Search results for: Digital image correlation
2042 Some Morphological Characteristics of Perennial Ryegrass Genotypes and Correlations among Their Characteristics
Abstract:
The present study involved analysis of certain characteristics of the perennial ryegrass (Lolium perenne L.) genotypes collected from the natural flora of Ankara, and explores a correlation among them. In order to evaluate the plants for breeding purpose as per Turkey's environmental conditions, the perennial ryegrass plants were collected from natural pasture of Ankara in 2004 and were utilized for the study. Seeds of the collected plants were sown in pots and seedlings were prepared in a greenhouse. In 2005, the seedlings were transplanted at 50 × 50 cm2 intervals in Randomized Complete Blocks Design in an experimental field. In 2007 and 2008, data were recorded from the observations and measurements of 568 perennial ryegrasses. The plant characteristics, which were investigated, included re-growth time in spring, color, density, growth habit, tendency to form inflorescence, time of inflorescence, plant height, length of upper internode, spike length, leaf length, leaf width, leaf area, leaf shape, number of spikelets per spike, seed yield per spike and 1000 grain weight and the correlation analyses were made using this data. Correlation coefficients were estimated between all paired combinations of the studied traits. The yield components exhibited varying trends of association among themselves. Seed yield per spike showed significant and positive association with the number of spikelets per spike, 1000 grain weight, plant height, length of upper internode, spike length, leaf length, leaf width, leaf area and color, but significant and negative association with the growth habit and re-growth time in spring.
Keywords: Correlation, morphological traits, Lolium perenne.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19482041 Factors Influencing B2c eCommerce Diffusion
Authors: R. Mangiaracina, A. Perego, F. Campari
Abstract:
Despite the fact that B2c eCommerce has become important in numerous economies, its adoption varies from country to country. This paper aims to identify the factors affecting (enabling or inhibiting) B2c eCommerce and to determine their quantitative impact on the diffusion of online sales across countries. A dynamic panel model analyzing the relationship between 13 factors (Macroeconomic, Demographic, Socio-Cultural, Infrastructural and Offer related) stemming from a complete literature analysis and the B2c eCommerce value in 45 countries over 9 years has been developed. Having a positive correlation coefficient, GDP, mobile penetration, Internet user penetration and credit card penetration resulted as enabling drivers of the B2c eCommerce value across countries, whereas, having a negative correlation coefficient,equal distribution of income and the development of traditional retailing network act as inhibiting factors.Keywords: B2c eCommerce diffusion, influencing factors, dynamic panel model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35732040 Zero-Knowledge Proof-of-Reserve: A Confidential Approach to Cryptocurrency Asset Verification
Authors: Sam, Ng, Lewis Leighton, Sam Atkinson, Carson Yan, Landan Hu, Leslie Cheung, Brian Yap, Kent Lung, Ketat Sarakune
Abstract:
This paper presents a method for verifying cryptocurrency reserves that balances the need for both transparency and data confidentiality. Our methodology employs cryptographic techniques, including Merkle Trees, Bulletproof, and zkSnark, to verify that total assets equal or exceed total liabilities, represented by customer funds. Notably, this verification is achieved without disclosing sensitive information such as the total asset value, customer count, or cold wallet addresses. We delve into the construction and implementation of this methodology. While the system is robust and scalable, we also identify areas for potential enhancements to improve its efficiency and versatility. As the digital asset landscape continues to evolve, our approach provides a solid foundation for ensuring continued trust and security in digital asset platforms.
Keywords: Cryptocurrency, crypto-currency, proof-of-reserve, por, zero-knowledge, zkpor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732039 An E-Government Implementation Model for Peruvian State Companies Based on COBIT 5.0: Definition and Goals of the Model
Authors: M. Bruzza, M. Tupia, F. Rodríguez
Abstract:
As part of the regulatory compliance process and the streamlining of public administration, the Peruvian government has implemented the National E-Government Plan in all state institutions with the aim of providing citizens with solid services based on the use of Information and Communications Technologies (ICT). As part of the regulations, the requisites to be met by public institutions have been submitted. However, the lack of an implementation model was detected, one that can serve as a guide to such institutions in order to materialize the organizational and technological structures needed, which allow them to provide the required digital services. This paper develops an implementation model of electronic government (e-government) for Peru’s state institutions, in compliance with current regulations based on a COBIT 5.0 framework. Furthermore, the paper introduces phase 1 of this model: business and IT goals, the goals cascade and the future model of processes.
