Search results for: wireless mesh networks (WMNs)
1182 An Autonomous Collaborative Forecasting System Implementation – The First Step towards Successful CPFR System
Authors: Chi-Fang Huang, Yun-Shiow Chen, Yun-Kung Chung
Abstract:
In the past decade, artificial neural networks (ANNs) have been regarded as an instrument for problem-solving and decision-making; indeed, they have already done with a substantial efficiency and effectiveness improvement in industries and businesses. In this paper, the Back-Propagation neural Networks (BPNs) will be modulated to demonstrate the performance of the collaborative forecasting (CF) function of a Collaborative Planning, Forecasting and Replenishment (CPFR®) system. CPFR functions the balance between the sufficient product supply and the necessary customer demand in a Supply and Demand Chain (SDC). Several classical standard BPN will be grouped, collaborated and exploited for the easy implementation of the proposed modular ANN framework based on the topology of a SDC. Each individual BPN is applied as a modular tool to perform the task of forecasting SKUs (Stock-Keeping Units) levels that are managed and supervised at a POS (point of sale), a wholesaler, and a manufacturer in an SDC. The proposed modular BPN-based CF system will be exemplified and experimentally verified using lots of datasets of the simulated SDC. The experimental results showed that a complex CF problem can be divided into a group of simpler sub-problems based on the single independent trading partners distributed over SDC, and its SKU forecasting accuracy was satisfied when the system forecasted values compared to the original simulated SDC data. The primary task of implementing an autonomous CF involves the study of supervised ANN learning methodology which aims at making “knowledgeable" decision for the best SKU sales plan and stocks management.Keywords: CPFR, artificial neural networks, global logistics, supply and demand chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19931181 Smart Spoiler for Race Car
Authors: M.H. Djavareshkian, A. Esmaeli
Abstract:
A pressure-based implicit procedure to solve Navier- Stokes equations on a nonorthogonal mesh with collocated finite volume formulation is used to simulate flow around the smart and conventional flaps of spoiler under the ground effect. Cantilever beam with uniformly varying load with roller support at the free end is considered for smart flaps. The boundedness criteria for this procedure are determined from a Normalized Variable diagram (NVD) scheme. The procedure incorporates es the k -ε eddyviscosity turbulence model. The method is first validated against experimental data. Then, the algorithm is applied for turbulent aerodynamic flows around a spoiler section with smart and conventional flaps for different attack angle, flap angle and ground clearance where the results of two flaps are compared.Keywords: Smart spoiler, Ground Effect, Flap, Aerodynamic coefficients, Race car.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25191180 Future Logistics - Challenges, Requirements and Solutions for Logistics Networks
Authors: Martin Roth, Axel Klarmann, Bogdan Franczyk
Abstract:
The importance of logistics has changed enormously in the last few decades. While logistics was formerly one of the core functions of most companies, logistics or at least parts of their functions are nowadays outsourced to external logistic service providers in terms of contracts. As a result of this shift new business models like the fourth party logistics provider emerged, which designs, plans and monitors the resulting logistics networks. This new business model and topics such as Synchromodality or Big Data impose new requirements on the underlying IT, which cannot be met with conventional concepts and approaches. In this paper, the challenges of logistics network monitoring are outlined by using a scenario. The most common layers in a logical multilayered architecture for an information system are used to point out the arising challenges for IT. In addition, first appropriate solution approaches are introduced.
