Search results for: variance estimation.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1371

Search results for: variance estimation.

141 Estimation of the Minimum Floor Length Downstream Regulators under Different Flow Scenarios

Authors: Bakhiet, Shenouda, Gamal Abouzeid Abdel-Rahim, Norihiro Izumi

Abstract:

The correct design of the regulators structure requires complete prediction of the ultimate dimensions of the scour hole profile formed downstream the solid apron. The study of scour downstream regulator is studied either on solid aprons by means of velocity distribution or on movable bed by studying the topography of the scour hole formed in the downstream. In this paper, a new technique was developed to study the scour hole downstream regulators on movable beds. The study was divided into two categories; the first is to find out the sum of the lengths of rigid apron behind the gates in addition to the length of scour hole formed downstream, while the second is to find the minimum length of rigid apron behind the gates to prevent erosion downstream it. The study covers free and submerged hydraulic jump conditions in both symmetrical and asymmetrical under-gated regulations. From the comparison between the studied categories, we found that the minimum length of rigid apron to prevent scour (Ls) is greater than the sum of the lengths of rigid apron and that of scour hole formed behind it (L+Xs). On the other hand, the scour hole dimensions in case of submerged hydraulic jump is always greater than free one, also the scour hole dimensions in asymmetrical operation is greater than symmetrical one.

Keywords: Movable bed, Regulators, Scour, Symmetrical and asymmetrical operation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
140 Mobile Robot Control by Von Neumann Computer

Authors: E. V. Larkin, T. A. Akimenko, A. V. Bogomolov, A. N. Privalov

Abstract:

The digital control system of mobile robots (MR) control is considered. It is shown that sequential interpretation of control algorithm operators, unfolding in physical time, suggests the occurrence of time delays between inputting data from sensors and outputting data to actuators. Another destabilizing control factor is presence of backlash in the joints of an actuator with an executive unit. Complex model of control system, which takes into account the dynamics of the MR, the dynamics of the digital controller and backlash in actuators, is worked out. The digital controller model is divided into two parts: the first part describes the control law embedded in the controller in the form of a control program that realizes a polling procedure when organizing transactions to sensors and actuators. The second part of the model describes the time delays that occur in the Von Neumann-type controller when processing data. To estimate time intervals, the algorithm is represented in the form of an ergodic semi-Markov process. For an ergodic semi-Markov process of common form, a method is proposed for estimation a wandering time from one arbitrary state to another arbitrary state. Example shows how the backlash and time delays affect the quality characteristics of the MR control system functioning.

Keywords: Mobile robot, backlash, control algorithm, Von Neumann controller, semi-Markov process, time delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 366
139 Brain Image Segmentation Using Conditional Random Field Based On Modified Artificial Bee Colony Optimization Algorithm

Authors: B. Thiagarajan, R. Bremananth

Abstract:

Tumor is an uncontrolled growth of tissues in any part of the body. Tumors are of different types and they have different characteristics and treatments. Brain tumor is inherently serious and life-threatening because of its character in the limited space of the intracranial cavity (space formed inside the skull). Locating the tumor within MR (magnetic resonance) image of brain is integral part of the treatment of brain tumor. This segmentation task requires classification of each voxel as either tumor or non-tumor, based on the description of the voxel under consideration. Many studies are going on in the medical field using Markov Random Fields (MRF) in segmentation of MR images. Even though the segmentation process is better, computing the probability and estimation of parameters is difficult. In order to overcome the aforementioned issues, Conditional Random Field (CRF) is used in this paper for segmentation, along with the modified artificial bee colony optimization and modified fuzzy possibility c-means (MFPCM) algorithm. This work is mainly focused to reduce the computational complexities, which are found in existing methods and aimed at getting higher accuracy. The efficiency of this work is evaluated using the parameters such as region non-uniformity, correlation and computation time. The experimental results are compared with the existing methods such as MRF with improved Genetic Algorithm (GA) and MRF-Artificial Bee Colony (MRF-ABC) algorithm.

Keywords: Conditional random field, Magnetic resonance, Markov random field, Modified artificial bee colony.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2948
138 General Regression Neural Network and Back Propagation Neural Network Modeling for Predicting Radial Overcut in EDM: A Comparative Study

Authors: Raja Das, M. K. Pradhan

Abstract:

This paper presents a comparative study between two neural network models namely General Regression Neural Network (GRNN) and Back Propagation Neural Network (BPNN) are used to estimate radial overcut produced during Electrical Discharge Machining (EDM). Four input parameters have been employed: discharge current (Ip), pulse on time (Ton), Duty fraction (Tau) and discharge voltage (V). Recently, artificial intelligence techniques, as it is emerged as an effective tool that could be used to replace time consuming procedures in various scientific or engineering applications, explicitly in prediction and estimation of the complex and nonlinear process. The both networks are trained, and the prediction results are tested with the unseen validation set of the experiment and analysed. It is found that the performance of both the networks are found to be in good agreement with average percentage error less than 11% and the correlation coefficient obtained for the validation data set for GRNN and BPNN is more than 91%. However, it is much faster to train GRNN network than a BPNN and GRNN is often more accurate than BPNN. GRNN requires more memory space to store the model, GRNN features fast learning that does not require an iterative procedure, and highly parallel structure. GRNN networks are slower than multilayer perceptron networks at classifying new cases.