Keywords: E-government, implementation, model, COBIT 5.0, digital services, u-government, m-government.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14002038 Segmentation of Korean Words on Korean Road Signs
Authors: Lae-Jeong Park, Kyusoo Chung, Jungho Moon
Abstract:
This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.Keywords: Segmentation, road signs, characters, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27562037 Promoting Social Advocacy through Digital Storytelling: The Case of Ocean Acidification
Authors: Chun Chen Yea, Wen Huei Chou
Abstract:
Many chemical changes in the atmosphere and the ocean are invisible to the naked eye, but they have profound impacts. These changes not only confirm the phenomenon of global carbon pollution, but also forewarn that more changes are coming. The carbon dioxide gases emitted from the burning of fossil fuels dissolve into the ocean and chemically react with seawater to form carbonic acid, which increases the acidity of the originally alkaline seawater. This gradual acidification is occurring at an unprecedented rate and will affect the effective formation of carapace of some marine organisms such as corals and crustaceans, which are almost entirely composed of calcium carbonate. The carapace of these organisms will become more dissoluble. Acidified seawater not only threatens the survival of marine life, but also negatively impacts the global ecosystem via the food chain. Faced with the threat of ocean acidification, all humans are duty-bound. The industrial sector outputs the highest level of carbon dioxide emissions in Taiwan, and the petrochemical industry is the major contributor. Ever since the construction of Formosa Plastics Group's No. 6 Naphtha Cracker Plant in Yunlin County, there have been many environmental concerns such as air pollution and carbon dioxide emission. The marine life along the coast of Yunlin is directly affected by ocean acidification arising from the carbon emissions. Societal change demands our willingness to act, which is what social advocacy promotes. This study uses digital storytelling for social advocacy and ocean acidification as the subject of a visual narrative in visualization to demonstrate the subsequent promotion of social advocacy. Storytelling can transform dull knowledge into an engaging narrative of the crisis faced by marine life. Digital dissemination is an effective social-work practice. The visualization promoting awareness on ocean acidification disseminated via social media platforms, such as Facebook and Instagram. Social media enables users to compose their own messages and share information across different platforms, which helps disseminate the core message of social advocacy.
Keywords: Digital storytelling, visualization, ocean acidification, social advocacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9572036 Memristor-A Promising Candidate for Neural Circuits in Neuromorphic Computing Systems
Authors: Juhi Faridi, Mohd. Ajmal Kafeel
Abstract:
The advancements in the field of Artificial Intelligence (AI) and technology has led to an evolution of an intelligent era. Neural networks, having the computational power and learning ability similar to the brain is one of the key AI technologies. Neuromorphic computing system (NCS) consists of the synaptic device, neuronal circuit, and neuromorphic architecture. Memristor are a promising candidate for neuromorphic computing systems, but when it comes to neuromorphic computing, the conductance behavior of the synaptic memristor or neuronal memristor needs to be studied thoroughly in order to fathom the neuroscience or computer science. Furthermore, there is a need of more simulation work for utilizing the existing device properties and providing guidance to the development of future devices for different performance requirements. Hence, development of NCS needs more simulation work to make use of existing device properties. This work aims to provide an insight to build neuronal circuits using memristors to achieve a Memristor based NCS. Here we throw a light on the research conducted in the field of memristors for building analog and digital circuits in order to motivate the research in the field of NCS by building memristor based neural circuits for advanced AI applications. This literature is a step in the direction where we describe the various Key findings about memristors and its analog and digital circuits implemented over the years which can be further utilized in implementing the neuronal circuits in the NCS. This work aims to help the electronic circuit designers to understand how the research progressed in memristors and how these findings can be used in implementing the neuronal circuits meant for the recent progress in the NCS.