Keywords: Complex Event Processing, Fourth Party Logistics Service Provider, Logistics monitoring, Synchromodality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33761179 Study and Enhancement of Flash Evaporation Desalination Utilizing the Ocean Thermocline and Discharged heat
Authors: Sami Mutair, Yasuyuki Ikegami
Abstract:
This paper reports on the results of experimental investigations of flash evaporation from superheated jet issues vertically upward from a round straight nozzle of 81.3 mm diameter. For the investigated range of jet superheat degree and velocity, it was shown that flash evaporation enhances with initial temperature increase. Due to the increase of jet inertia and subsequently the delay of jet shattering, increase of jet velocity was found to result in increase of evaporation "delay period". An empirical equation predicts the jet evaporation completion height was developed, this equation is thought to be useful in designing the flash evaporation chamber. In attempts for enhancement of flash evaporation, use of steel wire mesh located at short distance downstream was found effective with no consequent pressure drop.Keywords: Enhancement; Flash Evaporation; OTEC; superheated jet
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30431178 Validity Domains of Beams Behavioural Models: Efficiency and Reduction with Artificial Neural Networks
Authors: Keny Ordaz-Hernandez, Xavier Fischer, Fouad Bennis
Abstract:
In a particular case of behavioural model reduction by ANNs, a validity domain shortening has been found. In mechanics, as in other domains, the notion of validity domain allows the engineer to choose a valid model for a particular analysis or simulation. In the study of mechanical behaviour for a cantilever beam (using linear and non-linear models), Multi-Layer Perceptron (MLP) Backpropagation (BP) networks have been applied as model reduction technique. This reduced model is constructed to be more efficient than the non-reduced model. Within a less extended domain, the ANN reduced model estimates correctly the non-linear response, with a lower computational cost. It has been found that the neural network model is not able to approximate the linear behaviour while it does approximate the non-linear behaviour very well. The details of the case are provided with an example of the cantilever beam behaviour modelling.
Keywords: artificial neural network, validity domain, cantileverbeam, non-linear behaviour, model reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14281177 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform
Abstract:
Image recognition enables machine-like robotics to understand a scene and plays an important role in computer vision applications. Computer vision platforms as physical infrastructure, supporting Neural Networks for image recognition, are deterministic to leverage the performance of different Neural Networks. In this paper, three different computer vision platforms – edge AI (Jetson Nano, with 4GB), a standalone laptop (with RTX 3000s, using CUDA), and a web-based device (Google Colab, using GPU) are investigated. In the case study, four prominent neural network architectures (including AlexNet, VGG16, GoogleNet, and ResNet (34/50)), are deployed. By using public ImageNets (Cifar-10), our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.
Keywords: AlexNet, VGG, GoogleNet, ResNet, ImageNet, Cifar-10, Edge AI, Jetson Nano, CUDA, GPU.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211176 Apoptosis Inspired Intrusion Detection System
Authors: R. Sridevi, G. Jagajothi
Abstract:
Artificial Immune Systems (AIS), inspired by the human immune system, are algorithms and mechanisms which are self-adaptive and self-learning classifiers capable of recognizing and classifying by learning, long-term memory and association. Unlike other human system inspired techniques like genetic algorithms and neural networks, AIS includes a range of algorithms modeling on different immune mechanism of the body. In this paper, a mechanism of a human immune system based on apoptosis is adopted to build an Intrusion Detection System (IDS) to protect computer networks. Features are selected from network traffic using Fisher Score. Based on the selected features, the record/connection is classified as either an attack or normal traffic by the proposed methodology. Simulation results demonstrates that the proposed AIS based on apoptosis performs better than existing AIS for intrusion detection.
