Cheating Model for Cellular Automata-Based Secret Sharing Schemes

Authors: Borna Jafarpour, Azadeh Nematzadeh, Vahid Kazempour, Babak Sadeghian

Abstract:

Cellular automata have been used for design of cryptosystems. Recently some secret sharing schemes based on linear memory cellular automata have been introduced which are used for both text and image. In this paper, we illustrate that these secret sharing schemes are vulnerable to dishonest participants- collusion. We propose a cheating model for the secret sharing schemes based on linear memory cellular automata. For this purpose we present a novel uniform model for representation of all secret sharing schemes based on cellular automata. Participants can cheat by means of sending bogus shares or bogus transition rules. Cheaters can cooperate to corrupt a shared secret and compute a cheating value added to it. Honest participants are not aware of cheating and suppose the incorrect secret as the valid one. We prove that cheaters can recover valid secret by removing the cheating value form the corrupted secret. We provide methods of calculating the cheating value.

Keywords: Cellular automata, cheating model, secret sharing, threshold scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
275 Neural Network based Texture Analysis of Liver Tumor from Computed Tomography Images

Authors: K.Mala, V.Sadasivam, S.Alagappan

Abstract:

Advances in clinical medical imaging have brought about the routine production of vast numbers of medical images that need to be analyzed. As a result an enormous amount of computer vision research effort has been targeted at achieving automated medical image analysis. Computed Tomography (CT) is highly accurate for diagnosing liver tumors. This study aimed to evaluate the potential role of the wavelet and the neural network in the differential diagnosis of liver tumors in CT images. The tumors considered in this study are hepatocellular carcinoma, cholangio carcinoma, hemangeoma and hepatoadenoma. Each suspicious tumor region was automatically extracted from the CT abdominal images and the textural information obtained was used to train the Probabilistic Neural Network (PNN) to classify the tumors. Results obtained were evaluated with the help of radiologists. The system differentiates the tumor with relatively high accuracy and is therefore clinically useful.

Keywords: Fuzzy c means clustering, texture analysis, probabilistic neural network, LVQ neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2989
274 Combining Color and Layout Features for the Identification of Low-resolution Documents

Authors: Ardhendu Behera, Denis Lalanne, Rolf Ingold

Abstract:

This paper proposes a method, combining color and layout features, for identifying documents captured from lowresolution handheld devices. On one hand, the document image color density surface is estimated and represented with an equivalent ellipse and on the other hand, the document shallow layout structure is computed and hierarchically represented. The combined color and layout features are arranged in a symbolic file, which is unique for each document and is called the document-s visual signature. Our identification method first uses the color information in the signatures in order to focus the search space on documents having a similar color distribution, and finally selects the document having the most similar layout structure in the remaining search space. Finally, our experiment considers slide documents, which are often captured using handheld devices.

Keywords: Document color modeling, document visual signature, kernel density estimation, document identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
273 Aliveness Detection of Fingerprints using Multiple Static Features

Authors: Heeseung Choi, Raechoong Kang, Kyungtaek Choi, Jaihie Kim

Abstract:

Fake finger submission attack is a major problem in fingerprint recognition systems. In this paper, we introduce an aliveness detection method based on multiple static features, which derived from a single fingerprint image. The static features are comprised of individual pore spacing, residual noise and several first order statistics. Specifically, correlation filter is adopted to address individual pore spacing. The multiple static features are useful to reflect the physiological and statistical characteristics of live and fake fingerprint. The classification can be made by calculating the liveness scores from each feature and fusing the scores through a classifier. In our dataset, we compare nine classifiers and the best classification rate at 85% is attained by using a Reduced Multivariate Polynomial classifier. Our approach is faster and more convenient for aliveness check for field applications.

Keywords: Aliveness detection, Fingerprint recognition, individual pore spacing, multiple static features, residual noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926