Keywords: Analog circuits, digital circuits, memristors, neuromorphic computing systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12192035 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming
Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad
Abstract:
Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.Keywords: Breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration (FNA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8242034 The Modified Eigenface Method using Two Thresholds
Authors: Yan Ma, ShunBao Li
Abstract:
A new approach is adopted in this paper based on Turk and Pentland-s eigenface method. It was found that the probability density function of the distance between the projection vector of the input face image and the average projection vector of the subject in the face database, follows Rayleigh distribution. In order to decrease the false acceptance rate and increase the recognition rate, the input face image has been recognized using two thresholds including the acceptance threshold and the rejection threshold. We also find out that the value of two thresholds will be close to each other as number of trials increases. During the training, in order to reduce the number of trials, the projection vectors for each subject has been averaged. The recognition experiments using the proposed algorithm show that the recognition rate achieves to 92.875% whilst the average number of judgment is only 2.56 times.Keywords: Eigenface, Face Recognition, Threshold, Rayleigh Distribution, Feature Extraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14982033 Utilizing the Principal Component Analysis on Multispectral Aerial Imagery for Identification of Underlying Structures
Authors: M. Bosques-Perez, W. Izquierdo, H. Martin, L. Deng, J. Rodriguez, T. Yan, M. Cabrerizo, A. Barreto, N. Rishe, M. Adjouadi
Abstract:
Aerial imagery is a powerful tool when it comes to analyzing temporal changes in ecosystems and extracting valuable information from the observed scene. It allows us to identify and assess various elements such as objects, structures, textures, waterways, and shadows. To extract meaningful information, multispectral cameras capture data across different wavelength bands of the electromagnetic spectrum. In this study, the collected multispectral aerial images were subjected to principal component analysis (PCA) to identify independent and uncorrelated components or features that extend beyond the visible spectrum captured in standard RGB images. The results demonstrate that these principal components contain unique characteristics specific to certain wavebands, enabling effective object identification and image segmentation.
Keywords: Big data, image processing, multispectral, principal component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152032 Segmentation of Breast Lesions in Ultrasound Images Using Spatial Fuzzy Clustering and Structure Tensors
Authors: Yan Xu, Toshihiro Nishimura
Abstract:
Segmentation in ultrasound images is challenging due to the interference from speckle noise and fuzziness of boundaries. In this paper, a segmentation scheme using fuzzy c-means (FCM) clustering incorporating both intensity and texture information of images is proposed to extract breast lesions in ultrasound images. Firstly, the nonlinear structure tensor, which can facilitate to refine the edges detected by intensity, is used to extract speckle texture. And then, a spatial FCM clustering is applied on the image feature space for segmentation. In the experiments with simulated and clinical ultrasound images, the spatial FCM clustering with both intensity and texture information gets more accurate results than the conventional FCM or spatial FCM without texture information.
Keywords: fuzzy c-means, spatial information, structure tensor, ultrasound image segmentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18102031 A Video Watermarking Algorithm Based on Chaotic and Wavelet Neural Network
Authors: Jiadong Liang
Abstract:
This paper presented a video watermarking algorithm based on wavelet chaotic neural network. First, to enhance binary image’s security, the algorithm encrypted it with double chaotic based on Arnold and Logistic map, Then, the host video was divided into some equal frames and distilled the key frame through chaotic sequence which generated by Logistic. Meanwhile, we distilled the low frequency coefficients of luminance component and self-adaptively embedded the processed image watermark into the low frequency coefficients of the wavelet transformed luminance component with the wavelet neural network. The experimental result suggested that the presented algorithm has better invisibility and robustness against noise, Gaussian filter, rotation, frame loss and other attacks.
