Search results for: fault conditions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3550

Search results for: fault conditions

2350 On the Existence and Global Attractivity of Solutions of a Functional Integral Equation

Authors: Asadollah Aghajani, Yaghoub Jalilian

Abstract:

Using the concept of measure of noncompactness, we present some results concerning the existence, uniform local attractivity and global attractivity of solutions for a functional integral equation. Our results improve and extend some previous known results and based on weaker conditions. Some examples which show that our results are applicable when the previous results are inapplicable are also included.

Keywords: Functional integral equation, fixed-point, measure of noncompactness, attractive solution, asymptotic stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1256
2349 Existence and Stability of Anti-periodic Solutions for an Impulsive Cohen-Grossberg SICNNs on Time Scales

Authors: Meng Hu, Lili Wang

Abstract:

By using the method of coincidence degree and constructing suitable Lyapunov functional, some sufficient conditions are established for the existence and global exponential stability of antiperiodic solutions for a kind of impulsive Cohen-Grossberg shunting inhibitory cellular neural networks (CGSICNNs) on time scales. An example is given to illustrate our results.

Keywords: Anti-periodic solution, coincidence degree, CGSICNNs, impulse, time scales.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1317
2348 Catalytic Gasification of Olive Mill Wastewater as a Biomass Source under Supercritical Conditions

Authors: Ekin Kıpçak, Mesut Akgün

Abstract:

Recently, a growing interest has emerged on the development of new and efficient energy sources, due to the inevitable extinction of the nonrenewable energy reserves. One of these alternative sources which have a great potential and sustainability to meet up the energy demand is biomass energy. This significant energy source can be utilized with various energy conversion technologies, one of which is biomass gasification in supercritical water.

Water, being the most important solvent in nature, has very important characteristics as a reaction solvent under supercritical circumstances. At temperatures above its critical point (374.8oC and 22.1MPa), water becomes more acidic and its diffusivity increases. Working with water at high temperatures increases the thermal reaction rate, which in consequence leads to a better dissolving of the organic matters and a fast reaction with oxygen. Hence, supercritical water offers a control mechanism depending on solubility, excellent transport properties based on its high diffusion ability and new reaction possibilities for hydrolysis or oxidation.

In this study the gasification of a real biomass, namely olive mill wastewater (OMW), in supercritical water conditions is investigated with the use of Ru/Al2O3 catalyst. OMW is a by-product obtained during olive oil production, which has a complex nature characterized by a high content of organic compounds and polyphenols. These properties impose OMW a significant pollution potential, but at the same time, the high content of organics makes OMW a desirable biomass candidate for energy production.

The catalytic gasification experiments were made with five different reaction temperatures (400, 450, 500, 550 and 600°C) and five reaction times (30, 60, 90, 120 and 150s), under a constant pressure of 25MPa. Through these experiments, the effects of reaction temperature and time on the gasification yield, gaseous product composition and OMW treatment efficiency were investigated.

Keywords: Catalyst, Gasification, Olive mill wastewater, Ru/Al2O3, Supercritical water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
2347 The Formation of Motivational Sphere for Learning Activity under Conditions of Change of One of Its Leading Components

Authors: M. Rodionov, Z. Dedovets

Abstract:

This article discusses ways to implement a differentiated approach to developing academic motivation for mathematical studies which relies on defining the primary structural characteristics of motivation. The following characteristics are considered: features of realization of cognitive activity, meaningmaking characteristics, level of generalization and consistency of knowledge acquired by personal experience. The assessment of the present level of individual student understanding of each component of academic motivation is the basis for defining the relevant educational strategy for its further development.

Keywords: Learning activity, mathematics, motivation, student.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
2346 Modern Detection and Description Methods for Natural Plants Recognition

Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert

Abstract:

Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.

Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
2345 Stability Analysis of Fractional Order Systems with Time Delay

Authors: Hong Li, Shou-Ming Zhong, Hou-Biao Li

Abstract:

In this paper, we mainly study the stability of linear and interval linear fractional systems with time delay. By applying the characteristic equations, a necessary and sufficient stability condition is obtained firstly, and then some sufficient conditions are deserved. In addition, according to the equivalent relationship of fractional order systems with order 0 < α ≤ 1 and with order 1 ≤ β < 2, one may get more relevant theorems. Finally, two examples are provided to demonstrate the effectiveness of our results.