Keywords: Electrical-discharge machining, General Regression Neural Network, Back-propagation Neural Network, Radial Overcut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3115
137 Stature Prediction Model Based On Hand Anthropometry

Authors: Arunesh Chandra, Pankaj Chandna, Surinder Deswal, Rajesh Kumar Mishra, Rajender Kumar

Abstract:

The arm length, hand length, hand breadth and middle finger length of 1540 right-handed industrial workers of Haryana state was used to assess the relationship between the upper limb dimensions and stature. Initially, the data were analyzed using basic univariate analysis and independent t-tests; then simple and multiple linear regression models were used to estimate stature using SPSS (version 17). There was a positive correlation between upper limb measurements (hand length, hand breadth, arm length and middle finger length) and stature (p < 0.01), which was highest for hand length. The accuracy of stature prediction ranged from ± 54.897 mm to ± 58.307 mm. The use of multiple regression equations gave better results than simple regression equations. This study provides new forensic standards for stature estimation from the upper limb measurements of male industrial workers of Haryana (India). The results of this research indicate that stature can be determined using hand dimensions with accuracy, when only upper limb is available due to any reasons likewise explosions, train/plane crashes, mutilated bodies, etc. The regression formula derived in this study will be useful for anatomists, archaeologists, anthropologists, design engineers and forensic scientists for fairly prediction of stature using regression equations.

Keywords: Anthropometric dimensions, Forensic identification, Industrial workers, Stature prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2961
136 Investigating the Regulation System of the Synchronous Motor Excitation Mode Serving as a Reactive Power Source

Authors: Baghdasaryan Marinka, Ulikyan Azatuhi

Abstract:

The efficient usage of the compensation abilities of the electrical drive synchronous motors used in production processes can essentially improve the technical and economic indices of the process.  Reducing the flows of the reactive electrical energy due to the compensation of reactive power allows to significantly reduce the load losses of power in the electrical networks. As a result of analyzing the scientific works devoted to the issues of regulating the excitation of the synchronous motors, the need for comprehensive investigation and estimation of the excitation mode has been substantiated. By means of the obtained transmission functions, in the Simulink environment of the software package MATLAB, the transition processes of the excitation mode have been studied. As a result of obtaining and estimating the graph of the Nyquist plot and the transient process, the necessity of developing the Proportional-Integral-Derivative (PID) regulator has been justified. The transient processes of the system of the PID regulator have been investigated, and the amplitude–phase characteristics of the system have been estimated. The analysis of the obtained results has shown that the regulation indices of the developed system have been improved. The developed system can be successfully applied for regulating the excitation voltage of different-power synchronous motors, operating with a changing load, ensuring a value of the power coefficient close to 1.

Keywords: Transient process, synchronous motor, excitation mode, regulator, reactive power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 688
135 Adsorption and Electrochemical Regeneration for Industrial Wastewater Treatment

Authors: H. M. Mohammad, A. Martin, N. Brown, N. Hodson, P. Hill, E. Roberts

Abstract:

Graphite intercalation compound (GIC) has been demonstrated to be a useful, low capacity and rapid adsorbent for the removal of organic micropollutants from water. The high electrical conductivity and low capacity of the material lends itself to electrochemical regeneration. Following electrochemical regeneration, equilibrium loading under similar conditions is reported to exceed that achieved by the fresh adsorbent. This behavior is reported in terms of the regeneration efficiency being greater than 100%. In this work, surface analysis techniques are employed to investigate the material in three states: ‘Fresh’, ‘Loaded’ and ‘Regenerated’. ‘Fresh’ GIC is shown to exhibit a hydrogen and oxygen rich surface layer approximately 150 nm thick. ‘Loaded’ GIC shows a similar but slightly thicker surface layer (approximately 370 nm thick) and significant enhancement in the hydrogen and oxygen abundance extending beyond 600 nm from the surface. 'Regenerated’ GIC shows an oxygen rich layer, slightly thicker than the fresh case at approximately 220 nm while showing a very much lower hydrogen enrichment at the surface. Results demonstrate that while the electrochemical regeneration effectively removes the phenol model pollutant, it also oxidizes the exposed carbon surface. These results may have a significant impact on the estimation of adsorbent life.

Keywords: Graphite, adsorbent, electrochemical, regeneration, phenol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 686
134 Military Attack Helicopter Selection Using Distance Function Measures in Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

This paper aims to select the best military attack helicopter to purchase by the Armed Forces and provide greater reconnaissance and offensive combat capability in military operations. For this purpose, a multiple criteria decision analysis method integrated with the variance weight procedure was applied to the military attack helicopter selection problem. A real military aviation case problem is conducted to support the Armed Forces decision-making process and contributes to the better performance of the Armed Forces. Application of the methodology resulted in ranking lists for ordering and prioritizing attack helicopters, providing transparency and simplicity to the decision-making process. Nine military attack helicopter models were analyzed in the light of strategic, tactical, and operational criteria, considering attack helicopters. The selected military attack helicopter would be used for fire support and reconnaissance activities required by the Armed Forces operation. This study makes a valuable contribution to the problem of military attack helicopter selection, as it represents a state-of-the-art application of the MCDMA method to contribute to the solution of a real problem of the Armed Forces. The methodology presented in this paper can be used to solve real problems of a wide variety, especially strategic, tactical and operational, and is, therefore, a very useful method for decision making.