Keywords: Apoptosis, Artificial Immune System (AIS), Fisher Score, KDD dataset, Network intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21911175 Formal Verification of a Multicast Protocol in Mobile Networks
Authors: M. Matash Borujerdi, S.M. Mirzababaei
Abstract:
As computer network technology becomes increasingly complex, it becomes necessary to place greater requirements on the validity of developing standards and the resulting technology. Communication networks are based on large amounts of protocols. The validity of these protocols have to be proved either individually or in an integral fashion. One strategy for achieving this is to apply the growing field of formal methods. Formal methods research defines systems in high order logic so that automated reasoning can be applied for verification. In this research we represent and implement a formerly announced multicast protocol in Prolog language so that certain properties of the protocol can be verified. It is shown that by using this approach some minor faults in the protocol were found and repaired. Describing the protocol as facts and rules also have other benefits i.e. leads to a process-able knowledge. This knowledge can be transferred as ontology between systems in KQML format. Since the Prolog language can increase its knowledge base every time, this method can also be used to learn an intelligent network.Keywords: Formal methods, MobiCast, Mobile Network, Multicast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13801174 An Integrated Software Architecture for Bandwidth Adaptive Video Streaming
Authors: T. Arsan
Abstract:
Video streaming over lossy IP networks is very important issues, due to the heterogeneous structure of networks. Infrastructure of the Internet exhibits variable bandwidths, delays, congestions and time-varying packet losses. Because of variable attributes of the Internet, video streaming applications should not only have a good end-to-end transport performance but also have a robust rate control, furthermore multipath rate allocation mechanism. So for providing the video streaming service quality, some other components such as Bandwidth Estimation and Adaptive Rate Controller should be taken into consideration. This paper gives an overview of video streaming concept and bandwidth estimation tools and then introduces special architectures for bandwidth adaptive video streaming. A bandwidth estimation algorithm – pathChirp, Optimized Rate Controllers and Multipath Rate Allocation Algorithm are considered as all-in-one solution for video streaming problem. This solution is directed and optimized by a decision center which is designed for obtaining the maximum quality at the receiving side.Keywords: Adaptive Video Streaming, Bandwidth Estimation, QoS, Software Architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14311173 Definition of Foot Size Model using Kohonen Network
Authors: Khawla Ben Abderrahim
Abstract:
In order to define a new model of Tunisian foot sizes and for building the most comfortable shoes, Tunisian industrialists must be able to offer for their customers products able to put on and adjust the majority of the target population concerned. Moreover, the use of models of shoes, mainly from others country, causes a mismatch between the foot and comfort of the Tunisian shoes. But every foot is unique; these models become uncomfortable for the Tunisian foot. We have a set of measures produced from a 3D scan of the feet of a diverse population (women, men ...) and we try to analyze this data to define a model of foot specific to the Tunisian footwear design. In this paper we propose tow new approaches to modeling a new foot sizes model. We used, indeed, the neural networks, and specially the Kohonen network. Next, we combine neural networks with the concept of half-foot size to improve the models already found. Finally, it was necessary to compare the results obtained by applying each approach and we decide what-s the best approach that give us the most model of foot improving more comfortable shoes.Keywords: Morphology of the foot, foot size, half foot size, neural network, Kohonen network, model of foot size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15551172 Development of the Maturity Sensor Prototype and Method of Its Placement in the Structure
Authors: Ye. B. Utepov, A. S. Tulebekova, A. B. Kazkeyev
Abstract:
Maturity sensors are used to determine concrete strength by the non-destructive method. The method of placement of the maturity sensors determines their number required for a certain frame of a monolithic building. This paper proposes a cheap prototype of an embedded wireless sensor for monitoring concrete structures, as well as an alternative strategy for placing sensors based on the transitional boundaries of the temperature distribution of concrete curing, which were determined by building a heat map of the temperature distribution, where unknown values are calculated by the method of inverse distance weighing. The developed prototype can simultaneously measure temperature and relative humidity over a smartphone-controlled time interval. It implements a maturity method to assess the in-situ strength of concrete, which is considered an alternative to the traditional shock impulse and compression testing method used in Kazakhstan. The prototype was tested in laboratory and field conditions. The tests were aimed at studying the effect of internal and external temperature and relative humidity on concrete's strength gain. Based on an experimentally poured concrete slab with randomly integrated maturity sensors, it the transition boundaries form elliptical forms were determined. Temperature distribution over the largest diameter of the ellipses was plotted, resulting in correct and inverted parabolas. As a result, the distance between the closest opposite crossing points of the parabolas is accepted as the maximum permissible step for setting the maturity sensors. The proposed placement strategy can be applied to sensors that measure various continuous phenomena such as relative humidity. Prototype testing has also revealed Bluetooth inconvenience due to weak signal and inability to access multiple prototypes simultaneously. For this reason, further prototype upgrades are planned in the future work.