Keywords: Fractional order systems, Time delay, Characteristic equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3673
2344 Pd(II) Complex with 4-Bromo-Bis-Hydroxymethyl Phenol and Nicotinamide: Synthesis and Spectral Analysis

Authors: Özlen Altun, Zeliha Yoruç

Abstract:

In the present study, the reactions involving 4-bromo-2,6-bis-hydroxymethyl-phenol (BBHMP) and nicotinamide (NA) in the presence of Pd(II) ions were investigated. Optimum conditions for the reactions were established as pH = 7 and λ = 450 nm. According to absorbance measurements, the molar ratio of BBHMP: NA: Pd2+ was found to be 1: 2: 2. As a result of physicochemical, spectrophotometric and thermal analyses, the reactions of BBHMP and NA with Pd(II) are complexation reactions and one molecule of BBHMP and two molecules of NA react with two molecules of the Pd(II) ion.

Keywords: Nicotinamide, 4-bromo-2, 6-bis-hydroxymethyl-phenol, Pd(II), spectral analysis, synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
2343 Study of Damage in Beams with Different Boundary Conditions

Authors: Nilson Barbieri, Renato Barbieri

Abstract:

–In this paper the damage in clamped-free, clampedclamped and free-free beam are analyzed considering samples without and with structural modifications. The damage location is investigated by the use of the bispectrum and wavelet analysis. The mathematical models are obtained using 2D elasticity theory and the Finite Element Method (FEM). The numerical and experimental data are approximated using the Particle Swarm Optimizer (PSO) method and this way is possible to adjust the localization and the severity of the damage. The experimental data are obtained through accelerometers placed along the sample. The system is excited using impact hammer.

Keywords: Damage, beam, PSO, bispectrum, wavelet transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
2342 Quantitative Ranking Evaluation of Wine Quality

Authors: A. Brunel, A. Kernevez, F. Leclere, J. Trenteseaux

Abstract:

Today, wine quality is only evaluated by wine experts with their own different personal tastes, even if they may agree on some common features. So producers do not have any unbiased way to independently assess the quality of their products. A tool is here proposed to evaluate wine quality by an objective ranking based upon the variables entering wine elaboration, and analysed through principal component analysis (PCA) method. Actual climatic data are compared by measuring the relative distance between each considered wine, out of which the general ranking is performed.

Keywords: Wine, grape, vine, weather conditions, rating, climate, principal component analysis, metric analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
2341 Existence and Uniqueness of Periodic Solution for a Discrete-time SIR Epidemic Model with Time Delays and Impulses

Authors: Ling Liu, Yuan Ye

Abstract:

In this paper, a discrete-time SIR epidemic model with nonlinear incidence rate, time delays and impulses is investigated. Sufficient conditions for the existence and uniqueness of periodic solutions are obtained by using contraction theorem and inequality techniques. An example is employed to illustrate our results.

Keywords: Discrete-time SIR epidemic model, time delay, nonlinear incidence rate, impulse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
2340 Learning Factory for Changeability

Authors: Dennis Gossmann, Habil Peter Nyhuis

Abstract:

Amongst the consistently fluctuating conditions prevailing today, changeability represents a strategic key factor for a manufacturing company to achieve success on the international markets. In order to cope with turbulences and the increasing level of incalculability, not only the flexible design of production systems but in particular the employee as enabler of change provide the focus here. It is important to enable employees from manufacturing companies to participate actively in change events and in change decisions. To this end, the learning factory has been created, which is intended to serve the development of change-promoting competences and the sensitization of employees for the necessity of changes.

Keywords: Changeability, human resources, learning factory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
2339 Periodicity for a Food Chain Model with Functional Responses on Time Scales

Authors: Kejun Zhuang

Abstract:

With the help of coincidence degree theory, sufficient conditions for existence of periodic solutions for a food chain model with functional responses on time scales are established.

Keywords: time scales, food chain model, coincidence degree, periodic solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
2338 Analysis of Model in Pregnant and Non-Pregnant Dengue Patients

Authors: R. Kongnuy, P. Pongsumpun

Abstract:

We used mathematical model to study the transmission of dengue disease. The model is developed in which the human population is separated into two populations, pregnant and non-pregnant humans. The dynamical analysis method is used for analyzing this modified model. Two equilibrium states are found and the conditions for stability of theses two equilibrium states are established. Numerical results are shown for each equilibrium state. The basic reproduction numbers are found and they are compared by using numerical simulations.