Keywords: aircraft selection, military attack helicopter selection, attack helicopter fleet planning, MCDMA, multiple criteria analysis, multiple criteria decision making analysis, distance function measure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919
133 Minimizing the Drilling-Induced Damage in Fiber Reinforced Polymeric Composites

Authors: S. D. El Wakil, M. Pladsen

Abstract:

Fiber reinforced polymeric (FRP) composites are finding wide-spread industrial applications because of their exceptionally high specific strength and specific modulus of elasticity. Nevertheless, it is very seldom to get ready-for-use components or products made of FRP composites. Secondary processing by machining, particularly drilling, is almost always required to make holes for fastening components together to produce assemblies. That creates problems since the FRP composites are neither homogeneous nor isotropic. Some of the problems that are encountered include the subsequent damage in the region around the drilled hole and the drilling – induced delamination of the layer of ply, that occurs both at the entrance and the exit planes of the work piece. Evidently, the functionality of the work piece would be detrimentally affected. The current work was carried out with the aim of eliminating or at least minimizing the work piece damage associated with drilling of FPR composites. Each test specimen involves a woven reinforced graphite fiber/epoxy composite having a thickness of 12.5 mm (0.5 inch). A large number of test specimens were subjected to drilling operations with different combinations of feed rates and cutting speeds. The drilling induced damage was taken as the absolute value of the difference between the drilled hole diameter and the nominal one taken as a percentage of the nominal diameter. The later was determined for each combination of feed rate and cutting speed, and a matrix comprising those values was established, where the columns indicate varying feed rate while and rows indicate varying cutting speeds. Next, the analysis of variance (ANOVA) approach was employed using Minitab software, in order to obtain the combination that would improve the drilling induced damage. Experimental results show that low feed rates coupled with low cutting speeds yielded the best results.

Keywords: Drilling of Composites, dimensional accuracy of holes drilled in composites, delamination and charring, graphite-epoxy composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 806
132 A Concept to Assess the Economic Importance of the On-Site Activities of ETICS

Authors: V. Sulakatko, F. U. Vogdt, I. Lill

Abstract:

Construction technology and on-site construction activities have a direct influence on the life cycle costs of energy efficiently renovated apartment buildings. The systematic inadequacies of the External Thermal Insulation Composite System (ETICS) which occur during the construction phase increase the risk for all stakeholders, reduce mechanical durability and increase the life cycle costs of the building. The economic effect of these shortcomings can be minimised if the risk of the most significant on-site activities is recognised. The objective of the presented ETICS economic assessment concept is to evaluate the economic influence of on-site shortcomings and reveal their significance to the foreseeable future repair costs. The model assembles repair techniques, discusses their direct cost calculation methods, argues over the proper usage of net present value over the life cycle of the building, and proposes a simulation tool to evaluate the risk of on-site activities. As the technique is dependent on the selected real interest rate, a sensitivity analysis is anticipated to determine the validity of the recommendations. After the verification of the model on the sample buildings by the industry, it is expected to increase economic rationality of resource allocation and reduce high-risk systematic shortcomings during the construction process of ETICS.

Keywords: Activity-based cost estimating, Cost estimation, ETICS, Life cycle costing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828
131 Experimenting the Influence of Input Modality on Involvement Load Hypothesis

Authors: Mohammad Hassanzadeh

Abstract:

As far as incidental vocabulary learning is concerned, the basic contention of the Involvement Load Hypothesis (ILH) is that retention of unfamiliar words is, generally, conditional upon the degree of involvement in processing them. This study examined input modality and incidental vocabulary uptake in a task-induced setting whereby three variously loaded task types (marginal glosses, fill-in-task, and sentence-writing) were alternately assigned to one group of students at Allameh Tabataba’i University (n=2l) during six classroom sessions. While one round of exposure was comprised of the audiovisual medium (TV talk shows), the second round consisted of textual materials with approximately similar subject matter (reading texts). In both conditions, however, the tasks were equivalent to one another. Taken together, the study pursued the dual objectives of establishing a litmus test for the ILH and its proposed values of ‘need’, ‘search’ and ‘evaluation’ in the first place. Secondly, it sought to bring to light the superiority issue of exposure to audiovisual input versus the written input as far as the incorporation of tasks is concerned. At the end of each treatment session, a vocabulary active recall test was administered to measure their incidental gains. Running a one-way analysis of variance revealed that the audiovisual intervention yielded higher gains than the written version even when differing tasks were included. Meanwhile, task 'three' (sentence-writing) turned out the most efficient in tapping learners' active recall of the target vocabulary items. In addition to shedding light on the superiority of audiovisual input over the written input when circumstances are relatively held constant, this study for the most part, did support the underlying tenets of ILH.