Keywords: Heat map, placement strategy, temperature and relative humidity, wireless embedded sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3651171 Hybrid Antenna Array with the Bowtie Elements for Super-Resolution and 3D Scanning Radars
Authors: Somayeh Komeylian
Abstract:
The antenna arrays for the entire 3D spherical coverage have been developed for their potential use in variety of applications such as radars and body-worn devices of the body area networks. In this study, we have rigorously revamped the hybrid antenna array using the optimum geometry of bowtie elements for achieving a significant improvement in the angular discrimination capability as well as in separating two adjacent targets. In this scenario, we have analogously investigated the effectiveness of increasing the virtual array length in fostering and enhancing the directivity and angular resolution in the 10 GHz frequency. The simulation results have extensively verified that the proposed antenna array represents a drastic enhancement in terms of size, directivity, side lobe level (SLL) and, especially resolution compared with the other available geometries. We have also verified that the maximum directivities of the proposed hybrid antenna array represent the robustness to the all variations, which is accompanied by the uniform 3D scanning characteristic.Keywords: Bowtie antenna, hybrid antenna array, array signal processing, body area networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9251170 Numerical Study of Flow Separation Control over a NACA2415 Airfoil
Authors: M. Tahar Bouzaher
Abstract:
This study involves numerical simulation of the flow around a NACA2415 airfoil, with a 18° angle of attack, and flow separation control using a rod, It involves putting a cylindrical rod - upstream of the leading edge- in vertical translation movement in order to accelerate the transition of the boundary layer by interaction between the rod wake and the boundary layer. The viscous, nonstationary flow is simulated using ANSYS FLUENT 13. The rod movement is reproduced using the dynamic mesh technique and an in-house developed UDF (User Define Function). The frequency varies from 75 to 450 Hz and the considered amplitudes are 2%, and 3% of the foil chord. The frequency chosen closed to the frequency of separation. Our results showed a substantial modification in the flow behavior and a maximum drag reduction of 61%.
Keywords: CFD, Flow separation, Active control, Boundary layer, rod, NACA 2415.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29991169 Discrimination of Seismic Signals Using Artificial Neural Networks
Authors: Mohammed Benbrahim, Adil Daoudi, Khalid Benjelloun, Aomar Ibenbrahim
Abstract:
The automatic discrimination of seismic signals is an important practical goal for earth-science observatories due to the large amount of information that they receive continuously. An essential discrimination task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, two classes of seismic signals recorded routinely in geophysical laboratory of the National Center for Scientific and Technical Research in Morocco are considered. They correspond to signals associated to local earthquakes and chemical explosions. The approach adopted for the development of an automatic discrimination system is a modular system composed by three blocs: 1) Representation, 2) Dimensionality reduction and 3) Classification. The originality of our work consists in the use of a new wavelet called "modified Mexican hat wavelet" in the representation stage. For the dimensionality reduction, we propose a new algorithm based on the random projection and the principal component analysis.Keywords: Seismic signals, Wavelets, Dimensionality reduction, Artificial neural networks, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16341168 Genetic Algorithm Based Wavelength Division Multiplexing Networks Planning
Authors: S.Baskar, P.S.Ramkumar, R.Kesavan
Abstract:
This paper presents a new heuristic algorithm useful for long-term planning of survivable WDM networks. A multi-period model is formulated that combines network topology design and capacity expansion. The ability to determine network expansion schedules of this type becomes increasingly important to the telecommunications industry and to its customers. The solution technique consists of a Genetic Algorithm that allows generating several network alternatives for each time period simultaneously and shortest-path techniques to deduce from these alternatives a least-cost network expansion plan over all time periods. The multi-period planning approach is illustrated on a realistic network example. Extensive simulations on a wide range of problem instances are carried out to assess the cost savings that can be expected by choosing a multi-period planning approach instead of an iterative network expansion design method.Keywords: Wavelength Division Multiplexing, Genetic Algorithm, Network topology, Multi-period reliable network planning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14361167 Efficient and Extensible Data Processing Framework in Ubiquitious Sensor Networks
Authors: Junghoon Lee, Gyung-Leen Park, Ho-Young Kwak, Cheol Min Kim
Abstract:
This paper presents the design and implements the prototype of an intelligent data processing framework in ubiquitous sensor networks. Much focus is put on how to handle the sensor data stream as well as the interoperability between the low-level sensor data and application clients. Our framework first addresses systematic middleware which mitigates the interaction between the application layer and low-level sensors, for the sake of analyzing a great volume of sensor data by filtering and integrating to create value-added context information. Then, an agent-based architecture is proposed for real-time data distribution to efficiently forward a specific event to the appropriate application registered in the directory service via the open interface. The prototype implementation demonstrates that our framework can host a sophisticated application on the ubiquitous sensor network and it can autonomously evolve to new middleware, taking advantages of promising technologies such as software agents, XML, cloud computing, and the like.