Keywords: Basic reproductive number, dengue disease, equilibrium states, pregnancy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
2337 Banach Lattices with Weak Dunford-Pettis Property

Authors: Khalid Bouras, Mohammed Moussa

Abstract:

We introduce and study the class of weak almost Dunford-Pettis operators. As an application, we characterize Banach lattices with the weak Dunford-Pettis property. Also, we establish some sufficient conditions for which each weak almost Dunford-Pettis operator is weak Dunford-Pettis. Finally, we derive some interesting results.

Keywords: Almost Dunford-Pettis operator, weak Dunford-Pettis operator, eak almost Dunford-Pettis operator, almost Dunford-Pettis operator, weak Dunford-Pettis operator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
2336 On-Line Geometrical Identification of Reconfigurable Machine Tool using Virtual Machining

Authors: Alexandru Epureanu, Virgil Teodor

Abstract:

One of the main research directions in CAD/CAM machining area is the reducing of machining time. The feedrate scheduling is one of the advanced techniques that allows keeping constant the uncut chip area and as sequel to keep constant the main cutting force. They are two main ways for feedrate optimization. The first consists in the cutting force monitoring, which presumes to use complex equipment for the force measurement and after this, to set the feedrate regarding the cutting force variation. The second way is to optimize the feedrate by keeping constant the material removal rate regarding the cutting conditions. In this paper there is proposed a new approach using an extended database that replaces the system model. The feedrate scheduling is determined based on the identification of the reconfigurable machine tool, and the feed value determination regarding the uncut chip section area, the contact length between tool and blank and also regarding the geometrical roughness. The first stage consists in the blank and tool monitoring for the determination of actual profiles. The next stage is the determination of programmed tool path that allows obtaining the piece target profile. The graphic representation environment models the tool and blank regions and, after this, the tool model is positioned regarding the blank model according to the programmed tool path. For each of these positions the geometrical roughness value, the uncut chip area and the contact length between tool and blank are calculated. Each of these parameters are compared with the admissible values and according to the result the feed value is established. We can consider that this approach has the following advantages: in case of complex cutting processes the prediction of cutting force is possible; there is considered the real cutting profile which has deviations from the theoretical profile; the blank-tool contact length limitation is possible; it is possible to correct the programmed tool path so that the target profile can be obtained. Applying this method, there are obtained data sets which allow the feedrate scheduling so that the uncut chip area is constant and, as a result, the cutting force is constant, which allows to use more efficiently the machine tool and to obtain the reduction of machining time.

Keywords: Reconfigurable machine tool, system identification, uncut chip area, cutting conditions scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
2335 Case on Manufacturing Cell Formation Using Production Flow Analysis

Authors: Vladimír Modrák

Abstract:

This paper offers a case study, in which methodological aspects of cell design for transformation the production process are applied. The cell redesign in this work is tightly focused to reach optimization of material flows under real manufacturing conditions. Accordingly, more individual techniques were aggregated into compact methodical procedure with aim to built one-piece flow production. Case study was concentrated on relatively typical situation of transformation from batch production to cellular manufacturing.

Keywords: Product/Quantity analysis, layout, design, manufacturing process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3344
2334 Ligandless Extraction and Determination of Trace Amounts of Lead in Pomegranate, Zucchini and Lettuce Samples after Dispersive Liquid-Liquid Microextraction with Ultrasonic Bath and Optimization of Extraction Condition with RSM Design

Authors: Fariba Tadayon, Elmira Hassanlou, Hasan Bagheri, Mostafa Jafarian

Abstract:

Heavy metals are released into water, plants, soil, and food by natural and human activities. Lead has toxic roles in the human body and may cause serious problems even in low concentrations, since it may have several adverse effects on human. Therefore, determination of lead in different samples is an important procedure in the studies of environmental pollution. In this work, an ultrasonic assisted-ionic liquid based-liquid-liquid microextraction (UA-IL-DLLME) procedure for the determination of lead in zucchini, pomegranate, and lettuce has been established and developed by using flame atomic absorption spectrometer (FAAS). For UA-IL-DLLME procedure, 10 mL of the sample solution containing Pb2+ was adjusted to pH=5 in a glass test tube with a conical bottom; then, 120 μL of 1-Hexyl-3-methylimidazolium hexafluoro phosphate (CMIM)(PF6) was rapidly injected into the sample solution with a microsyringe. After that, the resulting cloudy mixture was treated by ultrasonic for 5 min, then the separation of two phases was obtained by centrifugation for 5 min at 3000 rpm and IL-phase diluted with 1 cc ethanol, and the analytes were determined by FAAS. The effect of different experimental parameters in the extraction step including: ionic liquid volume, sonication time and pH was studied and optimized simultaneously by using Response Surface Methodology (RSM) employing a central composite design (CCD). The optimal conditions were determined to be an ionic liquid volume of 120 μL, sonication time of 5 min, and pH=5. The linear ranges of the calibration curve for the determination by FAAS of lead were 0.1-4 ppm with R2=0.992. Under optimized conditions, the limit of detection (LOD) for lead was 0.062 μg.mL-1, the enrichment factor (EF) was 93, and the relative standard deviation (RSD) for lead was calculated as 2.29%. The levels of lead for pomegranate, zucchini, and lettuce were calculated as 2.88 μg.g-1, 1.54 μg.g-1, 2.18 μg.g-1, respectively. Therefore, this method has been successfully applied for the analysis of the content of lead in different food samples by FAAS.

Keywords: Dispersive liquid-liquid microextraction, Central composite design, Food samples, Flame atomic absorption spectrometry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295
2333 Microwave-Assisted Alginate Extraction from Portuguese Saccorhiza polyschides – Influence of Acid Pretreatment

Authors: Mário Silva, Filipa Gomes, Filipa Oliveira, Simone Morais, Cristina Delerue-Matos

Abstract:

Brown seaweeds are abundant in Portuguese coastline and represent an almost unexploited marine economic resource. One of the most common species, easily available for harvesting in the northwest coast, is Saccorhiza polyschides grows in the lowest shore and costal rocky reefs. It is almost exclusively used by local farmers as natural fertilizer, but contains a substantial amount of valuable compounds, particularly alginates, natural biopolymers of high interest for many industrial applications. Alginates are natural polysaccharides present in cell walls of brown seaweed, highly biocompatible, with particular properties that make them of high interest for the food, biotechnology, cosmetics and pharmaceutical industries. Conventional extraction processes are based on thermal treatment. They are lengthy and consume high amounts of energy and solvents. In recent years, microwave-assisted extraction (MAE) has shown enormous potential to overcome major drawbacks that outcome from conventional plant material extraction (thermal and/or solvent based) techniques, being also successfully applied to the extraction of agar, fucoidans and alginates. In the present study, acid pretreatment of brown seaweed Saccorhiza polyschides for subsequent microwave-assisted extraction (MAE) of alginate was optimized. Seaweeds were collected in Northwest Portuguese coastal waters of the Atlantic Ocean between May and August, 2014. Experimental design was used to assess the effect of temperature and acid pretreatment time in alginate extraction. Response surface methodology allowed the determination of the optimum MAE conditions: 40 mL of HCl 0.1 M per g of dried seaweed with constant stirring at 20ºC during 14h. Optimal acid pretreatment conditions have enhanced significantly MAE of alginates from Saccorhiza polyschides, thus contributing for the development of a viable, more environmental friendly alternative to conventional processes.

Keywords: Acid pretreatment, Alginate, Brown seaweed, Microwave-assisted extraction, Response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3351
2332 Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation

Authors: M. A. Talha, M. Osman Gani, M. Ferdows

Abstract:

This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.

Keywords: Convection flow, internal heat generation, similarity, spectral method, numerical analysis, Williamson nanofluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
2331 Anthropometric Profile as a Factor of Impact on Employee Productivity in Manufacturing Industry of Tijuana, Mexico

Authors: J. A. López, J. E. Olguín, C. W. Camargo, G. A. Quijano, R. Martínez

Abstract:

This paper presents an anthropometric study conducted to 300 employees in a maquiladora industry that belongs to the cluster of medical products as part of a research project to pretend simulate workplace conditions under which operators conduct their activities. This project is relevant because traditionally performed a study to design ergonomic workspaces according to anthropometric profile of users, however, this paper demonstrates the importance of making decisions when the infrastructure cannot be adapted for economic whichever put emphasis on user activity.