Keywords: Evaluation, incidental vocabulary learning, input mode, involvement load hypothesis, need, search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153
130 Surface and Bulk Magnetization Behavior of Isolated Ferromagnetic NiFe Nanowires

Authors: Musaab Salman Sultan

Abstract:

The surface and bulk magnetization behavior of template released isolated ferromagnetic Ni60Fe40 nanowires of relatively thick diameters (~200 nm), deposited from a dilute suspension onto pre-patterned insulating chips have been investigated experimentally, using a highly sensitive Magneto-Optical Ker Effect (MOKE) magnetometry and Magneto-Resistance (MR) measurements, respectively. The MR data were consistent with the theoretical predictions of the anisotropic magneto-resistance (AMR) effect. The MR measurements, in all the angles of investigations, showed large features and a series of nonmonotonic "continuous small features" in the resistance profiles. The extracted switching fields from these features and from MOKE loops were compared with each other and with the switching fields reported in the literature that adopted the same analytical techniques on the similar compositions and dimensions of nanowires. A large difference between MOKE and MR measurments was noticed. The disparate between MOKE and MR results is attributed to the variance in the micro-magnetic structure of the surface and the bulk of such ferromagnetic nanowires. This result was ascertained using micro-magnetic simulations on an individual: cylindrical and rectangular cross sections NiFe nanowires, with the same diameter/thickness of the experimental wires, using the Object Oriented Micro-magnetic Framework (OOMMF) package where the simulated loops showed different switching events, indicating that such wires have different magnetic states in the reversal process and the micro-magnetic spin structures during switching behavior was complicated. These results further supported the difference between surface and bulk magnetization behavior in these nanowires. This work suggests that a combination of MOKE and MR measurements is required to fully understand the magnetization behavior of such relatively thick isolated cylindrical ferromagnetic nanowires.

Keywords: MOKE magnetometry, MR measurements, OOMMF package, micro-magnetic simulations, ferromagnetic nanowires, surface magnetic properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 763
129 Influence of Tool Geometry on Surface Roughness and Tool Wear When Turning AISI 304L Using Taguchi Optimisation Methodology

Authors: Salah Gariani, Taher Dao, Ahmed Lajili

Abstract:

This paper presents an experimental optimisation of surface roughness (Ra) and tool wear in the precision turning of AISI 304L alloy using a wiper and conventional cutting tools under wet cutting conditions. The machining trials were conducted based on Taguchi methodology employing an L9 orthogonal array design with four process parameters: feed rate, spindle speed, depth of cut, and cutting tool type. The experimental results were utilised to characterise the main factors affecting Ra and tool wear using the analyses of means (AOM) and variance (ANOVA). The results show that the wiper tools outperformed conventional tools in terms of surface quality and tool wear at optimal cutting conditions. The ANOVA results indicate that the main factors contributing to lower Ra are cutting tool type and feed rate, with percentage contribution ratios (PCRs) of 58.69% and 25.18% respectively. This confirms that tool type is the most significant factor affecting surface quality when turning AISI 304L. Additionally, a substantial reduction in tool wear was observed when a wiper insert was used, whereas noticeable increases in tool wear occurred when higher cutting speeds were employed for both tool types. These trends confirm the ANOVA outcomes that cutting speed has a significant effect on tool wear, with a PCR value of 39.22%, followed by tool type with a PCR of 27.40%. All machining trials generated similar continuous spiral or curl-shaped chips. A noticeable difference was found in the radius of the produced curl-shaped chips at different cutting speeds when turning AISI 304L under wet cutting conditions.

Keywords: AISI 304L alloy, conventional and wiper carbide tools, wet turning, average surface roughness, tool wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156
128 Disparity of Learning Styles and Cognitive Abilities in Vocational Education

Authors: Mimi Mohaffyza Mohamad, Yee Mei Heong, Nurfirdawati Muhammad Hanafi Tee Tze Kiong

Abstract:

This study is conducted to investigate the disparity of between learning styles and cognitive abilities specifically in Vocational Education.  Felder and Silverman Learning Styles Model (FSLSM) was applied to measure the students’ learning styles while the content in Building Construction Subject consists; knowledge, skills and problem solving were taken into account in constructing the elements of cognitive abilities. Building Construction is one of the vocational courses offered in Vocational Education structure. There are four dimension of learning styles proposed by Felder and Silverman intended to capture student learning preferences with regards to processing either active or reflective, perception based on sensing or intuitive, input of information used visual or verbal and understanding information represent with sequential or global learner. Felder-Solomon Learning Styles Index was developed based on FSLSM and the questions were used to identify what type of student learning preferences. The index consists 44 item-questions characterize for learning styles dimension in FSLSM. The achievement test was developed to determine the students’ cognitive abilities. The quantitative data was analyzed in descriptive and inferential statistic involving Multivariate Analysis of Variance (MANOVA). The study discovered students are tending to be visual learners and each type of learner having significant difference whereas cognitive abilities there are different finding for each type of learners in knowledge, skills and problem solving. This study concludes the gap between type of learner and the cognitive abilities in few illustrations and it explained how the connecting made. The finding may help teachers to facilitate students more effectively and to boost the student’s cognitive abilities.