Keywords: sensor network, intelligent farm, middleware, event detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13571166 Improving the Performance of Back-Propagation Training Algorithm by Using ANN
Authors: Vishnu Pratap Singh Kirar
Abstract:
Artificial Neural Network (ANN) can be trained using back propagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a twoterm algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.
Keywords: Neural Network, Backpropagation, Local Minima, Fast Convergence Rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35591165 Image Mapping with Cumulative Distribution Function for Quick Convergence of Counter Propagation Neural Networks in Image Compression
Authors: S. Anna Durai, E. Anna Saro
Abstract:
In general the images used for compression are of different types like dark image, high intensity image etc. When these images are compressed using Counter Propagation Neural Network, it takes longer time to converge. The reason for this is that the given image may contain a number of distinct gray levels with narrow difference with their neighborhood pixels. If the gray levels of the pixels in an image and their neighbors are mapped in such a way that the difference in the gray levels of the neighbor with the pixel is minimum, then compression ratio as well as the convergence of the network can be improved. To achieve this, a Cumulative Distribution Function is estimated for the image and it is used to map the image pixels. When the mapped image pixels are used the Counter Propagation Neural Network yield high compression ratio as well as it converges quickly.Keywords: Correlation, Counter Propagation Neural Networks, Cummulative Distribution Function, Image compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16701164 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.Keywords: Deep learning, long-short-term memory, energy, renewable energy load forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15961163 An Improved Conjugate Gradient Based Learning Algorithm for Back Propagation Neural Networks
Authors: N. M. Nawi, R. S. Ransing, M. R. Ransing
Abstract:
The conjugate gradient optimization algorithm is combined with the modified back propagation algorithm to yield a computationally efficient algorithm for training multilayer perceptron (MLP) networks (CGFR/AG). The computational efficiency is enhanced by adaptively modifying initial search direction as described in the following steps: (1) Modification on standard back propagation algorithm by introducing a gain variation term in the activation function, (2) Calculation of the gradient descent of error with respect to the weights and gains values and (3) the determination of a new search direction by using information calculated in step (2). The performance of the proposed method is demonstrated by comparing accuracy and computation time with the conjugate gradient algorithm used in MATLAB neural network toolbox. The results show that the computational efficiency of the proposed method was better than the standard conjugate gradient algorithm.
Keywords: Adaptive gain variation, back-propagation, activation function, conjugate gradient, search direction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15211162 Separation of Water/Organic Mixtures Using Micro- and Nanostructured Membranes of Special Type of Wettability
Authors: F. R. Sultanov Ch. Daulbayev, B. Bakbolat, Z. A. Mansurov, A. A. Zhurintaeva, R. I. Gadilshina, A. B. Dugali
Abstract:
Both hydrophilic-oleophobic and hydrophobic-oleophilic membranes were obtained by coating of the substrate of membranes, presented by stainless steel meshes with various dimensions of their openings, with a composition that forms the special type of their surface wettability via spray-coating method. The surface morphology of resulting membranes was studied using SEM, the type of their wettability was identified by measuring the contact angle between the surface of membrane and a drop of studied liquid (water or organic liquid) and efficiency of continuous separation of water and organic liquid was studied on self-assembled setup.