Keywords: Anthropometry, Biomechanics, Design, Ergonomics, Productivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
2330 Existence and Exponential Stability of Almost Periodic Solution for Cohen-Grossberg SICNNs with Impulses

Authors: Meng Hu, Lili Wang

Abstract:

In this paper, based on the estimation of the Cauchy matrix of linear impulsive differential equations, by using Banach fixed point theorem and Gronwall-Bellman-s inequality, some sufficient conditions are obtained for the existence and exponential stability of almost periodic solution for Cohen-Grossberg shunting inhibitory cellular neural networks (SICNNs) with continuously distributed delays and impulses. An example is given to illustrate the main results.

Keywords: Almost periodic solution, exponential stability, neural networks, impulses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14337
2329 Techno-Economic Analysis Framework for Wave Energy Conversion Schemes under South African Conditions: Modeling and Simulations

Authors: Siyanda S. Biyela, Willie A. Cronje

Abstract:

This paper presents a desktop study of comparing two different wave energy to electricity technologies (WECs) using a techno-economic approach. This techno-economic approach forms basis of a framework for rapid comparison of current and future technologies. The approach also seeks to assist in investment and strategic decision making expediting future deployment of wave energy harvesting in South Africa.

Keywords: Cost of energy, tool, wave energy converter, WEC-Sim.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
2328 Characterization of Solutions of Nonsmooth Variational Problems and Duality

Authors: Juan Zhang, Changzhao Li

Abstract:

In this paper, we introduce a new class of nonsmooth pseudo-invex and nonsmooth quasi-invex functions to non-smooth variational problems. By using these concepts, numbers of necessary and sufficient conditions are established for a nonsmooth variational problem wherein Clarke’s generalized gradient is used. Also, weak, strong and converse duality are established.

Keywords: Variational problem, Nonsmooth pseudo-invex, Nonsmooth quasi-invex, Critical point, Duality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147
2327 Desalination of Salt Water by Collision with Surface Coated with Nano Particles

Authors: Hesham Muhammad Ibrahim

Abstract:

This paper introduces and proves new concept of salt dissolving in water as very tiny solid sodium chloride particles of nanovolumes, from this point of view salt water can be desalinated by collision with special surface characterized by smoothness upon nano level, high rigidity, high hardness under appropriate conditions of water launching in the form of thin laminar flow under suitable speed and angle of incidence to get desalinated water.

Keywords: Desalination by collision, nano coating, water desalination, water repellent surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
2326 Analysis of Different Designed Landing Gears for a Light Aircraft

Authors: Essam A. Al-Bahkali

Abstract:

The design of a landing gear is one of the fundamental aspects of aircraft design. The need for a light weight, high strength, and stiffness characteristics coupled with techno economic feasibility are a key to the acceptability of any landing gear construction. In this paper, an approach for analyzing two different designed landing gears for an unmanned aircraft vehicle (UAV) using advanced CAE techniques will be applied. Different landing conditions have been considered for both models. The maximum principle stresses for each model along with the factor of safety are calculated for every loading condition. A conclusion is drawing about better geometry.

Keywords: Landing Gear, Model, Finite Element Analysis, Aircraft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5389
2325 Characterization of Indoor Power Lines as Data Communication Channels Experimental Details and Results

Authors: Sheroz Khan, A. F. Salami, W. A. Lawal, AHM Zahirul Alam, Shihab Abdel Hameed, M. J. E.Salami

Abstract:

In this paper, a multi-branch power line is modeled using ABCD matrix to show its worth as a communication channel. The model is simulated using MATLAB in an effort to investigate the effects of multiple loading, multipath, and those as a result of load mismatching. The channel transfer function is obtained and investigated using different cable lengths, and different number of bridge taps under given loading conditions.

Keywords: Power line Communication, Transfer Function, Channel Modeling, Signal Transmission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
2324 Periodicity for a Semi–Ratio–Dependent Predator–Prey System with Delays on Time Scales

Authors: Kejun Zhuang

Abstract:

In this paper, the semi–ratio–dependent predator-prey system with nonmonotonic functional response on time scales is investigated. By using the coincidence degree theory, sufficient conditions for existence of periodic solutions are obtained.