Keywords: Learning Styles, Cognitive Abilities, Dimension of Learning Styles, Learning Preferences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2635
127 Taguchi Robust Design for Optimal Setting of Process Wastes Parameters in an Automotive Parts Manufacturing Company

Authors: Charles Chikwendu Okpala, Christopher Chukwutoo Ihueze

Abstract:

As a technique that reduces variation in a product by lessening the sensitivity of the design to sources of variation, rather than by controlling their sources, Taguchi Robust Design entails the designing of ideal goods, by developing a product that has minimal variance in its characteristics and also meets the desired exact performance. This paper examined the concept of the manufacturing approach and its application to brake pad product of an automotive parts manufacturing company. Although the firm claimed that only defects, excess inventory, and over-production were the few wastes that grossly affect their productivity and profitability, a careful study and analysis of their manufacturing processes with the application of Single Minute Exchange of Dies (SMED) tool showed that the waste of waiting is the fourth waste that bedevils the firm. The selection of the Taguchi L9 orthogonal array which is based on the four parameters and the three levels of variation for each parameter revealed that with a range of 2.17, that waiting is the major waste that the company must reduce in order to continue to be viable. Also, to enhance the company’s throughput and profitability, the wastes of over-production, excess inventory, and defects with ranges of 2.01, 1.46, and 0.82, ranking second, third, and fourth respectively must also be reduced to the barest minimum. After proposing -33.84 as the highest optimum Signal-to-Noise ratio to be maintained for the waste of waiting, the paper advocated for the adoption of all the tools and techniques of Lean Production System (LPS), and Continuous Improvement (CI), and concluded by recommending SMED in order to drastically reduce set up time which leads to unnecessary waiting.

Keywords: Taguchi Robust Design, signal to noise ratio, Single Minute Exchange of Dies, lean production system, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
126 The Applications of Quantum Mechanics Simulation for Solvent Selection in Chemicals Separation

Authors: Attapong T., Hong-Ming Ku, Nakarin M., Narin L., Alisa L, Jirut W.

Abstract:

The quantum mechanics simulation was applied for calculating the interaction force between 2 molecules based on atomic level. For the simple extractive distillation system, it is ternary components consisting of 2 closed boiling point components (A,lower boiling point and B, higher boiling point) and solvent (S). The quantum mechanics simulation was used to calculate the intermolecular force (interaction force) between the closed boiling point components and solvents consisting of intermolecular between A-S and B-S. The requirement of the promising solvent for extractive distillation is that solvent (S) has to form stronger intermolecular force with only one component than the other component (A or B). In this study, the systems of aromatic-aromatic, aromatic-cycloparaffin, and paraffindiolefin systems were selected as the demonstration for solvent selection. This study defined new term using for screening the solvents called relative interaction force which is calculated from the quantum mechanics simulation. The results showed that relative interaction force gave the good agreement with the literature data (relative volatilities from the experiment). The reasons are discussed. Finally, this study suggests that quantum mechanics results can improve the relative volatility estimation for screening the solvents leading to reduce time and money consuming

Keywords: Extractive distillation, Interaction force, Quamtum mechanic, Relative volatility, Solvent extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
125 Multistage Data Envelopment Analysis Model for Malmquist Productivity Index Using Grey's System Theory to Evaluate Performance of Electric Power Supply Chain in Iran

Authors: Mesbaholdin Salami, Farzad Movahedi Sobhani, Mohammad Sadegh Ghazizadeh

Abstract:

Evaluation of organizational performance is among the most important measures that help organizations and entities continuously improve their efficiency. Organizations can use the existing data and results from the comparison of units under investigation to obtain an estimation of their performance. The Malmquist Productivity Index (MPI) is an important index in the evaluation of overall productivity, which considers technological developments and technical efficiency at the same time. This article proposed a model based on the multistage MPI, considering limited data (Grey’s theory). This model can evaluate the performance of units using limited and uncertain data in a multistage process. It was applied by the electricity market manager to Iran’s electric power supply chain (EPSC), which contains uncertain data, to evaluate the performance of its actors. Results from solving the model showed an improvement in the accuracy of future performance of the units under investigation, using the Grey’s system theory. This model can be used in all case studies, in which MPI is used and there are limited or uncertain data.

Keywords: Malmquist Index, Grey's Theory, Charnes Cooper & Rhodes (CCR) Model, network data envelopment analysis, Iran electricity power chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 553
124 Identifying Knowledge Gaps in Incorporating Toxicity of Particulate Matter Constituents for Developing Regulatory Limits on Particulate Matter

Authors: Ananya Das, Arun Kumar, Gazala Habib, Vivekanandan Perumal

Abstract:

Regulatory bodies has proposed limits on Particulate Matter (PM) concentration in air; however, it does not explicitly indicate the incorporation of effects of toxicities of constituents of PM in developing regulatory limits. This study aimed to provide a structured approach to incorporate toxic effects of components in developing regulatory limits on PM. A four-step human health risk assessment framework consists of - (1) hazard identification (parameters: PM and its constituents and their associated toxic effects on health), (2) exposure assessment (parameters: concentrations of PM and constituents, information on size and shape of PM; fate and transport of PM and constituents in respiratory system), (3) dose-response assessment (parameters: reference dose or target toxicity dose of PM and its constituents), and (4) risk estimation (metric: hazard quotient and/or lifetime incremental risk of cancer as applicable). Then parameters required at every step were obtained from literature. Using this information, an attempt has been made to determine limits on PM using component-specific information. An example calculation was conducted for exposures of PM2.5 and its metal constituents from Indian ambient environment to determine limit on PM values. Identified data gaps were: (1) concentrations of PM and its constituents and their relationship with sampling regions, (2) relationship of toxicity of PM with its components.