Keywords: Video watermark, double chaotic encryption, wavelet neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10552030 Investigating the Demand for Short-shelf Life Food Products for SME Wholesalers
Authors: Yamini Raju, Parminder S. Kang, Adam Moroz, Ross Clement, Ashley Hopwell, Alistair Duffy
Abstract:
Accurate forecasting of fresh produce demand is one the challenges faced by Small Medium Enterprise (SME) wholesalers. This paper is an attempt to understand the cause for the high level of variability such as weather, holidays etc., in demand of SME wholesalers. Therefore, understanding the significance of unidentified factors may improve the forecasting accuracy. This paper presents the current literature on the factors used to predict demand and the existing forecasting techniques of short shelf life products. It then investigates a variety of internal and external possible factors, some of which is not used by other researchers in the demand prediction process. The results presented in this paper are further analysed using a number of techniques to minimize noise in the data. For the analysis past sales data (January 2009 to May 2014) from a UK based SME wholesaler is used and the results presented are limited to product ‘Milk’ focused on café’s in derby. The correlation analysis is done to check the dependencies of variability factor on the actual demand. Further PCA analysis is done to understand the significance of factors identified using correlation. The PCA results suggest that the cloud cover, weather summary and temperature are the most significant factors that can be used in forecasting the demand. The correlation of the above three factors increased relative to monthly and becomes more stable compared to the weekly and daily demand.Keywords: Demand Forecasting, Deteriorating Products, Food Wholesalers, Principal Component Analysis and Variability Factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33722029 Contrast Enhancement of Masses in Mammograms Using Multiscale Morphology
Authors: Amit Kamra, V. K. Jain, Pragya
Abstract:
Mammography is widely used technique for breast cancer screening. There are various other techniques for breast cancer screening but mammography is the most reliable and effective technique. The images obtained through mammography are of low contrast which causes problem for the radiologists to interpret. Hence, a high quality image is mandatory for the processing of the image for extracting any kind of information from it. Many contrast enhancement algorithms have been developed over the years. In the present work, an efficient morphology based technique is proposed for contrast enhancement of masses in mammographic images. The proposed method is based on Multiscale Morphology and it takes into consideration the scale of the structuring element. The proposed method is compared with other stateof- the-art techniques. The experimental results show that the proposed method is better both qualitatively and quantitatively than the other standard contrast enhancement techniques.Keywords: Enhancement, mammography, multi-scale, mathematical morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22652028 Process Optimization and Automation of Information Technology Services in a Heterogenic Digital Environment
Authors: Tasneem Halawani, Yamen Khateeb
Abstract:
With customers’ ever-increasing expectations for fast services provisioning for all their business needs, information technology (IT) organizations, as business partners, have to cope with this demanding environment and deliver their services in the most effective and efficient way. The purpose of this paper is to identify optimization and automation opportunities for the top requested IT services in a heterogenic digital environment and widely spread customer base. In collaboration with systems, processes, and subject matter experts (SMEs), the processes in scope were approached by analyzing four-year related historical data, identifying and surveying stakeholders, modeling the as-is processes, and studying systems integration/automation capabilities. This effort resulted in identifying several pain areas, including standardization, unnecessary customer and IT involvement, manual steps, systems integration, and performance measurement. These pain areas were addressed by standardizing the top five requested IT services, eliminating/automating 43 steps, and utilizing a single platform for end-to-end process execution. In conclusion, the optimization of IT service request processes in a heterogenic digital environment and widely spread customer base is challenging, yet achievable without compromising the service quality and customers’ added value. Further studies can focus on measuring the value of the eliminated/automated process steps to quantify the enhancement impact. Moreover, a similar approach can be utilized to optimize other IT service requests, with a focus on business criticality.Keywords: Automation, customer value, heterogenic, integration, IT services, optimization, processes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6712027 Fast Facial Feature Extraction and Matching with Artificial Face Models
Authors: Y. H. Tsai, Y. W. Chen
Abstract:
Facial features are frequently used to represent local properties of a human face image in computer vision applications. In this paper, we present a fast algorithm that can extract the facial features online such that they can give a satisfying representation of a face image. It includes one step for a coarse detection of each facial feature by AdaBoost and another one to increase the accuracy of the found points by Active Shape Models (ASM) in the regions of interest. The resulted facial features are evaluated by matching with artificial face models in the applications of physiognomy. The distance measure between the features and those in the fate models from the database is carried out by means of the Hausdorff distance. In the experiment, the proposed method shows the efficient performance in facial feature extractions and online system of physiognomy.Keywords: Facial feature extraction, AdaBoost, Active shapemodel, Hausdorff distance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18192026 Optimal Linear Quadratic Digital Tracker for the Discrete-Time Proper System with an Unknown Disturbance
Authors: Jason Sheng-Hong Tsai, Faezeh Ebrahimzadeh, Min-Ching Chung, Shu-Mei Guo, Leang-San Shieh, Tzong-Jiy Tsai, Li Wang
Abstract:
In this paper, we first construct a new state and disturbance estimator using discrete-time proportional plus integral observer to estimate the system state and the unknown external disturbance for the discrete-time system with an input-to-output direct-feedthrough term. Then, the generalized optimal linear quadratic digital tracker design is applied to construct a proportional plus integral observer-based tracker for the system with an unknown external disturbance to have a desired tracking performance. Finally, a numerical simulation is given to demonstrate the effectiveness of the new application of our proposed approach.