Keywords: Membrane, stainless steel mesh, oleophobicity, hydrophobicity, separation, water, organic liquids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8341161 Surface Flattening based on Linear-Elastic Finite Element Method
Authors: Wen-liang Chen, Peng Wei, Yidong Bao
Abstract:
This paper presents a linear-elastic finite element method based flattening algorithm for three dimensional triangular surfaces. First, an intrinsic characteristic preserving method is used to obtain the initial developing graph, which preserves the angles and length ratios between two adjacent edges. Then, an iterative equation is established based on linear-elastic finite element method and the flattening result with an equilibrium state of internal force is obtained by solving this iterative equation. The results show that complex surfaces can be dealt with this proposed method, which is an efficient tool for the applications in computer aided design, such as mould design.
Keywords: Triangular mesh, surface flattening, finite elementmethod, linear-elastic deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31631160 Low Latency Routing Algorithm for Unmanned Aerial Vehicles Ad-Hoc Networks
Authors: Abdel Ilah Alshabtat, Liang Dong
Abstract:
In this paper, we proposed a new routing protocol for Unmanned Aerial Vehicles (UAVs) that equipped with directional antenna. We named this protocol Directional Optimized Link State Routing Protocol (DOLSR). This protocol is based on the well known protocol that is called Optimized Link State Routing Protocol (OLSR). We focused in our protocol on the multipoint relay (MPR) concept which is the most important feature of this protocol. We developed a heuristic that allows DOLSR protocol to minimize the number of the multipoint relays. With this new protocol the number of overhead packets will be reduced and the End-to-End delay of the network will also be minimized. We showed through simulation that our protocol outperformed Optimized Link State Routing Protocol, Dynamic Source Routing (DSR) protocol and Ad- Hoc On demand Distance Vector (AODV) routing protocol in reducing the End-to-End delay and enhancing the overall throughput. Our evaluation of the previous protocols was based on the OPNET network simulation tool.Keywords: Mobile Ad-Hoc Networks, Ad-Hoc RoutingProtocols, Optimized link State Routing Protocol, Unmanned AerialVehicles, Directional Antenna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25071159 Approximate Bounded Knowledge Extraction Using Type-I Fuzzy Logic
Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil
Abstract:
Using neural network we try to model the unknown function f for given input-output data pairs. The connection strength of each neuron is updated through learning. Repeated simulations of crisp neural network produce different values of weight factors that are directly affected by the change of different parameters. We propose the idea that for each neuron in the network, we can obtain quasi-fuzzy weight sets (QFWS) using repeated simulation of the crisp neural network. Such type of fuzzy weight functions may be applied where we have multivariate crisp input that needs to be adjusted after iterative learning, like claim amount distribution analysis. As real data is subjected to noise and uncertainty, therefore, QFWS may be helpful in the simplification of such complex problems. Secondly, these QFWS provide good initial solution for training of fuzzy neural networks with reduced computational complexity.
Keywords: Crisp neural networks, fuzzy systems, extraction of logical rules, quasi-fuzzy numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17401158 Relations of Progression in Cognitive Decline with Initial EEG Resting-State Functional Network in Mild Cognitive Impairment
Authors: Chia-Feng Lu, Yuh-Jen Wang, Yu-Te Wu, Sui-Hing Yan
Abstract:
This study aimed at investigating whether the functional brain networks constructed using the initial EEG (obtained when patients first visited hospital) can be correlated with the progression of cognitive decline calculated as the changes of mini-mental state examination (MMSE) scores between the latest and initial examinations. We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions, and the network analysis based on graph theory to investigate the organization of functional networks in aMCI. Our finding suggested that higher integrated functional network with sufficient connection strengths, dense connection between local regions, and high network efficiency in processing information at the initial stage may result in a better prognosis of the subsequent cognitive functions for aMCI. In conclusion, the functional connectivity can be a useful biomarker to assist in prediction of cognitive declines in aMCI.