Keywords: Air, component-specific toxicity, human health risks, particulate matter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1188
123 Effect of Different Methods to Control the Parasitic Weed Phelipanche ramosa (L.- Pomel) in Tomato Crop

Authors: G. Disciglio, F. Lops, A. Carlucci, G. Gatta, A. Tarantino, E. Tarantino

Abstract:

Phelipanche ramosa is the most damaging obligate flowering parasitic weed on wide species of cultivated plants. The semi-arid regions of the world are considered the main centers of this parasitic plant that causes heavy infestation. This is due to its production of high numbers of seeds (up to 200,000) that remain viable for extended periods (up to 20 years). In this study, 13 treatments for the control of Phelipanche were carried out, which included agronomic, chemical, and biological treatments and the use of resistant plant methods. In 2014, a trial was performed at the Department of Agriculture, Food and Environment, University of Foggia (southern Italy), on processing tomato (cv ‘Docet’) grown in pots filled with soil taken from a field that was heavily infested by P. ramosa). The tomato seedlings were transplanted on May 8, 2014, into a sandy-clay soil (USDA). A randomized block design with 3 replicates (pots) was adopted. During the growing cycle of the tomato, at 70, 75, 81 and 88 days after transplantation, the number of P. ramosa shoots emerged in each pot was determined. The tomato fruit were harvested on August 8, 2014, and the quantitative and qualitative parameters were determined. All of the data were subjected to analysis of variance (ANOVA) using the JMP software (SAS Institute Inc. Cary, NC, USA), and for comparisons of means (Tukey's tests). The data show that each treatment studied did not provide complete control against P. ramosa. However, the virulence of the attacks was mitigated by some of the treatments tried: radicon biostimulant, compost activated with Fusarium, mineral fertilizer nitrogen, sulfur, enzone, and the resistant tomato genotype. It is assumed that these effects can be improved by combining some of these treatments with each other, especially for a gradual and continuing reduction of the “seed bank” of the parasite in the soil.

Keywords: Control methods, Phelipanche ramosa, tomato crop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3050
122 Pre-Operative Tool for Facial-Post-Surgical Estimation and Detection

Authors: Ayat E. Ali, Christeen R. Aziz, Merna A. Helmy, Mohammed M. Malek, Sherif H. El-Gohary

Abstract:

Goal: Purpose of the project was to make a plastic surgery prediction by using pre-operative images for the plastic surgeries’ patients and to show this prediction on a screen to compare between the current case and the appearance after the surgery. Methods: To this aim, we implemented a software which used data from the internet for facial skin diseases, skin burns, pre-and post-images for plastic surgeries then the post- surgical prediction is done by using K-nearest neighbor (KNN). So we designed and fabricated a smart mirror divided into two parts a screen and a reflective mirror so patient's pre- and post-appearance will be showed at the same time. Results: We worked on some skin diseases like vitiligo, skin burns and wrinkles. We classified the three degrees of burns using KNN classifier with accuracy 60%. We also succeeded in segmenting the area of vitiligo. Our future work will include working on more skin diseases, classify them and give a prediction for the look after the surgery. Also we will go deeper into facial deformities and plastic surgeries like nose reshaping and face slim down. Conclusion: Our project will give a prediction relates strongly to the real look after surgery and decrease different diagnoses among doctors. Significance: The mirror may have broad societal appeal as it will make the distance between patient's satisfaction and the medical standards smaller.

Keywords: K-nearest neighbor, face detection, vitiligo, bone deformity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 701
121 Online Signature Verification Using Angular Transformation for e-Commerce Services

Authors: Peerapong Uthansakul, Monthippa Uthansakul

Abstract:

The rapid growth of e-Commerce services is significantly observed in the past decade. However, the method to verify the authenticated users still widely depends on numeric approaches. A new search on other verification methods suitable for online e-Commerce is an interesting issue. In this paper, a new online signature-verification method using angular transformation is presented. Delay shifts existing in online signatures are estimated by the estimation method relying on angle representation. In the proposed signature-verification algorithm, all components of input signature are extracted by considering the discontinuous break points on the stream of angular values. Then the estimated delay shift is captured by comparing with the selected reference signature and the error matching can be computed as a main feature used for verifying process. The threshold offsets are calculated by two types of error characteristics of the signature verification problem, False Rejection Rate (FRR) and False Acceptance Rate (FAR). The level of these two error rates depends on the decision threshold chosen whose value is such as to realize the Equal Error Rate (EER; FAR = FRR). The experimental results show that through the simple programming, employed on Internet for demonstrating e-Commerce services, the proposed method can provide 95.39% correct verifications and 7% better than DP matching based signature-verification method. In addition, the signature verification with extracting components provides more reliable results than using a whole decision making.