Keywords: Optimal linear quadratic tracker, proportional plus integral observer, state estimator, disturbance estimator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12982025 Template-Based Object Detection through Partial Shape Matching and Boundary Verification
Authors: Feng Ge, Tiecheng Liu, Song Wang, Joachim Stahl
Abstract:
This paper presents a novel template-based method to detect objects of interest from real images by shape matching. To locate a target object that has a similar shape to a given template boundary, the proposed method integrates three components: contour grouping, partial shape matching, and boundary verification. In the first component, low-level image features, including edges and corners, are grouped into a set of perceptually salient closed contours using an extended ratio-contour algorithm. In the second component, we develop a partial shape matching algorithm to identify the fractions of detected contours that partly match given template boundaries. Specifically, we represent template boundaries and detected contours using landmarks, and apply a greedy algorithm to search the matched landmark subsequences. For each matched fraction between a template and a detected contour, we estimate an affine transform that transforms the whole template into a hypothetic boundary. In the third component, we provide an efficient algorithm based on oriented edge lists to determine the target boundary from the hypothetic boundaries by checking each of them against image edges. We evaluate the proposed method on recognizing and localizing 12 template leaves in a data set of real images with clutter back-grounds, illumination variations, occlusions, and image noises. The experiments demonstrate the high performance of our proposed method1.Keywords: Object detection, shape matching, contour grouping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23092024 Comparison between Higher-Order SVD and Third-order Orthogonal Tensor Product Expansion
Authors: Chiharu Okuma, Jun Murakami, Naoki Yamamoto
Abstract:
In digital signal processing it is important to approximate multi-dimensional data by the method called rank reduction, in which we reduce the rank of multi-dimensional data from higher to lower. For 2-dimennsional data, singular value decomposition (SVD) is one of the most known rank reduction techniques. Additional, outer product expansion expanded from SVD was proposed and implemented for multi-dimensional data, which has been widely applied to image processing and pattern recognition. However, the multi-dimensional outer product expansion has behavior of great computation complex and has not orthogonally between the expansion terms. Therefore we have proposed an alterative method, Third-order Orthogonal Tensor Product Expansion short for 3-OTPE. 3-OTPE uses the power method instead of nonlinear optimization method for decreasing at computing time. At the same time the group of B. D. Lathauwer proposed Higher-Order SVD (HOSVD) that is also developed with SVD extensions for multi-dimensional data. 3-OTPE and HOSVD are similarly on the rank reduction of multi-dimensional data. Using these two methods we can obtain computation results respectively, some ones are the same while some ones are slight different. In this paper, we compare 3-OTPE to HOSVD in accuracy of calculation and computing time of resolution, and clarify the difference between these two methods.Keywords: Singular value decomposition (SVD), higher-order SVD (HOSVD), higher-order tensor, outer product expansion, power method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15672023 Over-Height Vehicle Detection in Low Headroom Roads Using Digital Video Processing
Authors: Vahid Khorramshahi, Alireza Behrad, Neeraj K. Kanhere
Abstract:
In this paper we present a new method for over-height vehicle detection in low headroom streets and highways using digital video possessing. The accuracy and the lower price comparing to present detectors like laser radars and the capability of providing extra information like speed and height measurement make this method more reliable and efficient. In this algorithm the features are selected and tracked using KLT algorithm. A blob extraction algorithm is also applied using background estimation and subtraction. Then the world coordinates of features that are inside the blobs are estimated using a noble calibration method. As, the heights of the features are calculated, we apply a threshold to select overheight features and eliminate others. The over-height features are segmented using some association criteria and grouped using an undirected graph. Then they are tracked through sequential frames. The obtained groups refer to over-height vehicles in a scene.Keywords: Feature extraction, over-height vehicle detection, traffic monitoring, vehicle tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28332022 A Comparison of Air Quality in Arid and Temperate Climatic Conditions – A Case Study of Leeds and Makkah
Authors: Turki M. Habeebullah, Said Munir, Karl Ropkins, Essam A. Morsy, Atef M. F. Mohammed, Abdulaziz R. Seroji
Abstract:
In this paper air quality conditions in Makkah and Leeds are compared. These two cities have totally different climatic conditions. Makkah climate is characterised as hot and dry (arid) whereas that of Leeds is characterised as cold and wet (temperate). This study uses air quality data from 2012 collected in Makkah, Saudi Arabia and Leeds, UK. The concentrations of all pollutants, except NO are higher in Makkah. Most notable, the concentrations of PM10 are much higher in Makkah than in Leeds. This is probably due to the arid nature of climatic conditions in Makkah and not solely due to anthropogenic emission sources, otherwise like PM10 some of the other pollutants, such as CO, NO, and SO2 would have shown much greater difference between Leeds and Makkah. Correlation analysis is performed between different pollutants at the same site and the same pollutants at different sites. In Leeds the correlation between PM10 and other pollutants is significantly stronger than in Makkah. Weaker correlation in