Keywords: Cognitive decline, functional connectivity, MCI, MMSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24101157 Identification of the Main Transition Velocities in a Bubble Column Based on a Modified Shannon Entropy
Authors: Stoyan Nedeltchev, Markus Schubert
Abstract:
The gas holdup fluctuations in a bubble column (0.15 m in ID) have been recorded by means of a conductivity wire-mesh sensor in order to extract information about the main transition velocities. These parameters are very important for bubble column design, operation and scale-up. For this purpose, the classical definition of the Shannon entropy was modified and used to identify both the onset (at UG=0.034 m/s) of the transition flow regime and the beginning (at UG=0.089 m/s) of the churn-turbulent flow regime. The results were compared with the Kolmogorov entropy (KE) results. A slight discrepancy was found, namely the transition velocities identified by means of the KE were shifted to somewhat higher (0.045 and 0.101 m/s) superficial gas velocities UG.Keywords: Bubble column, gas holdup fluctuations, Modified Shannon entropy, Kolmogorov entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16951156 Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water
Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian, D. Ashouri
Abstract:
In this research, the capability of neural networks in modeling and learning complicated and nonlinear relations has been used to develop a model for the prediction of changes in the diameter of bubbles in pool boiling distilled water. The input parameters used in the development of this network include element temperature, heat flux, and retention time of bubbles. The test data obtained from the experiment of the pool boiling of distilled water, and the measurement of the bubbles form on the cylindrical element. The model was developed based on training algorithm, which is typologically of back-propagation type. Considering the correlation coefficient obtained from this model is 0.9633. This shows that this model can be trusted for the simulation and modeling of the size of bubble and thermal transfer of boiling.
Keywords: Bubble Diameter, Heat Flux, Neural Network, Training Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14561155 A New Approach for Network Reconfiguration Problem in Order to Deviation Bus Voltage Minimization with Regard to Probabilistic Load Model and DGs
Authors: Mahmood Reza Shakarami, Reza Sedaghati
Abstract:
Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. The distribution feeder reconfiguration (DFR) is one of the most important control schemes in the distribution networks, which can be affected by DGs. This paper presents a new approach to DFR at the distribution networks considering wind turbines. The main objective of the DFR is to minimize the deviation of the bus voltage. Since the DFR is a nonlinear optimization problem, we apply the Adaptive Modified Firefly Optimization (AMFO) approach to solve it. As a result of the conflicting behavior of the single- objective function, a fuzzy based clustering technique is employed to reach the set of optimal solutions called Pareto solutions. The approach is tested on the IEEE 32-bus standard test system.
Keywords: Adaptive Modified Firefly Optimization (AMFO), Pareto solutions, feeder reconfiguration, wind turbines, bus voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20171154 Affine Radial Basis Function Neural Networks for the Robust Control of Hyperbolic Distributed Parameter Systems
Authors: Eleni Aggelogiannaki, Haralambos Sarimveis
Abstract:
In this work, a radial basis function (RBF) neural network is developed for the identification of hyperbolic distributed parameter systems (DPSs). This empirical model is based only on process input-output data and used for the estimation of the controlled variables at specific locations, without the need of online solution of partial differential equations (PDEs). The nonlinear model that is obtained is suitably transformed to a nonlinear state space formulation that also takes into account the model mismatch. A stable robust control law is implemented for the attenuation of external disturbances. The proposed identification and control methodology is applied on a long duct, a common component of thermal systems, for a flow based control of temperature distribution. The closed loop performance is significantly improved in comparison to existing control methodologies.
Keywords: Hyperbolic Distributed Parameter Systems, Radial Basis Function Neural Networks, H∞ control, Thermal systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14201153 Coil and Jacket's Effects on Internal Flow Behavior and Heat Transfer in Stirred Tanks
Authors: B. Lakghomi, E. Kolahchian, A. Jalali, F. Farhadi
Abstract:
Different approaches for heating\cooling of stirred tanks, coils and jackets, are investigated using computational fluid dynamics (CFD).A time-dependant sliding mesh approach is applied to simulate the flow in both conditions. The investigations are carried out under the turbulent flow conditions for a Rushton impeller and heating elements are considered isothermal. The flow behavior and temperature distribution are studied for each case and heat transfer coefficient is calculated. Results show different velocity profiles for each case. Unsteady temperature distribution is not similar for different cases .In the case of the coiled stirred vessel more uniform temperature and higher heat transfer coefficient is resulted.
Keywords: CFD, coil and jacket, heat transfer, stirred tank.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4912