Keywords: Semi–ratio–dependent, predator–prey system, coincidence degree, time scales.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295
2323 Drought Resilient Water Supply: Establishment of Groundwater Treatment Plant at Construction Sites in Taichung City

Authors: Shang-Hsin Ou, Yang-Chun Lin, Ke-Hao Cheng

Abstract:

The year 2021 marked a historic drought in Taiwan, posing unprecedented challenges due to record-low rainfall and inadequate reservoir storage. The central region experienced water scarcity, leading to the implementation of "Groundwater Utilization at Construction Sites" for drought-resilient livelihood water supply. This study focuses on the establishment process of temporary groundwater treatment plants at construction sites in Taichung City, serving as a reference for future emergency response and the utilization of construction site groundwater. To identify suitable sites for groundwater reuse projects, site selection operations were carried out based on relevant water quality regulations and assessment principles. Subsequently, the planning and design of temporary water treatment plants were conducted, considering the water quality, quantity, and on-site conditions of groundwater wells associated with construction projects. The study consolidates the major water treatment facilities at each site and addresses encountered challenges during the establishment process. Practical insights gained from operating temporary groundwater treatment plants are presented, including improvements related to stable water quality, water quantity, equipment operation, and hydraulic control. In light of possible future droughts, this study provides an outlook and recommendations to expedite and improve the setup of groundwater treatment plants at construction sites. This includes considering on-site water abstraction, treatment, and distribution conditions. The study aims to provide concise guidelines for setting up and managing temporary groundwater treatment plants at construction sites, drawing insights from Taichung City's establishment process. It offers recommendations for addressing challenges like water quality, quantity, equipment operation, and regulation compliance. By sharing these insights, it aims to aid regions facing similar emergencies, ensuring sustainable water supply and societal stability amidst water shortages and droughts.

Keywords: Drought resilience, groundwater treatment, construction site, water supply.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88
2322 Development and Analysis of a Machine to Equally Apply Mineral Fertilizer to Soil on Slopes

Authors: Qurbanov Huseyn Nuraddin

Abstract:

Reliable food supply of the population of a country is one of the main directions of the state's economic policy. Grain growing, which is the basis of agriculture, is important in this area. In the cultivation of cereals on slopes, the application of equal amounts of mineral fertilizers to under the soil before sowing is a very important technological process. The low level of technical equipment in this area prevents producers from providing the country with the necessary quality cereals. Experience in the operation of modern technical means has shown that at present, there is a need to provide an equal amount of fertilizer to under the soil on slopes, fully meeting the agro-technical requirements. No fundamental changes have been made to the industrial machines that fertilize under the soil, and unequal application of fertilizers to under the soil on slopes has been applied. This technological process leads to the destruction of new seedlings and reduced productivity due to intolerance to frost during the winter for the plant planted in the fall. In special climatic conditions, there is an optimal fertilization rate for each agricultural product. The application of fertilizers to the soil is one of the conditions that increase their efficiency in the field. As can be seen, the development of a new technical proposal for fertilizing and plowing the slopes in equal amounts on the slopes, improving the technological and design parameters, taking into account the physical and mechanical properties of fertilizers, is very important. Taking into account the above-mentioned issues, a combined plough was developed in our laboratory. Combined plough carries out pre-sowing technological operation in the cultivation of cereals, providing a smooth equal amount of mineral fertilizers to under the soil on the slopes. Mathematical models of a smooth spreader that evenly distributes fertilizers in the field have been developed. Thus, diagrams and graphs obtained without distribution on the eight partitions of the smooth spreader are constructed under the inclined angles of the slopes. Percentage and productivity of equal distribution in the field were noted by practical and theoretical analysis.

Keywords: Combined plough, mineral fertilizer, equal sowing, fertilizer norm, grain-crops, sowing fertilizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 397
2321 Analytical Model for Predicting Whole Building Heat Transfer

Authors: Xiaoshu Lu, Martti Viljanen

Abstract:

A new analytical model is developed which provides close-formed solutions for both transient indoor and envelope temperature changes in buildings. Time-dependent boundary temperature is presented as Fourier series which can approximate real weather conditions. The final close-formed solutions are simple, concise, and comprehensive. The model was compared with numerical results and good accuracy was obtained. The model can be used as design and control guidelines in engineering applications for analysing mechanical heat transfer properties for buildings.

Keywords: Analytical model, heat transfer, whole building.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046