Makkah is probably due to the fact that in Makkah most of the gaseous pollutants are emitted by combustion processes, whereas most of the PM10 is generated by other sources, such as windblown dust, re-suspension, and construction activities. This is in contrast to Leeds where all pollutants including PM10 are predominantly emitted by combustions, such as road traffic. Furthermore, in Leeds frequent rains wash out most of the atmospheric particulate matter and suppress re-suspension of dust. Temporal trends of various pollutants are compared and discussed. This study emphasises the role of climatic conditions in managing air quality, and hence the need for region-specific controlling strategies according to the local climatic and meteorological conditions.Keywords: Air pollution, climatic conditions, particulate matter, Makkah, Leeds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25682021 Hybrid Approach for Memory Analysis in Windows System
Authors: Khairul Akram Zainol Ariffin, Ahmad Kamil Mahmood, Jafreezal Jaafar, Solahuddin Shamsuddin
Abstract:
Random Access Memory (RAM) is an important device in computer system. It can represent the snapshot on how the computer has been used by the user. With the growth of its importance, the computer memory has been an issue that has been discussed in digital forensics. A number of tools have been developed to retrieve the information from the memory. However, most of the tools have their limitation in the ability of retrieving the important information from the computer memory. Hence, this paper is aimed to discuss the limitation and the setback for two main techniques such as process signature search and process enumeration. Then, a new hybrid approach will be presented to minimize the setback in both individual techniques. This new approach combines both techniques with the purpose to retrieve the information from the process block and other objects in the computer memory. Nevertheless, the basic theory in address translation for x86 platforms will be demonstrated in this paper.Keywords: Algorithms, Digital Forensics, Memory Analysis, Signature Search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19932020 Factors Affecting the Work Efficiency of Employees of Suan Sunandha Rajabhat University
Authors: Unnop Panpuang
Abstract:
The objectives of this project are to study on the work efficiency of the employees, sorted by their profiles, and to study on the relation between job attributes and work efficiency of employees of Suan Sunandha Rajabhat University. The samples used for this study are 292 employees. The statistics used in this study are frequencies, standard deviations, One-way ANOVA and Pearson’s correlation coefficient. Majority of respondent were male with an undergraduate degree, married and lives together. The average age of respondents was between 31-41 years old, married and the educational background are higher than bachelor’s degree. The job attribute is correlated to the work efficiency with the statistical significance level of.o1. This concurs with the predetermined hypothesis. The correlation between the two main factors is in the moderate level. All the categories of job attributes such as the variety of skills, job clarity, job importance, freedom to do work are considered separately.
Keywords: Employees, Job Attributes, Work Efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36532019 Statistical Feature Extraction Method for Wood Species Recognition System
Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof
Abstract:
Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.Keywords: Classification, fuzzy, inspection system, image analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17462018 Examining Herzberg-s Two Factor Theory in a Large Chinese Chemical Fiber Company
Authors: Ju-Chun Chien
Abstract:
The validity of Herzberg-s Two-Factor Theory of Motivation was tested empirically by surveying 2372 chemical fiber employees in 2012. In the valid sample of 1875 respondents, the degree of overall job satisfaction was more than moderate. The most highly valued components of job satisfaction were: “corporate image," “collaborative working atmosphere," and “supervisor-s expertise"; whereas the lowest mean score was 34.65 for “job rotation and promotion." The top three job retention options rated by the participants were “good image of the enterprise," “good compensation," and “workplace is close to my residence." The overall evaluation of the level of thriving facilitation workplace reached almost to “mostly agree." For those participants who chose at least one motivator as their job retention options had significantly greater job satisfaction than those who chose only hygiene factors as their retention options. Therefore, Herzberg-s Two-Factor Theory of Motivation was proven valid in this study.Keywords: Employee job satisfaction, Job retention, Traditional business, Two-factor theory of motivation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54222017 Ontologies for Social Media Digital Evidence
Authors: Edlira Kalemi, Sule Yildirim-Yayilgan
Abstract:
Online Social Networks (OSNs) are nowadays being used widely and intensively for crime investigation and prevention activities. As they provide a lot of information they are used by the law enforcement and intelligence. An extensive review on existing solutions and models for collecting intelligence from this source of information and making use of it for solving crimes has been presented in this article. The main focus is on smart solutions and models where ontologies have been used as the main approach for representing criminal domain knowledge. A framework for a prototype ontology named SC-Ont will be described. This defines terms of the criminal domain ontology and the relations between them. The terms and the relations are extracted during both this review and the discussions carried out with domain experts. The development of SC-Ont is still ongoing work, where in this paper, we report mainly on the motivation for using smart ontology models and the possible benefits of using them for solving crimes.