Keywords: Online signature verification, e-Commerce services, Angular transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
120 Estimation of the Road Traffic Emissions and Dispersion in the Developing Countries Conditions

Authors: Hicham Gourgue, Ahmed Aharoune, Ahmed Ihlal

Abstract:

We present in this work our model of road traffic emissions (line sources) and dispersion of these emissions, named DISPOLSPEM (Dispersion of Poly Sources and Pollutants Emission Model). In its emission part, this model was designed to keep the consistent bottom-up and top-down approaches. It also allows to generate emission inventories from reduced input parameters being adapted to existing conditions in Morocco and in the other developing countries. While several simplifications are made, all the performance of the model results are kept. A further important advantage of the model is that it allows the uncertainty calculation and emission rate uncertainty according to each of the input parameters. In the dispersion part of the model, an improved line source model has been developed, implemented and tested against a reference solution. It provides improvement in accuracy over previous formulas of line source Gaussian plume model, without being too demanding in terms of computational resources. In the case study presented here, the biggest errors were associated with the ends of line source sections; these errors will be canceled by adjacent sections of line sources during the simulation of a road network. In cases where the wind is parallel to the source line, the use of the combination discretized source and analytical line source formulas minimizes remarkably the error. Because this combination is applied only for a small number of wind directions, it should not excessively increase the calculation time.

Keywords: Air pollution, dispersion, emissions, line sources, road traffic, urban transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
119 Impact of Ownership Structure on Provision of Staff and Infrastructure for Implementing Computer Aided Design Curriculum in Universities in South-East Nigeria

Authors: Kelechi E. Ezeji

Abstract:

Instruction towards acquiring skills in the use of Computer Aided Design technologies has become a vital part of architectural education curriculum in the digital era. Its implementation, however, requires deployment of extra resources to build new infrastructure, acquisition and maintenance of new equipment, retraining of staff and recruitment of new ones who are knowledgeable in this area. This study sought to examine the impact that ownership structure of Nigerian universities had on provision of staff and infrastructure for implementing computer aided design curriculum with a view to developing a framework for the evaluation for appropriate implementation by the institutions. Survey research design was employed. The focus was on departments of architecture in universities in south-east Nigeria accredited by the National Universities Commission. Data were obtained in the areas of infrastructure and personnel for CAD implementation. A multi-stage stratified random sampling method was adopted. The first stage of stratification involved the accredited departments. Random sampling by balloting was then carried out. At the second stage, sampling size formulae was applied to obtain respondents’ number. For data analysis, analysis of variance tool for testing differences of means was used. With ρ < 0.5, the study found that there was significant difference between private-funded, state-funded and federal-funded departments of architecture in the provision of personnel and infrastructure. The implications of these findings were that for successful implementation leading to attainment of CAD proficiency to occur in every institution regardless of ownership structure, minimum evaluation guidelines needed to be set. A regular comparison of implementation in institutions was recommended as a means of rating performance. This will inform better interaction with those who consistently show weakness to challenge them towards improvement.

Keywords: Computer-aided design, curriculum, funding, infrastructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
118 Visualization and Indexing of Spectral Databases

Authors: Tibor Kulcsar, Gabor Sarossy, Gabor Bereznai, Robert Auer, Janos Abonyi

Abstract:

On-line (near infrared) spectroscopy is widely used to support the operation of complex process systems. Information extracted from spectral database can be used to estimate unmeasured product properties and monitor the operation of the process. These techniques are based on looking for similar spectra by nearest neighborhood algorithms and distance based searching methods. Search for nearest neighbors in the spectral space is an NP-hard problem, the computational complexity increases by the number of points in the discrete spectrum and the number of samples in the database. To reduce the calculation time some kind of indexing could be used. The main idea presented in this paper is to combine indexing and visualization techniques to reduce the computational requirement of estimation algorithms by providing a two dimensional indexing that can also be used to visualize the structure of the spectral database. This 2D visualization of spectral database does not only support application of distance and similarity based techniques but enables the utilization of advanced clustering and prediction algorithms based on the Delaunay tessellation of the mapped spectral space. This means the prediction has not to use the high dimension space but can be based on the mapped space too. The results illustrate that the proposed method is able to segment (cluster) spectral databases and detect outliers that are not suitable for instance based learning algorithms.

Keywords: indexing high dimensional databases, dimensional reduction, clustering, similarity, k-nn algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
117 Numerical Analysis of the SIR-SI Differential Equations with Application to Dengue Disease Mapping in Kuala Lumpur, Malaysia

Authors: N. A. Samat, D. F. Percy

Abstract:

The main aim of this study is to describe and introduce a method of numerical analysis in obtaining approximate solutions for the SIR-SI differential equations (susceptible-infectiverecovered for human populations; susceptible-infective for vector populations) that represent a model for dengue disease transmission. Firstly, we describe the ordinary differential equations for the SIR-SI disease transmission models. Then, we introduce the numerical analysis of solutions of this continuous time, discrete space SIR-SI model by simplifying the continuous time scale to a densely populated, discrete time scale. This is followed by the application of this numerical analysis of solutions of the SIR-SI differential equations to the estimation of relative risk using continuous time, discrete space dengue data of Kuala Lumpur, Malaysia. Finally, we present the results of the analysis, comparing and displaying the results in graphs, table and maps. Results of the numerical analysis of solutions that we implemented offers a useful and potentially superior model for estimating relative risks based on continuous time, discrete space data for vector borne infectious diseases specifically for dengue disease. 