Keywords: Criminal digital evidence, social media, ontologies, reasoning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23822016 Liver Lesion Extraction with Fuzzy Thresholding in Contrast Enhanced Ultrasound Images
Authors: Abder-Rahman Ali, Adélaïde Albouy-Kissi, Manuel Grand-Brochier, Viviane Ladan-Marcus, Christine Hoeffl, Claude Marcus, Antoine Vacavant, Jean-Yves Boire
Abstract:
In this paper, we present a new segmentation approach for focal liver lesions in contrast enhanced ultrasound imaging. This approach, based on a two-cluster Fuzzy C-Means methodology, considers type-II fuzzy sets to handle uncertainty due to the image modality (presence of speckle noise, low contrast, etc.), and to calculate the optimum inter-cluster threshold. Fine boundaries are detected by a local recursive merging of ambiguous pixels. The method has been tested on a representative database. Compared to both Otsu and type-I Fuzzy C-Means techniques, the proposed method significantly reduces the segmentation errors.Keywords: Defuzzification, fuzzy clustering, image segmentation, type-II fuzzy sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22942015 Fast Complex Valued Time Delay Neural Networks
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
Here, a new idea to speed up the operation of complex valued time delay neural networks is presented. The whole data are collected together in a long vector and then tested as a one input pattern. The proposed fast complex valued time delay neural networks uses cross correlation in the frequency domain between the tested data and the input weights of neural networks. It is proved mathematically that the number of computation steps required for the presented fast complex valued time delay neural networks is less than that needed by classical time delay neural networks. Simulation results using MATLAB confirm the theoretical computations.Keywords: Fast Complex Valued Time Delay Neural Networks, Cross Correlation, Frequency Domain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18282014 A Technique for Improving the Performance of Median Smoothers at the Corners Characterized by Low Order Polynomials
Authors: E. Srinivasan, D. Ebenezer
Abstract:
Median filters with larger windows offer greater smoothing and are more robust than the median filters of smaller windows. However, the larger median smoothers (the median filters with the larger windows) fail to track low order polynomial trends in the signals. Due to this, constant regions are produced at the signal corners, leading to the loss of fine details. In this paper, an algorithm, which combines the ability of the 3-point median smoother in preserving the low order polynomial trends and the superior noise filtering characteristics of the larger median smoother, is introduced. The proposed algorithm (called the combiner algorithm in this paper) is evaluated for its performance on a test image corrupted with different types of noise and the results obtained are included.
Keywords: Image filtering, detail preservation, median filters, nonlinear filters, order statistics filtering, Rank order filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13782013 Geochemical Assessment of Metal Concentrations in Mangrove Sediments along Mumbai Coast, India
Authors: Lina Fernandes, G. N. Nayak, D. Ilangovan
Abstract:
Two short sediment cores collected from mangrove areas of Manori and Thane creeks along Mumbai coast were analysed for sediment composition and metals (Fe, Mn, Cu, Pb, Co, Ni, Zn, Cr and V). The statistical analysis of Pearson correlation matrix proved that there is a significant relationship between metal concentration and finer grain size in Manori creek while poor correlation was observed in Thane creek. Based on the enrichment factor, the present metal to background metal ratios clearly reflected maximum enrichment of Cu and Pb in Manori creek and Mn in Thane creek. Geoaccumulation index calculated indicate that the study area is unpolluted with respect to Fe, Mn, Co, Ni, Zn and Cr in both the cores while moderately polluted with Cu and Pb in Manori creek. Based on contamination degree, both the core sediments were found to be considerably contaminated with metals.Keywords: Creek, Igeo, Mumbai, trace metals
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2654