Keywords: Dengue disease, disease mapping, numerical analysis, SIR-SI differential equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2686
116 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction

Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota

Abstract:

Understanding the causes of a road accident and predicting their occurrence is key to prevent deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network. 

Keywords: Accident risks estimation, artificial neural network, deep learning, K-mean, road safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973
115 Investigation into the Optimum Hydraulic Loading Rate for Selected Filter Media Packed in a Continuous Upflow Filter

Authors: A. Alzeyadi, E. Loffill, R. Alkhaddar

Abstract:

Continuous upflow filters can combine the nutrient (nitrogen and phosphate) and suspended solid removal in one unit process. The contaminant removal could be achieved chemically or biologically; in both processes the filter removal efficiency depends on the interaction between the packed filter media and the influent. In this paper a residence time distribution (RTD) study was carried out to understand and compare the transfer behaviour of contaminants through a selected filter media packed in a laboratory-scale continuous up flow filter; the selected filter media are limestone and white dolomite. The experimental work was conducted by injecting a tracer (red drain dye tracer –RDD) into the filtration system and then measuring the tracer concentration at the outflow as a function of time; the tracer injection was applied at hydraulic loading rates (HLRs) (3.8 to 15.2 m h-1). The results were analysed according to the cumulative distribution function F(t) to estimate the residence time of the tracer molecules inside the filter media. The mean residence time (MRT) and variance σ2 are two moments of RTD that were calculated to compare the RTD characteristics of limestone with white dolomite. The results showed that the exit-age distribution of the tracer looks better at HLRs (3.8 to 7.6 m h-1) and (3.8 m h-1) for limestone and white dolomite respectively. At these HLRs the cumulative distribution function F(t) revealed that the residence time of the tracer inside the limestone was longer than in the white dolomite; whereas all the tracer took 8 minutes to leave the white dolomite at 3.8 m h-1. On the other hand, the same amount of the tracer took 10 minutes to leave the limestone at the same HLR. In conclusion, the determination of the optimal level of hydraulic loading rate, which achieved the better influent distribution over the filtration system, helps to identify the applicability of the material as filter media. Further work will be applied to examine the efficiency of the limestone and white dolomite for phosphate removal by pumping a phosphate solution into the filter at HLRs (3.8 to 7.6 m h-1).

Keywords: Filter media, hydraulic loading rate, residence time distribution, tracer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871
114 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles

Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi

Abstract:

Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.

Keywords: Artificial neural networks, fuel consumption, machine learning, regression, statistical tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829
113 Neural Network Models for Actual Cost and Actual Duration Estimation in Construction Projects: Findings from Greece

Authors: Panagiotis Karadimos, Leonidas Anthopoulos

Abstract:

Predicting the actual cost and duration in construction projects concern a continuous and existing problem for the construction sector. This paper addresses this problem with modern methods and data available from past public construction projects. 39 bridge projects, constructed in Greece, with a similar type of available data were examined. Considering each project’s attributes with the actual cost and the actual duration, correlation analysis is performed and the most appropriate predictive project variables are defined. Additionally, the most efficient subgroup of variables is selected with the use of the WEKA application, through its attribute selection function. The selected variables are used as input neurons for neural network models through correlation analysis. For constructing neural network models, the application FANN Tool is used. The optimum neural network model, for predicting the actual cost, produced a mean squared error with a value of 3.84886e-05 and it was based on the budgeted cost and the quantity of deck concrete. The optimum neural network model, for predicting the actual duration, produced a mean squared error with a value of 5.89463e-05 and it also was based on the budgeted cost and the amount of deck concrete.

Keywords: Actual cost and duration, attribute selection, bridge projects, neural networks, predicting models, FANN TOOL, WEKA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1229
112 The Estimation of Bird Diversity Loss and Gain as an Impact of Oil Palm Plantation: Study Case in KJNP Estate Riau Province

Authors: Yanto Santosa, Catharina Yudea

Abstract:

The rapid growth of oil palm industry in Indonesia raised many negative accusations from various parties, who said that oil palm plantation is damaging the environment and biodiversity, including birds. Since research on oil palm plantation impacts on bird diversity is still limited, this study needs to be developed in order to gain further learning and understanding. Data on bird diversity were collected in March 2018 in KJNP Estate, Riau Province using strip transect method on five different land cover types (young, intermediate, and old growth of oil palm plantation, high conservation value area, and crops field or the baseline). The observations were conducted simultaneously, with three repetitions. The result shows that the baseline has 19 species of birds and land cover after the oil palm plantation has 39 species. HCV (high conservation value) area has the highest increase in diversity value. Oil palm plantation has changed the composition of bird species. The highest similarity index is shown by young growth oil palm land cover with total score 0.65, meanwhile the lowest similarity index with total score 0.43 is shown by HCV area. Overall, the existence of oil palm plantation made a positive impact by increasing bird species diversity, with total 23 species gained and 3 species lost.

Keywords: Bird diversity, crops field, impact of oil palm plantation, KJNP estate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 795